Abstract

A recently published sparse spectrum (SS) model of the phase front perturbations by atmospheric turbulence [J. Opt. Soc. Am. A 30, 479 (2013)] is based on the trigonometric series with discrete random support. The SS model enables fewer computational efforts, while preserving the wide range of scales typically associated with turbulence perturbations. We present an improved version of the SS model that accurately reproduces the power-law spectral density of the phase fluctuations in the arbitrary wide spectral band. We examine the higher-order statistics of the SS phase samples for four versions of the SS model. We also present the calculations of the long-exposure Strehl numbers and scintillation index for the different versions of the SS model. A nonoverlapping SS model with a log-uniform partition emerges as the most appropriate for the atmospheric turbulence representation.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (26)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (34)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription