G. P. Zouros and J. A. Roumeliotis, “Exact and closed-form cutoff wavenumbers of elliptical dielectric waveguides,” IEEE Trans. Microwave Theor. Tech. 60, 2741–2751 (2012).

[CrossRef]

C. H. Ziener, M. Rückl, T. Kampf, W. R. Bauer, and H. P. Schlemmer, “Mathieu functions for purely imaginary parameters,” J. Comput. Appl. Math. 236, 4513–4524 (2012).

[CrossRef]

G. P. Zouros and J. A. Roumeliotis, “Scattering by an infinite dielectric cylinder having an elliptic metal core: asymptotic solutions,” IEEE Trans. Antennas Propag. 58, 3299–3309(2010).

[CrossRef]

J. L. Tsalamengas, “Exponentially converging Nyström methods applied to the integral–integrodifferential equations of oblique scattering/hybrid wave propagation in presence of composite dielectric cylinders of arbitrary cross section,” IEEE Trans. Antennas Propag. 55, 3239–3250 (2007).

[CrossRef]

S. P. Savaidis and J. A. Roumeliotis, “Scattering by an infinite circular dielectric cylinder coating eccentrically an elliptic dielectric cylinder,” IEEE Trans. Antennas Propag. 52, 1180–1185 (2004).

[CrossRef]

A. K. Hamid and M. I. Hussein, “Electromagnetic scattering by a lossy dielectric-coated elliptic cylinder,” Can. J. Phys. 81, 771–778 (2003).

[CrossRef]

S. P. Savaidis and J. A. Roumeliotis, “Scattering by an infinite elliptic dielectric cylinder coating eccentrically a circular metallic or dielectric cylinder,” IEEE Trans. Microwave Theor. Tech. 45, 1792–1800 (1997).

[CrossRef]

J. A. Roumeliotis and S. P. Savaidis, “Scattering by an infinite circular dielectric cylinder coating eccentrically an elliptic metallic one,” IEEE Trans. Antennas Propag. 44, 757–763 (1996).

[CrossRef]

A. Sebak, H. Ragheb, and L. Shafai, “Plane-wave scattering by dielectric elliptic cylinder coated with nonconfocal dielectric,” Radio Sci. 29, 1393–1401 (1994).

[CrossRef]

J. A. Roumeliotis, H. K. Manthopoulos, and V. K. Manthopoulos, “Electromagnetic scattering from an infinite circular metallic cylinder coated by an elliptic dielectric one,” IEEE Trans. Microwave Theor. Tech. 41, 862–869 (1993).

[CrossRef]

H. Ragheb, L. Shafai, and M. Hamid, “Plane-wave scattering by a conducting elliptic cylinder coated by a nonconfocal dielectric,” IEEE Trans. Antennas Propag. 39, 218–223 (1991).

[CrossRef]

C. S. Kim, “Scattering of an obliquely incident wave by a coated elliptical conducting cylinder,” J. Electromagn. Waves Appl. 5, 1169–1186 (1991).

[CrossRef]

C. S. Kim and C. Yeh, “Scattering of an obliquely incident wave by a multilayered elliptical lossy dielectric cylinder,” Radio Sci. 26, 1165–1176 (1991).

[CrossRef]

J. H. Richmond, “Scattering by a conducting elliptic cylinder with dielectric coating,” Radio Sci. 23, 1061–1066 (1988).

[CrossRef]

A. M. Berezman, M. K. Kerimov, S. L. Skorokhodov, and G. A. Shadrin, “Calculation of the eigenvalues of Mathieu’s equation with a complex parameter,” Comput. Math. Math. Phys. 26, 48–55 (1986).

[CrossRef]

K. Særmark, “A note on addition theorems for Mathieu functions,” Z. angew. Math. Phys. 10, 426–428 (1959).

[CrossRef]

K. Særmark, “Scattering of a plane monochromatic wave by a system of strips,” Appl. Sci. Res. B 7, 417–440 (1959).

[CrossRef]

C. H. Ziener, M. Rückl, T. Kampf, W. R. Bauer, and H. P. Schlemmer, “Mathieu functions for purely imaginary parameters,” J. Comput. Appl. Math. 236, 4513–4524 (2012).

[CrossRef]

A. M. Berezman, M. K. Kerimov, S. L. Skorokhodov, and G. A. Shadrin, “Calculation of the eigenvalues of Mathieu’s equation with a complex parameter,” Comput. Math. Math. Phys. 26, 48–55 (1986).

[CrossRef]

P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 1953).

A. K. Hamid and M. I. Hussein, “Electromagnetic scattering by a lossy dielectric-coated elliptic cylinder,” Can. J. Phys. 81, 771–778 (2003).

[CrossRef]

H. Ragheb, L. Shafai, and M. Hamid, “Plane-wave scattering by a conducting elliptic cylinder coated by a nonconfocal dielectric,” IEEE Trans. Antennas Propag. 39, 218–223 (1991).

[CrossRef]

A. K. Hamid and M. I. Hussein, “Electromagnetic scattering by a lossy dielectric-coated elliptic cylinder,” Can. J. Phys. 81, 771–778 (2003).

[CrossRef]

C. H. Ziener, M. Rückl, T. Kampf, W. R. Bauer, and H. P. Schlemmer, “Mathieu functions for purely imaginary parameters,” J. Comput. Appl. Math. 236, 4513–4524 (2012).

[CrossRef]

A. M. Berezman, M. K. Kerimov, S. L. Skorokhodov, and G. A. Shadrin, “Calculation of the eigenvalues of Mathieu’s equation with a complex parameter,” Comput. Math. Math. Phys. 26, 48–55 (1986).

[CrossRef]

C. S. Kim and C. Yeh, “Scattering of an obliquely incident wave by a multilayered elliptical lossy dielectric cylinder,” Radio Sci. 26, 1165–1176 (1991).

[CrossRef]

C. S. Kim, “Scattering of an obliquely incident wave by a coated elliptical conducting cylinder,” J. Electromagn. Waves Appl. 5, 1169–1186 (1991).

[CrossRef]

J. A. Roumeliotis, H. K. Manthopoulos, and V. K. Manthopoulos, “Electromagnetic scattering from an infinite circular metallic cylinder coated by an elliptic dielectric one,” IEEE Trans. Microwave Theor. Tech. 41, 862–869 (1993).

[CrossRef]

J. A. Roumeliotis, H. K. Manthopoulos, and V. K. Manthopoulos, “Electromagnetic scattering from an infinite circular metallic cylinder coated by an elliptic dielectric one,” IEEE Trans. Microwave Theor. Tech. 41, 862–869 (1993).

[CrossRef]

J. Meixner and F. W. Schäfke, Mathieusche Funktionen und Sphäroidfunktionen (Springer-Verlag, 1954).

P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 1953).

A. Sebak, H. Ragheb, and L. Shafai, “Plane-wave scattering by dielectric elliptic cylinder coated with nonconfocal dielectric,” Radio Sci. 29, 1393–1401 (1994).

[CrossRef]

H. Ragheb, L. Shafai, and M. Hamid, “Plane-wave scattering by a conducting elliptic cylinder coated by a nonconfocal dielectric,” IEEE Trans. Antennas Propag. 39, 218–223 (1991).

[CrossRef]

J. H. Richmond, “Scattering by a conducting elliptic cylinder with dielectric coating,” Radio Sci. 23, 1061–1066 (1988).

[CrossRef]

G. P. Zouros and J. A. Roumeliotis, “Exact and closed-form cutoff wavenumbers of elliptical dielectric waveguides,” IEEE Trans. Microwave Theor. Tech. 60, 2741–2751 (2012).

[CrossRef]

G. P. Zouros and J. A. Roumeliotis, “Scattering by an infinite dielectric cylinder having an elliptic metal core: asymptotic solutions,” IEEE Trans. Antennas Propag. 58, 3299–3309(2010).

[CrossRef]

S. P. Savaidis and J. A. Roumeliotis, “Scattering by an infinite circular dielectric cylinder coating eccentrically an elliptic dielectric cylinder,” IEEE Trans. Antennas Propag. 52, 1180–1185 (2004).

[CrossRef]

S. P. Savaidis and J. A. Roumeliotis, “Scattering by an infinite elliptic dielectric cylinder coating eccentrically a circular metallic or dielectric cylinder,” IEEE Trans. Microwave Theor. Tech. 45, 1792–1800 (1997).

[CrossRef]

J. A. Roumeliotis and S. P. Savaidis, “Scattering by an infinite circular dielectric cylinder coating eccentrically an elliptic metallic one,” IEEE Trans. Antennas Propag. 44, 757–763 (1996).

[CrossRef]

J. A. Roumeliotis, H. K. Manthopoulos, and V. K. Manthopoulos, “Electromagnetic scattering from an infinite circular metallic cylinder coated by an elliptic dielectric one,” IEEE Trans. Microwave Theor. Tech. 41, 862–869 (1993).

[CrossRef]

C. H. Ziener, M. Rückl, T. Kampf, W. R. Bauer, and H. P. Schlemmer, “Mathieu functions for purely imaginary parameters,” J. Comput. Appl. Math. 236, 4513–4524 (2012).

[CrossRef]

K. Særmark, “Scattering of a plane monochromatic wave by a system of strips,” Appl. Sci. Res. B 7, 417–440 (1959).

[CrossRef]

K. Særmark, “A note on addition theorems for Mathieu functions,” Z. angew. Math. Phys. 10, 426–428 (1959).

[CrossRef]

S. P. Savaidis and J. A. Roumeliotis, “Scattering by an infinite circular dielectric cylinder coating eccentrically an elliptic dielectric cylinder,” IEEE Trans. Antennas Propag. 52, 1180–1185 (2004).

[CrossRef]

S. P. Savaidis and J. A. Roumeliotis, “Scattering by an infinite elliptic dielectric cylinder coating eccentrically a circular metallic or dielectric cylinder,” IEEE Trans. Microwave Theor. Tech. 45, 1792–1800 (1997).

[CrossRef]

J. A. Roumeliotis and S. P. Savaidis, “Scattering by an infinite circular dielectric cylinder coating eccentrically an elliptic metallic one,” IEEE Trans. Antennas Propag. 44, 757–763 (1996).

[CrossRef]

S. P. Savaidis, “Propagation and scattering of electromagnetic waves in eccentric circular-elliptic cylindrical conductor-dielectric configurations,” Ph.D. thesis (National Technical University of Athens, 1996) (in greek). Available online at http://phdtheses.ekt.gr/eadd/handle/10442/8872 .

J. Meixner and F. W. Schäfke, Mathieusche Funktionen und Sphäroidfunktionen (Springer-Verlag, 1954).

C. H. Ziener, M. Rückl, T. Kampf, W. R. Bauer, and H. P. Schlemmer, “Mathieu functions for purely imaginary parameters,” J. Comput. Appl. Math. 236, 4513–4524 (2012).

[CrossRef]

A. Sebak, H. Ragheb, and L. Shafai, “Plane-wave scattering by dielectric elliptic cylinder coated with nonconfocal dielectric,” Radio Sci. 29, 1393–1401 (1994).

[CrossRef]

A. M. Berezman, M. K. Kerimov, S. L. Skorokhodov, and G. A. Shadrin, “Calculation of the eigenvalues of Mathieu’s equation with a complex parameter,” Comput. Math. Math. Phys. 26, 48–55 (1986).

[CrossRef]

A. Sebak, H. Ragheb, and L. Shafai, “Plane-wave scattering by dielectric elliptic cylinder coated with nonconfocal dielectric,” Radio Sci. 29, 1393–1401 (1994).

[CrossRef]

H. Ragheb, L. Shafai, and M. Hamid, “Plane-wave scattering by a conducting elliptic cylinder coated by a nonconfocal dielectric,” IEEE Trans. Antennas Propag. 39, 218–223 (1991).

[CrossRef]

A. M. Berezman, M. K. Kerimov, S. L. Skorokhodov, and G. A. Shadrin, “Calculation of the eigenvalues of Mathieu’s equation with a complex parameter,” Comput. Math. Math. Phys. 26, 48–55 (1986).

[CrossRef]

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).

J. L. Tsalamengas, “Exponentially converging Nyström methods applied to the integral–integrodifferential equations of oblique scattering/hybrid wave propagation in presence of composite dielectric cylinders of arbitrary cross section,” IEEE Trans. Antennas Propag. 55, 3239–3250 (2007).

[CrossRef]

C. S. Kim and C. Yeh, “Scattering of an obliquely incident wave by a multilayered elliptical lossy dielectric cylinder,” Radio Sci. 26, 1165–1176 (1991).

[CrossRef]

C. H. Ziener, M. Rückl, T. Kampf, W. R. Bauer, and H. P. Schlemmer, “Mathieu functions for purely imaginary parameters,” J. Comput. Appl. Math. 236, 4513–4524 (2012).

[CrossRef]

K. Særmark, “Scattering of a plane monochromatic wave by a system of strips,” Appl. Sci. Res. B 7, 417–440 (1959).

[CrossRef]

A. K. Hamid and M. I. Hussein, “Electromagnetic scattering by a lossy dielectric-coated elliptic cylinder,” Can. J. Phys. 81, 771–778 (2003).

[CrossRef]

A. M. Berezman, M. K. Kerimov, S. L. Skorokhodov, and G. A. Shadrin, “Calculation of the eigenvalues of Mathieu’s equation with a complex parameter,” Comput. Math. Math. Phys. 26, 48–55 (1986).

[CrossRef]

J. L. Tsalamengas, “Exponentially converging Nyström methods applied to the integral–integrodifferential equations of oblique scattering/hybrid wave propagation in presence of composite dielectric cylinders of arbitrary cross section,” IEEE Trans. Antennas Propag. 55, 3239–3250 (2007).

[CrossRef]

G. P. Zouros and J. A. Roumeliotis, “Scattering by an infinite dielectric cylinder having an elliptic metal core: asymptotic solutions,” IEEE Trans. Antennas Propag. 58, 3299–3309(2010).

[CrossRef]

J. A. Roumeliotis and S. P. Savaidis, “Scattering by an infinite circular dielectric cylinder coating eccentrically an elliptic metallic one,” IEEE Trans. Antennas Propag. 44, 757–763 (1996).

[CrossRef]

S. P. Savaidis and J. A. Roumeliotis, “Scattering by an infinite circular dielectric cylinder coating eccentrically an elliptic dielectric cylinder,” IEEE Trans. Antennas Propag. 52, 1180–1185 (2004).

[CrossRef]

H. Ragheb, L. Shafai, and M. Hamid, “Plane-wave scattering by a conducting elliptic cylinder coated by a nonconfocal dielectric,” IEEE Trans. Antennas Propag. 39, 218–223 (1991).

[CrossRef]

S. P. Savaidis and J. A. Roumeliotis, “Scattering by an infinite elliptic dielectric cylinder coating eccentrically a circular metallic or dielectric cylinder,” IEEE Trans. Microwave Theor. Tech. 45, 1792–1800 (1997).

[CrossRef]

J. A. Roumeliotis, H. K. Manthopoulos, and V. K. Manthopoulos, “Electromagnetic scattering from an infinite circular metallic cylinder coated by an elliptic dielectric one,” IEEE Trans. Microwave Theor. Tech. 41, 862–869 (1993).

[CrossRef]

G. P. Zouros and J. A. Roumeliotis, “Exact and closed-form cutoff wavenumbers of elliptical dielectric waveguides,” IEEE Trans. Microwave Theor. Tech. 60, 2741–2751 (2012).

[CrossRef]

C. H. Ziener, M. Rückl, T. Kampf, W. R. Bauer, and H. P. Schlemmer, “Mathieu functions for purely imaginary parameters,” J. Comput. Appl. Math. 236, 4513–4524 (2012).

[CrossRef]

C. S. Kim, “Scattering of an obliquely incident wave by a coated elliptical conducting cylinder,” J. Electromagn. Waves Appl. 5, 1169–1186 (1991).

[CrossRef]

C. S. Kim and C. Yeh, “Scattering of an obliquely incident wave by a multilayered elliptical lossy dielectric cylinder,” Radio Sci. 26, 1165–1176 (1991).

[CrossRef]

J. H. Richmond, “Scattering by a conducting elliptic cylinder with dielectric coating,” Radio Sci. 23, 1061–1066 (1988).

[CrossRef]

A. Sebak, H. Ragheb, and L. Shafai, “Plane-wave scattering by dielectric elliptic cylinder coated with nonconfocal dielectric,” Radio Sci. 29, 1393–1401 (1994).

[CrossRef]

K. Særmark, “A note on addition theorems for Mathieu functions,” Z. angew. Math. Phys. 10, 426–428 (1959).

[CrossRef]

S. P. Savaidis, “Propagation and scattering of electromagnetic waves in eccentric circular-elliptic cylindrical conductor-dielectric configurations,” Ph.D. thesis (National Technical University of Athens, 1996) (in greek). Available online at http://phdtheses.ekt.gr/eadd/handle/10442/8872 .

J. Meixner and F. W. Schäfke, Mathieusche Funktionen und Sphäroidfunktionen (Springer-Verlag, 1954).

P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 1953).

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).

The Computation Laboratory of the National Applied Mathematics Laboratories, Tables Relating to Mathieu Functions (Columbia University, 1951).