C. Saeidi, A. Fard, and F. Hodjatkashani, “Full three-dimensional radio wave propagation prediction model,” IEEE Trans. Antennas Propag. 60, 2462–2471 (2012).

[Crossref]

Z. Y. Liu and L. X. Guo, “A quasi three-dimensional ray tracing method based on the virtual source tree in urban microcellular environments,” Prog. Electromagn. Res. 118, 397–414 (2011).

[Crossref]

V. Degli-Esposti, F. Fuschini, E. M. Vitucci, and G. Falciasecca, “Speed-up techniques for ray tracing field prediction models,” IEEE Trans. Antennas Propag. 57, 1469–1480 (2009).

[Crossref]

K. H. Ng, E. K. Tameh, A. Doufexi, M. Hunukumbure, and A. R. Nix, “Efficient multielement ray tracing with site-specific comparisons using measured MIMO channel data,” IEEE Trans. Veh. Technol. 56, 1019–1032 (2007).

[Crossref]

P. Combeau, R. Vauzelle, Y. Pousset, and L. Aveneau, “An optimization in computation time for the prediction of radio coverage zones,” Radio Sci. 42, RS1003 (2007).

[Crossref]

D. N. Schettino, F. J. S. Moreira, and C. G. Rego, “Efficient ray tracing for radio channel characterization of urban scenarios,” IEEE Trans. Magn. 43, 1305–1308 (2007).

[Crossref]

H. M. El-Sallabi and P. Vainikainen, “Improvements to diffraction coefficient for non-perfectly conducting wedges,” IEEE Trans. Antennas Propag. 53, 3105–3109 (2005).

[Crossref]

Q. Sun, S. Y. Tan, and K. C. Teh, “Analytical formulae for path loss prediction in urban street grid microcellular environments,” IEEE Trans. Veh. Technol. 54, 1251–1258 (2005).

[Crossref]

H. T. Liu, B. H. Li, and D. S. Qi, “Novel geometrical database model for line-based GIS urban maps in 2D/2.5D ray-tracing algorithms,” Microwave Opt. Technol. Lett. 43, 307–310 (2004).

T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, “A survey of various propagation models for mobile communication,” IEEE Antennas Propag. Mag. 45(3), 51–82 (2003).

[Crossref]

A. Toscano, F. Bilotti, and L. Vegni, “Fast ray-tracing technique for electromagnetic field prediction in mobile communications,” IEEE Trans. Magn. 39, 1238–1241 (2003).

[Crossref]

M. F. Iskander and Z. Yun, “Propagation prediction models for wireless communication systems,” IEEE Trans. Microwave Theor. Tech. 50, 662–673 (2002).

[Crossref]

J. P. Rossi and Y. Gabillet, “A mixed ray launching/tracing method for full 3-D UHF propagation modeling and comparison with wide-band measurements,” IEEE Trans. Antennas Propag. 50, 517–523 (2002).

[Crossref]

H. M. El-Sallabi, G. Liang, H. L. Bertoni, I. T. Rekanos, and P. Vainikainen, “Influence of diffraction coefficient and corner shape on ray prediction of power and delay spread in urban microcells,” IEEE Trans. Antennas Propag. 50, 703–712 (2002).

[Crossref]

D. Erricolo, “Experimental validation of second-order diffraction coefficients for computation of path-loss past buildings,” IEEE Trans. Electromagn. Compat. 44, 272–273 (2002).

[Crossref]

V. Degli-Eposti, G. Lombardi, C. Passerini, and G. Riva, “Wide-band measurement and ray-tracing simulation of the 1900-MHz indoor propagation channel: comparison criteria and results,” IEEE Trans. Antennas Propag. 49, 1101–1110 (2001).

[Crossref]

M. Dottling, A. Jahn, D. Didascalou, and W. Wiesbeck, “Two- and three-dimensional ray tracing applied to the land mobile satellite (LMS) propagation channel,” IEEE Antennas Propag. Mag. 43(6), 27–37 (2001).

[Crossref]

W. M. O’Brien, E. M. Kenny, and P. J. Cullen, “An efficient implementation of a three-dimensional microcell propagation tool for indoor and outdoor urban environments,” IEEE Trans. Veh. Technol. 49, 622–630 (2000).

[Crossref]

F. A. Agelet, A. Formella, J. M. H. Rabanos, F. I. de Vicente, and F. P. Fontan, “Efficient ray-tracing acceleration techniques for radio propagation modeling,” IEEE Trans. Veh. Technol. 49, 2089–2104 (2000).

[Crossref]

J. H. Tarng and K. M. Ju, “A novel 3-D scattering model of 1.8-GHz radio propagation in microcellular urban environment,” IEEE Trans. Electromagn. Compat. 41, 100–106 (1999).

[Crossref]

H. Son and N. Myung, “A deterministic ray tube method for microcellular wave propagation prediction model,” IEEE Trans. Antennas Propag. 47, 1344–1350 (1999).

[Crossref]

M. F. Catedra, J. Perez, F. S. De Adana, and O. Gutierrez, “Efficient ray-tracing techniques for three-dimensional analyses of propagation in mobile communications: application to picocell and microcell scenarios,” IEEE Antennas Propag. Mag. 40(2), 15–28 (1998).

[Crossref]

G. Liang and H. L. Bertoni, “A new approach to 3-D ray tracing for propagation prediction in cities,” IEEE Trans. Antennas Propag. 46, 853–863 (1998).

[Crossref]

F. A. Agelet, F. P. Fontan, and A. Formella, “Fast ray-tracing for microcellular and indoor environments,” IEEE Trans. Magn. 33, 1484–1487 (1997).

[Crossref]

S. Y. Tan and H. S. Tan, “A microcellular communications propagation model based on the uniform theory of diffraction and multiple image theory,” IEEE Trans. Antennas Propag. 44, 1317–1326 (1996).

[Crossref]

S. Y. Tan and H. S. Tan, “UTD propagation model in an urban street scene for microcellular communications,” IEEE Trans. Electromagn. Compat. 35, 423–428 (1993).

[Crossref]

J. A. J. Rustako, N. Amitay, G. J. Owens, and R. S. Roman, “Radio propagation at microwave frequencies for line-of-sight microcellular moblle and personal communications,” IEEE Trans. Veh. Technol. 40, 203–210 (1991).

[Crossref]

J. G. Cleary and G. Wyvill, “Analysis of an algorithm for fast ray tracing using uniform space subdivision,” Vis. Comput. 4, 65–83 (1988).

[Crossref]

J. H. Whittdker, “Measurements of path loss at 910 MHz for proposed microcell urban mobile systems,” IEEE Trans. Veh. Technol. 37, 125–129 (1988).

[Crossref]

G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine, and D. Lavry, “A statistical model of urban multipath propagation,” IEEE Trans. Veh. Technol. 21, 1–9 (1972).

[Crossref]

F. A. Agelet, A. Formella, J. M. H. Rabanos, F. I. de Vicente, and F. P. Fontan, “Efficient ray-tracing acceleration techniques for radio propagation modeling,” IEEE Trans. Veh. Technol. 49, 2089–2104 (2000).

[Crossref]

F. A. Agelet, F. P. Fontan, and A. Formella, “Fast ray-tracing for microcellular and indoor environments,” IEEE Trans. Magn. 33, 1484–1487 (1997).

[Crossref]

J. A. J. Rustako, N. Amitay, G. J. Owens, and R. S. Roman, “Radio propagation at microwave frequencies for line-of-sight microcellular moblle and personal communications,” IEEE Trans. Veh. Technol. 40, 203–210 (1991).

[Crossref]

P. Combeau, R. Vauzelle, Y. Pousset, and L. Aveneau, “An optimization in computation time for the prediction of radio coverage zones,” Radio Sci. 42, RS1003 (2007).

[Crossref]

H. M. El-Sallabi, G. Liang, H. L. Bertoni, I. T. Rekanos, and P. Vainikainen, “Influence of diffraction coefficient and corner shape on ray prediction of power and delay spread in urban microcells,” IEEE Trans. Antennas Propag. 50, 703–712 (2002).

[Crossref]

G. Liang and H. L. Bertoni, “A new approach to 3-D ray tracing for propagation prediction in cities,” IEEE Trans. Antennas Propag. 46, 853–863 (1998).

[Crossref]

A. Toscano, F. Bilotti, and L. Vegni, “Fast ray-tracing technique for electromagnetic field prediction in mobile communications,” IEEE Trans. Magn. 39, 1238–1241 (2003).

[Crossref]

M. F. Catedra, J. Perez, F. S. De Adana, and O. Gutierrez, “Efficient ray-tracing techniques for three-dimensional analyses of propagation in mobile communications: application to picocell and microcell scenarios,” IEEE Antennas Propag. Mag. 40(2), 15–28 (1998).

[Crossref]

G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine, and D. Lavry, “A statistical model of urban multipath propagation,” IEEE Trans. Veh. Technol. 21, 1–9 (1972).

[Crossref]

J. G. Cleary and G. Wyvill, “Analysis of an algorithm for fast ray tracing using uniform space subdivision,” Vis. Comput. 4, 65–83 (1988).

[Crossref]

P. Combeau, R. Vauzelle, Y. Pousset, and L. Aveneau, “An optimization in computation time for the prediction of radio coverage zones,” Radio Sci. 42, RS1003 (2007).

[Crossref]

W. M. O’Brien, E. M. Kenny, and P. J. Cullen, “An efficient implementation of a three-dimensional microcell propagation tool for indoor and outdoor urban environments,” IEEE Trans. Veh. Technol. 49, 622–630 (2000).

[Crossref]

M. F. Catedra, J. Perez, F. S. De Adana, and O. Gutierrez, “Efficient ray-tracing techniques for three-dimensional analyses of propagation in mobile communications: application to picocell and microcell scenarios,” IEEE Antennas Propag. Mag. 40(2), 15–28 (1998).

[Crossref]

F. A. Agelet, A. Formella, J. M. H. Rabanos, F. I. de Vicente, and F. P. Fontan, “Efficient ray-tracing acceleration techniques for radio propagation modeling,” IEEE Trans. Veh. Technol. 49, 2089–2104 (2000).

[Crossref]

V. Degli-Eposti, G. Lombardi, C. Passerini, and G. Riva, “Wide-band measurement and ray-tracing simulation of the 1900-MHz indoor propagation channel: comparison criteria and results,” IEEE Trans. Antennas Propag. 49, 1101–1110 (2001).

[Crossref]

V. Degli-Esposti, F. Fuschini, E. M. Vitucci, and G. Falciasecca, “Speed-up techniques for ray tracing field prediction models,” IEEE Trans. Antennas Propag. 57, 1469–1480 (2009).

[Crossref]

M. Dottling, A. Jahn, D. Didascalou, and W. Wiesbeck, “Two- and three-dimensional ray tracing applied to the land mobile satellite (LMS) propagation channel,” IEEE Antennas Propag. Mag. 43(6), 27–37 (2001).

[Crossref]

M. Dottling, A. Jahn, D. Didascalou, and W. Wiesbeck, “Two- and three-dimensional ray tracing applied to the land mobile satellite (LMS) propagation channel,” IEEE Antennas Propag. Mag. 43(6), 27–37 (2001).

[Crossref]

K. H. Ng, E. K. Tameh, A. Doufexi, M. Hunukumbure, and A. R. Nix, “Efficient multielement ray tracing with site-specific comparisons using measured MIMO channel data,” IEEE Trans. Veh. Technol. 56, 1019–1032 (2007).

[Crossref]

H. M. El-Sallabi and P. Vainikainen, “Improvements to diffraction coefficient for non-perfectly conducting wedges,” IEEE Trans. Antennas Propag. 53, 3105–3109 (2005).

[Crossref]

H. M. El-Sallabi, G. Liang, H. L. Bertoni, I. T. Rekanos, and P. Vainikainen, “Influence of diffraction coefficient and corner shape on ray prediction of power and delay spread in urban microcells,” IEEE Trans. Antennas Propag. 50, 703–712 (2002).

[Crossref]

D. Erricolo, “Experimental validation of second-order diffraction coefficients for computation of path-loss past buildings,” IEEE Trans. Electromagn. Compat. 44, 272–273 (2002).

[Crossref]

V. Degli-Esposti, F. Fuschini, E. M. Vitucci, and G. Falciasecca, “Speed-up techniques for ray tracing field prediction models,” IEEE Trans. Antennas Propag. 57, 1469–1480 (2009).

[Crossref]

C. Saeidi, A. Fard, and F. Hodjatkashani, “Full three-dimensional radio wave propagation prediction model,” IEEE Trans. Antennas Propag. 60, 2462–2471 (2012).

[Crossref]

G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine, and D. Lavry, “A statistical model of urban multipath propagation,” IEEE Trans. Veh. Technol. 21, 1–9 (1972).

[Crossref]

F. A. Agelet, A. Formella, J. M. H. Rabanos, F. I. de Vicente, and F. P. Fontan, “Efficient ray-tracing acceleration techniques for radio propagation modeling,” IEEE Trans. Veh. Technol. 49, 2089–2104 (2000).

[Crossref]

F. A. Agelet, F. P. Fontan, and A. Formella, “Fast ray-tracing for microcellular and indoor environments,” IEEE Trans. Magn. 33, 1484–1487 (1997).

[Crossref]

F. A. Agelet, A. Formella, J. M. H. Rabanos, F. I. de Vicente, and F. P. Fontan, “Efficient ray-tracing acceleration techniques for radio propagation modeling,” IEEE Trans. Veh. Technol. 49, 2089–2104 (2000).

[Crossref]

F. A. Agelet, F. P. Fontan, and A. Formella, “Fast ray-tracing for microcellular and indoor environments,” IEEE Trans. Magn. 33, 1484–1487 (1997).

[Crossref]

V. Degli-Esposti, F. Fuschini, E. M. Vitucci, and G. Falciasecca, “Speed-up techniques for ray tracing field prediction models,” IEEE Trans. Antennas Propag. 57, 1469–1480 (2009).

[Crossref]

J. P. Rossi and Y. Gabillet, “A mixed ray launching/tracing method for full 3-D UHF propagation modeling and comparison with wide-band measurements,” IEEE Trans. Antennas Propag. 50, 517–523 (2002).

[Crossref]

Z. Y. Liu and L. X. Guo, “A quasi three-dimensional ray tracing method based on the virtual source tree in urban microcellular environments,” Prog. Electromagn. Res. 118, 397–414 (2011).

[Crossref]

M. F. Catedra, J. Perez, F. S. De Adana, and O. Gutierrez, “Efficient ray-tracing techniques for three-dimensional analyses of propagation in mobile communications: application to picocell and microcell scenarios,” IEEE Antennas Propag. Mag. 40(2), 15–28 (1998).

[Crossref]

C. Saeidi, A. Fard, and F. Hodjatkashani, “Full three-dimensional radio wave propagation prediction model,” IEEE Trans. Antennas Propag. 60, 2462–2471 (2012).

[Crossref]

K. H. Ng, E. K. Tameh, A. Doufexi, M. Hunukumbure, and A. R. Nix, “Efficient multielement ray tracing with site-specific comparisons using measured MIMO channel data,” IEEE Trans. Veh. Technol. 56, 1019–1032 (2007).

[Crossref]

M. F. Iskander and Z. Yun, “Propagation prediction models for wireless communication systems,” IEEE Trans. Microwave Theor. Tech. 50, 662–673 (2002).

[Crossref]

M. Dottling, A. Jahn, D. Didascalou, and W. Wiesbeck, “Two- and three-dimensional ray tracing applied to the land mobile satellite (LMS) propagation channel,” IEEE Antennas Propag. Mag. 43(6), 27–37 (2001).

[Crossref]

T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, “A survey of various propagation models for mobile communication,” IEEE Antennas Propag. Mag. 45(3), 51–82 (2003).

[Crossref]

G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine, and D. Lavry, “A statistical model of urban multipath propagation,” IEEE Trans. Veh. Technol. 21, 1–9 (1972).

[Crossref]

J. H. Tarng and K. M. Ju, “A novel 3-D scattering model of 1.8-GHz radio propagation in microcellular urban environment,” IEEE Trans. Electromagn. Compat. 41, 100–106 (1999).

[Crossref]

W. M. O’Brien, E. M. Kenny, and P. J. Cullen, “An efficient implementation of a three-dimensional microcell propagation tool for indoor and outdoor urban environments,” IEEE Trans. Veh. Technol. 49, 622–630 (2000).

[Crossref]

T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, “A survey of various propagation models for mobile communication,” IEEE Antennas Propag. Mag. 45(3), 51–82 (2003).

[Crossref]

G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine, and D. Lavry, “A statistical model of urban multipath propagation,” IEEE Trans. Veh. Technol. 21, 1–9 (1972).

[Crossref]

H. T. Liu, B. H. Li, and D. S. Qi, “Novel geometrical database model for line-based GIS urban maps in 2D/2.5D ray-tracing algorithms,” Microwave Opt. Technol. Lett. 43, 307–310 (2004).

H. M. El-Sallabi, G. Liang, H. L. Bertoni, I. T. Rekanos, and P. Vainikainen, “Influence of diffraction coefficient and corner shape on ray prediction of power and delay spread in urban microcells,” IEEE Trans. Antennas Propag. 50, 703–712 (2002).

[Crossref]

G. Liang and H. L. Bertoni, “A new approach to 3-D ray tracing for propagation prediction in cities,” IEEE Trans. Antennas Propag. 46, 853–863 (1998).

[Crossref]

H. T. Liu, B. H. Li, and D. S. Qi, “Novel geometrical database model for line-based GIS urban maps in 2D/2.5D ray-tracing algorithms,” Microwave Opt. Technol. Lett. 43, 307–310 (2004).

Z. Y. Liu and L. X. Guo, “A quasi three-dimensional ray tracing method based on the virtual source tree in urban microcellular environments,” Prog. Electromagn. Res. 118, 397–414 (2011).

[Crossref]

V. Degli-Eposti, G. Lombardi, C. Passerini, and G. Riva, “Wide-band measurement and ray-tracing simulation of the 1900-MHz indoor propagation channel: comparison criteria and results,” IEEE Trans. Antennas Propag. 49, 1101–1110 (2001).

[Crossref]

T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, “A survey of various propagation models for mobile communication,” IEEE Antennas Propag. Mag. 45(3), 51–82 (2003).

[Crossref]

D. N. Schettino, F. J. S. Moreira, and C. G. Rego, “Efficient ray tracing for radio channel characterization of urban scenarios,” IEEE Trans. Magn. 43, 1305–1308 (2007).

[Crossref]

H. Son and N. Myung, “A deterministic ray tube method for microcellular wave propagation prediction model,” IEEE Trans. Antennas Propag. 47, 1344–1350 (1999).

[Crossref]

K. H. Ng, E. K. Tameh, A. Doufexi, M. Hunukumbure, and A. R. Nix, “Efficient multielement ray tracing with site-specific comparisons using measured MIMO channel data,” IEEE Trans. Veh. Technol. 56, 1019–1032 (2007).

[Crossref]

K. H. Ng, E. K. Tameh, A. Doufexi, M. Hunukumbure, and A. R. Nix, “Efficient multielement ray tracing with site-specific comparisons using measured MIMO channel data,” IEEE Trans. Veh. Technol. 56, 1019–1032 (2007).

[Crossref]

W. M. O’Brien, E. M. Kenny, and P. J. Cullen, “An efficient implementation of a three-dimensional microcell propagation tool for indoor and outdoor urban environments,” IEEE Trans. Veh. Technol. 49, 622–630 (2000).

[Crossref]

J. A. J. Rustako, N. Amitay, G. J. Owens, and R. S. Roman, “Radio propagation at microwave frequencies for line-of-sight microcellular moblle and personal communications,” IEEE Trans. Veh. Technol. 40, 203–210 (1991).

[Crossref]

V. Degli-Eposti, G. Lombardi, C. Passerini, and G. Riva, “Wide-band measurement and ray-tracing simulation of the 1900-MHz indoor propagation channel: comparison criteria and results,” IEEE Trans. Antennas Propag. 49, 1101–1110 (2001).

[Crossref]

M. F. Catedra, J. Perez, F. S. De Adana, and O. Gutierrez, “Efficient ray-tracing techniques for three-dimensional analyses of propagation in mobile communications: application to picocell and microcell scenarios,” IEEE Antennas Propag. Mag. 40(2), 15–28 (1998).

[Crossref]

P. Combeau, R. Vauzelle, Y. Pousset, and L. Aveneau, “An optimization in computation time for the prediction of radio coverage zones,” Radio Sci. 42, RS1003 (2007).

[Crossref]

H. T. Liu, B. H. Li, and D. S. Qi, “Novel geometrical database model for line-based GIS urban maps in 2D/2.5D ray-tracing algorithms,” Microwave Opt. Technol. Lett. 43, 307–310 (2004).

F. A. Agelet, A. Formella, J. M. H. Rabanos, F. I. de Vicente, and F. P. Fontan, “Efficient ray-tracing acceleration techniques for radio propagation modeling,” IEEE Trans. Veh. Technol. 49, 2089–2104 (2000).

[Crossref]

D. N. Schettino, F. J. S. Moreira, and C. G. Rego, “Efficient ray tracing for radio channel characterization of urban scenarios,” IEEE Trans. Magn. 43, 1305–1308 (2007).

[Crossref]

H. M. El-Sallabi, G. Liang, H. L. Bertoni, I. T. Rekanos, and P. Vainikainen, “Influence of diffraction coefficient and corner shape on ray prediction of power and delay spread in urban microcells,” IEEE Trans. Antennas Propag. 50, 703–712 (2002).

[Crossref]

V. Degli-Eposti, G. Lombardi, C. Passerini, and G. Riva, “Wide-band measurement and ray-tracing simulation of the 1900-MHz indoor propagation channel: comparison criteria and results,” IEEE Trans. Antennas Propag. 49, 1101–1110 (2001).

[Crossref]

J. A. J. Rustako, N. Amitay, G. J. Owens, and R. S. Roman, “Radio propagation at microwave frequencies for line-of-sight microcellular moblle and personal communications,” IEEE Trans. Veh. Technol. 40, 203–210 (1991).

[Crossref]

J. P. Rossi and Y. Gabillet, “A mixed ray launching/tracing method for full 3-D UHF propagation modeling and comparison with wide-band measurements,” IEEE Trans. Antennas Propag. 50, 517–523 (2002).

[Crossref]

J. A. J. Rustako, N. Amitay, G. J. Owens, and R. S. Roman, “Radio propagation at microwave frequencies for line-of-sight microcellular moblle and personal communications,” IEEE Trans. Veh. Technol. 40, 203–210 (1991).

[Crossref]

C. Saeidi, A. Fard, and F. Hodjatkashani, “Full three-dimensional radio wave propagation prediction model,” IEEE Trans. Antennas Propag. 60, 2462–2471 (2012).

[Crossref]

T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, “A survey of various propagation models for mobile communication,” IEEE Antennas Propag. Mag. 45(3), 51–82 (2003).

[Crossref]

T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, “A survey of various propagation models for mobile communication,” IEEE Antennas Propag. Mag. 45(3), 51–82 (2003).

[Crossref]

D. N. Schettino, F. J. S. Moreira, and C. G. Rego, “Efficient ray tracing for radio channel characterization of urban scenarios,” IEEE Trans. Magn. 43, 1305–1308 (2007).

[Crossref]

H. Son and N. Myung, “A deterministic ray tube method for microcellular wave propagation prediction model,” IEEE Trans. Antennas Propag. 47, 1344–1350 (1999).

[Crossref]

Q. Sun, S. Y. Tan, and K. C. Teh, “Analytical formulae for path loss prediction in urban street grid microcellular environments,” IEEE Trans. Veh. Technol. 54, 1251–1258 (2005).

[Crossref]

K. H. Ng, E. K. Tameh, A. Doufexi, M. Hunukumbure, and A. R. Nix, “Efficient multielement ray tracing with site-specific comparisons using measured MIMO channel data,” IEEE Trans. Veh. Technol. 56, 1019–1032 (2007).

[Crossref]

S. Y. Tan and H. S. Tan, “A microcellular communications propagation model based on the uniform theory of diffraction and multiple image theory,” IEEE Trans. Antennas Propag. 44, 1317–1326 (1996).

[Crossref]

S. Y. Tan and H. S. Tan, “UTD propagation model in an urban street scene for microcellular communications,” IEEE Trans. Electromagn. Compat. 35, 423–428 (1993).

[Crossref]

Q. Sun, S. Y. Tan, and K. C. Teh, “Analytical formulae for path loss prediction in urban street grid microcellular environments,” IEEE Trans. Veh. Technol. 54, 1251–1258 (2005).

[Crossref]

S. Y. Tan and H. S. Tan, “A microcellular communications propagation model based on the uniform theory of diffraction and multiple image theory,” IEEE Trans. Antennas Propag. 44, 1317–1326 (1996).

[Crossref]

S. Y. Tan and H. S. Tan, “UTD propagation model in an urban street scene for microcellular communications,” IEEE Trans. Electromagn. Compat. 35, 423–428 (1993).

[Crossref]

J. H. Tarng and K. M. Ju, “A novel 3-D scattering model of 1.8-GHz radio propagation in microcellular urban environment,” IEEE Trans. Electromagn. Compat. 41, 100–106 (1999).

[Crossref]

Q. Sun, S. Y. Tan, and K. C. Teh, “Analytical formulae for path loss prediction in urban street grid microcellular environments,” IEEE Trans. Veh. Technol. 54, 1251–1258 (2005).

[Crossref]

A. Toscano, F. Bilotti, and L. Vegni, “Fast ray-tracing technique for electromagnetic field prediction in mobile communications,” IEEE Trans. Magn. 39, 1238–1241 (2003).

[Crossref]

G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine, and D. Lavry, “A statistical model of urban multipath propagation,” IEEE Trans. Veh. Technol. 21, 1–9 (1972).

[Crossref]

H. M. El-Sallabi and P. Vainikainen, “Improvements to diffraction coefficient for non-perfectly conducting wedges,” IEEE Trans. Antennas Propag. 53, 3105–3109 (2005).

[Crossref]

H. M. El-Sallabi, G. Liang, H. L. Bertoni, I. T. Rekanos, and P. Vainikainen, “Influence of diffraction coefficient and corner shape on ray prediction of power and delay spread in urban microcells,” IEEE Trans. Antennas Propag. 50, 703–712 (2002).

[Crossref]

P. Combeau, R. Vauzelle, Y. Pousset, and L. Aveneau, “An optimization in computation time for the prediction of radio coverage zones,” Radio Sci. 42, RS1003 (2007).

[Crossref]

A. Toscano, F. Bilotti, and L. Vegni, “Fast ray-tracing technique for electromagnetic field prediction in mobile communications,” IEEE Trans. Magn. 39, 1238–1241 (2003).

[Crossref]

V. Degli-Esposti, F. Fuschini, E. M. Vitucci, and G. Falciasecca, “Speed-up techniques for ray tracing field prediction models,” IEEE Trans. Antennas Propag. 57, 1469–1480 (2009).

[Crossref]

J. H. Whittdker, “Measurements of path loss at 910 MHz for proposed microcell urban mobile systems,” IEEE Trans. Veh. Technol. 37, 125–129 (1988).

[Crossref]

M. Dottling, A. Jahn, D. Didascalou, and W. Wiesbeck, “Two- and three-dimensional ray tracing applied to the land mobile satellite (LMS) propagation channel,” IEEE Antennas Propag. Mag. 43(6), 27–37 (2001).

[Crossref]

J. G. Cleary and G. Wyvill, “Analysis of an algorithm for fast ray tracing using uniform space subdivision,” Vis. Comput. 4, 65–83 (1988).

[Crossref]

M. F. Iskander and Z. Yun, “Propagation prediction models for wireless communication systems,” IEEE Trans. Microwave Theor. Tech. 50, 662–673 (2002).

[Crossref]

T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, “A survey of various propagation models for mobile communication,” IEEE Antennas Propag. Mag. 45(3), 51–82 (2003).

[Crossref]

M. Dottling, A. Jahn, D. Didascalou, and W. Wiesbeck, “Two- and three-dimensional ray tracing applied to the land mobile satellite (LMS) propagation channel,” IEEE Antennas Propag. Mag. 43(6), 27–37 (2001).

[Crossref]

M. F. Catedra, J. Perez, F. S. De Adana, and O. Gutierrez, “Efficient ray-tracing techniques for three-dimensional analyses of propagation in mobile communications: application to picocell and microcell scenarios,” IEEE Antennas Propag. Mag. 40(2), 15–28 (1998).

[Crossref]

H. M. El-Sallabi and P. Vainikainen, “Improvements to diffraction coefficient for non-perfectly conducting wedges,” IEEE Trans. Antennas Propag. 53, 3105–3109 (2005).

[Crossref]

H. Son and N. Myung, “A deterministic ray tube method for microcellular wave propagation prediction model,” IEEE Trans. Antennas Propag. 47, 1344–1350 (1999).

[Crossref]

C. Saeidi, A. Fard, and F. Hodjatkashani, “Full three-dimensional radio wave propagation prediction model,” IEEE Trans. Antennas Propag. 60, 2462–2471 (2012).

[Crossref]

S. Y. Tan and H. S. Tan, “A microcellular communications propagation model based on the uniform theory of diffraction and multiple image theory,” IEEE Trans. Antennas Propag. 44, 1317–1326 (1996).

[Crossref]

V. Degli-Esposti, F. Fuschini, E. M. Vitucci, and G. Falciasecca, “Speed-up techniques for ray tracing field prediction models,” IEEE Trans. Antennas Propag. 57, 1469–1480 (2009).

[Crossref]

J. P. Rossi and Y. Gabillet, “A mixed ray launching/tracing method for full 3-D UHF propagation modeling and comparison with wide-band measurements,” IEEE Trans. Antennas Propag. 50, 517–523 (2002).

[Crossref]

V. Degli-Eposti, G. Lombardi, C. Passerini, and G. Riva, “Wide-band measurement and ray-tracing simulation of the 1900-MHz indoor propagation channel: comparison criteria and results,” IEEE Trans. Antennas Propag. 49, 1101–1110 (2001).

[Crossref]

H. M. El-Sallabi, G. Liang, H. L. Bertoni, I. T. Rekanos, and P. Vainikainen, “Influence of diffraction coefficient and corner shape on ray prediction of power and delay spread in urban microcells,” IEEE Trans. Antennas Propag. 50, 703–712 (2002).

[Crossref]

G. Liang and H. L. Bertoni, “A new approach to 3-D ray tracing for propagation prediction in cities,” IEEE Trans. Antennas Propag. 46, 853–863 (1998).

[Crossref]

D. Erricolo, “Experimental validation of second-order diffraction coefficients for computation of path-loss past buildings,” IEEE Trans. Electromagn. Compat. 44, 272–273 (2002).

[Crossref]

J. H. Tarng and K. M. Ju, “A novel 3-D scattering model of 1.8-GHz radio propagation in microcellular urban environment,” IEEE Trans. Electromagn. Compat. 41, 100–106 (1999).

[Crossref]

S. Y. Tan and H. S. Tan, “UTD propagation model in an urban street scene for microcellular communications,” IEEE Trans. Electromagn. Compat. 35, 423–428 (1993).

[Crossref]

D. N. Schettino, F. J. S. Moreira, and C. G. Rego, “Efficient ray tracing for radio channel characterization of urban scenarios,” IEEE Trans. Magn. 43, 1305–1308 (2007).

[Crossref]

A. Toscano, F. Bilotti, and L. Vegni, “Fast ray-tracing technique for electromagnetic field prediction in mobile communications,” IEEE Trans. Magn. 39, 1238–1241 (2003).

[Crossref]

F. A. Agelet, F. P. Fontan, and A. Formella, “Fast ray-tracing for microcellular and indoor environments,” IEEE Trans. Magn. 33, 1484–1487 (1997).

[Crossref]

M. F. Iskander and Z. Yun, “Propagation prediction models for wireless communication systems,” IEEE Trans. Microwave Theor. Tech. 50, 662–673 (2002).

[Crossref]

K. H. Ng, E. K. Tameh, A. Doufexi, M. Hunukumbure, and A. R. Nix, “Efficient multielement ray tracing with site-specific comparisons using measured MIMO channel data,” IEEE Trans. Veh. Technol. 56, 1019–1032 (2007).

[Crossref]

F. A. Agelet, A. Formella, J. M. H. Rabanos, F. I. de Vicente, and F. P. Fontan, “Efficient ray-tracing acceleration techniques for radio propagation modeling,” IEEE Trans. Veh. Technol. 49, 2089–2104 (2000).

[Crossref]

J. A. J. Rustako, N. Amitay, G. J. Owens, and R. S. Roman, “Radio propagation at microwave frequencies for line-of-sight microcellular moblle and personal communications,” IEEE Trans. Veh. Technol. 40, 203–210 (1991).

[Crossref]

Q. Sun, S. Y. Tan, and K. C. Teh, “Analytical formulae for path loss prediction in urban street grid microcellular environments,” IEEE Trans. Veh. Technol. 54, 1251–1258 (2005).

[Crossref]

J. H. Whittdker, “Measurements of path loss at 910 MHz for proposed microcell urban mobile systems,” IEEE Trans. Veh. Technol. 37, 125–129 (1988).

[Crossref]

W. M. O’Brien, E. M. Kenny, and P. J. Cullen, “An efficient implementation of a three-dimensional microcell propagation tool for indoor and outdoor urban environments,” IEEE Trans. Veh. Technol. 49, 622–630 (2000).

[Crossref]

G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine, and D. Lavry, “A statistical model of urban multipath propagation,” IEEE Trans. Veh. Technol. 21, 1–9 (1972).

[Crossref]

H. T. Liu, B. H. Li, and D. S. Qi, “Novel geometrical database model for line-based GIS urban maps in 2D/2.5D ray-tracing algorithms,” Microwave Opt. Technol. Lett. 43, 307–310 (2004).

Z. Y. Liu and L. X. Guo, “A quasi three-dimensional ray tracing method based on the virtual source tree in urban microcellular environments,” Prog. Electromagn. Res. 118, 397–414 (2011).

[Crossref]

P. Combeau, R. Vauzelle, Y. Pousset, and L. Aveneau, “An optimization in computation time for the prediction of radio coverage zones,” Radio Sci. 42, RS1003 (2007).

[Crossref]

J. G. Cleary and G. Wyvill, “Analysis of an algorithm for fast ray tracing using uniform space subdivision,” Vis. Comput. 4, 65–83 (1988).

[Crossref]