Abstract

Two-dimensional (2D)/two-and-one-half-dimensional ray tracing (RT) algorithms for the use of the uniform theory of diffraction and geometrical optics are widely used for channel prediction in urban microcellular environments because of their high efficiency and reliable prediction accuracy. In this study, an improved RT algorithm based on the “orientation face set” concept and on the improved 2D polar sweep algorithm is proposed. The goal is to accelerate point-to-point prediction, thereby making RT prediction attractive and convenient. In addition, the use of threshold control of each ray path and the handling of visible grid points for reflection and diffraction sources are adopted, resulting in an improved efficiency of coverage prediction over large areas. Measured results and computed predictions are also compared for urban scenarios. The results indicate that the proposed prediction model works well and is a useful tool for microcellular communication applications.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Tarng and K. M. Ju, “A novel 3-D scattering model of 1.8-GHz radio propagation in microcellular urban environment,” IEEE Trans. Electromagn. Compat. 41, 100–106 (1999).
    [CrossRef]
  2. D. N. Schettino, F. J. S. Moreira, and C. G. Rego, “Efficient ray tracing for radio channel characterization of urban scenarios,” IEEE Trans. Magn. 43, 1305–1308 (2007).
    [CrossRef]
  3. S. Y. Tan and H. S. Tan, “UTD propagation model in an urban street scene for microcellular communications,” IEEE Trans. Electromagn. Compat. 35, 423–428 (1993).
    [CrossRef]
  4. F. A. Agelet, A. Formella, J. M. H. Rabanos, F. I. de Vicente, and F. P. Fontan, “Efficient ray-tracing acceleration techniques for radio propagation modeling,” IEEE Trans. Veh. Technol. 49, 2089–2104 (2000).
    [CrossRef]
  5. V. Degli-Eposti, G. Lombardi, C. Passerini, and G. Riva, “Wide-band measurement and ray-tracing simulation of the 1900-MHz indoor propagation channel: comparison criteria and results,” IEEE Trans. Antennas Propag. 49, 1101–1110 (2001).
    [CrossRef]
  6. H. M. El-Sallabi, G. Liang, H. L. Bertoni, I. T. Rekanos, and P. Vainikainen, “Influence of diffraction coefficient and corner shape on ray prediction of power and delay spread in urban microcells,” IEEE Trans. Antennas Propag. 50, 703–712 (2002).
    [CrossRef]
  7. G. Liang and H. L. Bertoni, “A new approach to 3-D ray tracing for propagation prediction in cities,” IEEE Trans. Antennas Propag. 46, 853–863 (1998).
    [CrossRef]
  8. D. Erricolo, “Experimental validation of second-order diffraction coefficients for computation of path-loss past buildings,” IEEE Trans. Electromagn. Compat. 44, 272–273 (2002).
    [CrossRef]
  9. T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, “A survey of various propagation models for mobile communication,” IEEE Antennas Propag. Mag. 45(3), 51–82 (2003).
    [CrossRef]
  10. M. F. Iskander and Z. Yun, “Propagation prediction models for wireless communication systems,” IEEE Trans. Microwave Theor. Tech. 50, 662–673 (2002).
    [CrossRef]
  11. J. P. Rossi and Y. Gabillet, “A mixed ray launching/tracing method for full 3-D UHF propagation modeling and comparison with wide-band measurements,” IEEE Trans. Antennas Propag. 50, 517–523 (2002).
    [CrossRef]
  12. A. Toscano, F. Bilotti, and L. Vegni, “Fast ray-tracing technique for electromagnetic field prediction in mobile communications,” IEEE Trans. Magn. 39, 1238–1241 (2003).
    [CrossRef]
  13. M. Dottling, A. Jahn, D. Didascalou, and W. Wiesbeck, “Two- and three-dimensional ray tracing applied to the land mobile satellite (LMS) propagation channel,” IEEE Antennas Propag. Mag. 43(6), 27–37 (2001).
    [CrossRef]
  14. V. Degli-Esposti, F. Fuschini, E. M. Vitucci, and G. Falciasecca, “Speed-up techniques for ray tracing field prediction models,” IEEE Trans. Antennas Propag. 57, 1469–1480 (2009).
    [CrossRef]
  15. K. H. Ng, E. K. Tameh, A. Doufexi, M. Hunukumbure, and A. R. Nix, “Efficient multielement ray tracing with site-specific comparisons using measured MIMO channel data,” IEEE Trans. Veh. Technol. 56, 1019–1032 (2007).
    [CrossRef]
  16. P. Combeau, R. Vauzelle, Y. Pousset, and L. Aveneau, “An optimization in computation time for the prediction of radio coverage zones,” Radio Sci. 42, RS1003 (2007).
    [CrossRef]
  17. W. M. O’Brien, E. M. Kenny, and P. J. Cullen, “An efficient implementation of a three-dimensional microcell propagation tool for indoor and outdoor urban environments,” IEEE Trans. Veh. Technol. 49, 622–630 (2000).
    [CrossRef]
  18. Z. Y. Liu and L. X. Guo, “A quasi three-dimensional ray tracing method based on the virtual source tree in urban microcellular environments,” Prog. Electromagn. Res. 118, 397–414 (2011).
    [CrossRef]
  19. H. T. Liu, B. H. Li, and D. S. Qi, “Novel geometrical database model for line-based GIS urban maps in 2D/2.5D ray-tracing algorithms,” Microwave Opt. Technol. Lett. 43, 307–310 (2004).
  20. H. Son and N. Myung, “A deterministic ray tube method for microcellular wave propagation prediction model,” IEEE Trans. Antennas Propag. 47, 1344–1350 (1999).
    [CrossRef]
  21. M. F. Catedra, J. Perez, F. S. De Adana, and O. Gutierrez, “Efficient ray-tracing techniques for three-dimensional analyses of propagation in mobile communications: application to picocell and microcell scenarios,” IEEE Antennas Propag. Mag. 40(2), 15–28 (1998).
    [CrossRef]
  22. J. G. Cleary and G. Wyvill, “Analysis of an algorithm for fast ray tracing using uniform space subdivision,” Vis. Comput. 4, 65–83 (1988).
    [CrossRef]
  23. H. M. El-Sallabi and P. Vainikainen, “Improvements to diffraction coefficient for non-perfectly conducting wedges,” IEEE Trans. Antennas Propag. 53, 3105–3109 (2005).
    [CrossRef]
  24. G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine, and D. Lavry, “A statistical model of urban multipath propagation,” IEEE Trans. Veh. Technol. 21, 1–9 (1972).
    [CrossRef]
  25. F. A. Agelet, F. P. Fontan, and A. Formella, “Fast ray-tracing for microcellular and indoor environments,” IEEE Trans. Magn. 33, 1484–1487 (1997).
    [CrossRef]
  26. C. Saeidi, A. Fard, and F. Hodjatkashani, “Full three-dimensional radio wave propagation prediction model,” IEEE Trans. Antennas Propag. 60, 2462–2471 (2012).
    [CrossRef]
  27. J. H. Whittdker, “Measurements of path loss at 910  MHz for proposed microcell urban mobile systems,” IEEE Trans. Veh. Technol. 37, 125–129 (1988).
    [CrossRef]
  28. S. Y. Tan and H. S. Tan, “A microcellular communications propagation model based on the uniform theory of diffraction and multiple image theory,” IEEE Trans. Antennas Propag. 44, 1317–1326 (1996).
    [CrossRef]
  29. J. A. J. Rustako, N. Amitay, G. J. Owens, and R. S. Roman, “Radio propagation at microwave frequencies for line-of-sight microcellular moblle and personal communications,” IEEE Trans. Veh. Technol. 40, 203–210 (1991).
    [CrossRef]
  30. Q. Sun, S. Y. Tan, and K. C. Teh, “Analytical formulae for path loss prediction in urban street grid microcellular environments,” IEEE Trans. Veh. Technol. 54, 1251–1258 (2005).
    [CrossRef]

2012 (1)

C. Saeidi, A. Fard, and F. Hodjatkashani, “Full three-dimensional radio wave propagation prediction model,” IEEE Trans. Antennas Propag. 60, 2462–2471 (2012).
[CrossRef]

2011 (1)

Z. Y. Liu and L. X. Guo, “A quasi three-dimensional ray tracing method based on the virtual source tree in urban microcellular environments,” Prog. Electromagn. Res. 118, 397–414 (2011).
[CrossRef]

2009 (1)

V. Degli-Esposti, F. Fuschini, E. M. Vitucci, and G. Falciasecca, “Speed-up techniques for ray tracing field prediction models,” IEEE Trans. Antennas Propag. 57, 1469–1480 (2009).
[CrossRef]

2007 (3)

K. H. Ng, E. K. Tameh, A. Doufexi, M. Hunukumbure, and A. R. Nix, “Efficient multielement ray tracing with site-specific comparisons using measured MIMO channel data,” IEEE Trans. Veh. Technol. 56, 1019–1032 (2007).
[CrossRef]

P. Combeau, R. Vauzelle, Y. Pousset, and L. Aveneau, “An optimization in computation time for the prediction of radio coverage zones,” Radio Sci. 42, RS1003 (2007).
[CrossRef]

D. N. Schettino, F. J. S. Moreira, and C. G. Rego, “Efficient ray tracing for radio channel characterization of urban scenarios,” IEEE Trans. Magn. 43, 1305–1308 (2007).
[CrossRef]

2005 (2)

H. M. El-Sallabi and P. Vainikainen, “Improvements to diffraction coefficient for non-perfectly conducting wedges,” IEEE Trans. Antennas Propag. 53, 3105–3109 (2005).
[CrossRef]

Q. Sun, S. Y. Tan, and K. C. Teh, “Analytical formulae for path loss prediction in urban street grid microcellular environments,” IEEE Trans. Veh. Technol. 54, 1251–1258 (2005).
[CrossRef]

2004 (1)

H. T. Liu, B. H. Li, and D. S. Qi, “Novel geometrical database model for line-based GIS urban maps in 2D/2.5D ray-tracing algorithms,” Microwave Opt. Technol. Lett. 43, 307–310 (2004).

2003 (2)

T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, “A survey of various propagation models for mobile communication,” IEEE Antennas Propag. Mag. 45(3), 51–82 (2003).
[CrossRef]

A. Toscano, F. Bilotti, and L. Vegni, “Fast ray-tracing technique for electromagnetic field prediction in mobile communications,” IEEE Trans. Magn. 39, 1238–1241 (2003).
[CrossRef]

2002 (4)

M. F. Iskander and Z. Yun, “Propagation prediction models for wireless communication systems,” IEEE Trans. Microwave Theor. Tech. 50, 662–673 (2002).
[CrossRef]

J. P. Rossi and Y. Gabillet, “A mixed ray launching/tracing method for full 3-D UHF propagation modeling and comparison with wide-band measurements,” IEEE Trans. Antennas Propag. 50, 517–523 (2002).
[CrossRef]

H. M. El-Sallabi, G. Liang, H. L. Bertoni, I. T. Rekanos, and P. Vainikainen, “Influence of diffraction coefficient and corner shape on ray prediction of power and delay spread in urban microcells,” IEEE Trans. Antennas Propag. 50, 703–712 (2002).
[CrossRef]

D. Erricolo, “Experimental validation of second-order diffraction coefficients for computation of path-loss past buildings,” IEEE Trans. Electromagn. Compat. 44, 272–273 (2002).
[CrossRef]

2001 (2)

V. Degli-Eposti, G. Lombardi, C. Passerini, and G. Riva, “Wide-band measurement and ray-tracing simulation of the 1900-MHz indoor propagation channel: comparison criteria and results,” IEEE Trans. Antennas Propag. 49, 1101–1110 (2001).
[CrossRef]

M. Dottling, A. Jahn, D. Didascalou, and W. Wiesbeck, “Two- and three-dimensional ray tracing applied to the land mobile satellite (LMS) propagation channel,” IEEE Antennas Propag. Mag. 43(6), 27–37 (2001).
[CrossRef]

2000 (2)

W. M. O’Brien, E. M. Kenny, and P. J. Cullen, “An efficient implementation of a three-dimensional microcell propagation tool for indoor and outdoor urban environments,” IEEE Trans. Veh. Technol. 49, 622–630 (2000).
[CrossRef]

F. A. Agelet, A. Formella, J. M. H. Rabanos, F. I. de Vicente, and F. P. Fontan, “Efficient ray-tracing acceleration techniques for radio propagation modeling,” IEEE Trans. Veh. Technol. 49, 2089–2104 (2000).
[CrossRef]

1999 (2)

J. H. Tarng and K. M. Ju, “A novel 3-D scattering model of 1.8-GHz radio propagation in microcellular urban environment,” IEEE Trans. Electromagn. Compat. 41, 100–106 (1999).
[CrossRef]

H. Son and N. Myung, “A deterministic ray tube method for microcellular wave propagation prediction model,” IEEE Trans. Antennas Propag. 47, 1344–1350 (1999).
[CrossRef]

1998 (2)

M. F. Catedra, J. Perez, F. S. De Adana, and O. Gutierrez, “Efficient ray-tracing techniques for three-dimensional analyses of propagation in mobile communications: application to picocell and microcell scenarios,” IEEE Antennas Propag. Mag. 40(2), 15–28 (1998).
[CrossRef]

G. Liang and H. L. Bertoni, “A new approach to 3-D ray tracing for propagation prediction in cities,” IEEE Trans. Antennas Propag. 46, 853–863 (1998).
[CrossRef]

1997 (1)

F. A. Agelet, F. P. Fontan, and A. Formella, “Fast ray-tracing for microcellular and indoor environments,” IEEE Trans. Magn. 33, 1484–1487 (1997).
[CrossRef]

1996 (1)

S. Y. Tan and H. S. Tan, “A microcellular communications propagation model based on the uniform theory of diffraction and multiple image theory,” IEEE Trans. Antennas Propag. 44, 1317–1326 (1996).
[CrossRef]

1993 (1)

S. Y. Tan and H. S. Tan, “UTD propagation model in an urban street scene for microcellular communications,” IEEE Trans. Electromagn. Compat. 35, 423–428 (1993).
[CrossRef]

1991 (1)

J. A. J. Rustako, N. Amitay, G. J. Owens, and R. S. Roman, “Radio propagation at microwave frequencies for line-of-sight microcellular moblle and personal communications,” IEEE Trans. Veh. Technol. 40, 203–210 (1991).
[CrossRef]

1988 (2)

J. G. Cleary and G. Wyvill, “Analysis of an algorithm for fast ray tracing using uniform space subdivision,” Vis. Comput. 4, 65–83 (1988).
[CrossRef]

J. H. Whittdker, “Measurements of path loss at 910  MHz for proposed microcell urban mobile systems,” IEEE Trans. Veh. Technol. 37, 125–129 (1988).
[CrossRef]

1972 (1)

G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine, and D. Lavry, “A statistical model of urban multipath propagation,” IEEE Trans. Veh. Technol. 21, 1–9 (1972).
[CrossRef]

Agelet, F. A.

F. A. Agelet, A. Formella, J. M. H. Rabanos, F. I. de Vicente, and F. P. Fontan, “Efficient ray-tracing acceleration techniques for radio propagation modeling,” IEEE Trans. Veh. Technol. 49, 2089–2104 (2000).
[CrossRef]

F. A. Agelet, F. P. Fontan, and A. Formella, “Fast ray-tracing for microcellular and indoor environments,” IEEE Trans. Magn. 33, 1484–1487 (1997).
[CrossRef]

Amitay, N.

J. A. J. Rustako, N. Amitay, G. J. Owens, and R. S. Roman, “Radio propagation at microwave frequencies for line-of-sight microcellular moblle and personal communications,” IEEE Trans. Veh. Technol. 40, 203–210 (1991).
[CrossRef]

Aveneau, L.

P. Combeau, R. Vauzelle, Y. Pousset, and L. Aveneau, “An optimization in computation time for the prediction of radio coverage zones,” Radio Sci. 42, RS1003 (2007).
[CrossRef]

Bertoni, H. L.

H. M. El-Sallabi, G. Liang, H. L. Bertoni, I. T. Rekanos, and P. Vainikainen, “Influence of diffraction coefficient and corner shape on ray prediction of power and delay spread in urban microcells,” IEEE Trans. Antennas Propag. 50, 703–712 (2002).
[CrossRef]

G. Liang and H. L. Bertoni, “A new approach to 3-D ray tracing for propagation prediction in cities,” IEEE Trans. Antennas Propag. 46, 853–863 (1998).
[CrossRef]

Bilotti, F.

A. Toscano, F. Bilotti, and L. Vegni, “Fast ray-tracing technique for electromagnetic field prediction in mobile communications,” IEEE Trans. Magn. 39, 1238–1241 (2003).
[CrossRef]

Catedra, M. F.

M. F. Catedra, J. Perez, F. S. De Adana, and O. Gutierrez, “Efficient ray-tracing techniques for three-dimensional analyses of propagation in mobile communications: application to picocell and microcell scenarios,” IEEE Antennas Propag. Mag. 40(2), 15–28 (1998).
[CrossRef]

Clapp, F. D.

G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine, and D. Lavry, “A statistical model of urban multipath propagation,” IEEE Trans. Veh. Technol. 21, 1–9 (1972).
[CrossRef]

Cleary, J. G.

J. G. Cleary and G. Wyvill, “Analysis of an algorithm for fast ray tracing using uniform space subdivision,” Vis. Comput. 4, 65–83 (1988).
[CrossRef]

Combeau, P.

P. Combeau, R. Vauzelle, Y. Pousset, and L. Aveneau, “An optimization in computation time for the prediction of radio coverage zones,” Radio Sci. 42, RS1003 (2007).
[CrossRef]

Cullen, P. J.

W. M. O’Brien, E. M. Kenny, and P. J. Cullen, “An efficient implementation of a three-dimensional microcell propagation tool for indoor and outdoor urban environments,” IEEE Trans. Veh. Technol. 49, 622–630 (2000).
[CrossRef]

De Adana, F. S.

M. F. Catedra, J. Perez, F. S. De Adana, and O. Gutierrez, “Efficient ray-tracing techniques for three-dimensional analyses of propagation in mobile communications: application to picocell and microcell scenarios,” IEEE Antennas Propag. Mag. 40(2), 15–28 (1998).
[CrossRef]

de Vicente, F. I.

F. A. Agelet, A. Formella, J. M. H. Rabanos, F. I. de Vicente, and F. P. Fontan, “Efficient ray-tracing acceleration techniques for radio propagation modeling,” IEEE Trans. Veh. Technol. 49, 2089–2104 (2000).
[CrossRef]

Degli-Eposti, V.

V. Degli-Eposti, G. Lombardi, C. Passerini, and G. Riva, “Wide-band measurement and ray-tracing simulation of the 1900-MHz indoor propagation channel: comparison criteria and results,” IEEE Trans. Antennas Propag. 49, 1101–1110 (2001).
[CrossRef]

Degli-Esposti, V.

V. Degli-Esposti, F. Fuschini, E. M. Vitucci, and G. Falciasecca, “Speed-up techniques for ray tracing field prediction models,” IEEE Trans. Antennas Propag. 57, 1469–1480 (2009).
[CrossRef]

Didascalou, D.

M. Dottling, A. Jahn, D. Didascalou, and W. Wiesbeck, “Two- and three-dimensional ray tracing applied to the land mobile satellite (LMS) propagation channel,” IEEE Antennas Propag. Mag. 43(6), 27–37 (2001).
[CrossRef]

Dottling, M.

M. Dottling, A. Jahn, D. Didascalou, and W. Wiesbeck, “Two- and three-dimensional ray tracing applied to the land mobile satellite (LMS) propagation channel,” IEEE Antennas Propag. Mag. 43(6), 27–37 (2001).
[CrossRef]

Doufexi, A.

K. H. Ng, E. K. Tameh, A. Doufexi, M. Hunukumbure, and A. R. Nix, “Efficient multielement ray tracing with site-specific comparisons using measured MIMO channel data,” IEEE Trans. Veh. Technol. 56, 1019–1032 (2007).
[CrossRef]

El-Sallabi, H. M.

H. M. El-Sallabi and P. Vainikainen, “Improvements to diffraction coefficient for non-perfectly conducting wedges,” IEEE Trans. Antennas Propag. 53, 3105–3109 (2005).
[CrossRef]

H. M. El-Sallabi, G. Liang, H. L. Bertoni, I. T. Rekanos, and P. Vainikainen, “Influence of diffraction coefficient and corner shape on ray prediction of power and delay spread in urban microcells,” IEEE Trans. Antennas Propag. 50, 703–712 (2002).
[CrossRef]

Erricolo, D.

D. Erricolo, “Experimental validation of second-order diffraction coefficients for computation of path-loss past buildings,” IEEE Trans. Electromagn. Compat. 44, 272–273 (2002).
[CrossRef]

Falciasecca, G.

V. Degli-Esposti, F. Fuschini, E. M. Vitucci, and G. Falciasecca, “Speed-up techniques for ray tracing field prediction models,” IEEE Trans. Antennas Propag. 57, 1469–1480 (2009).
[CrossRef]

Fard, A.

C. Saeidi, A. Fard, and F. Hodjatkashani, “Full three-dimensional radio wave propagation prediction model,” IEEE Trans. Antennas Propag. 60, 2462–2471 (2012).
[CrossRef]

Fine, S. B.

G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine, and D. Lavry, “A statistical model of urban multipath propagation,” IEEE Trans. Veh. Technol. 21, 1–9 (1972).
[CrossRef]

Fontan, F. P.

F. A. Agelet, A. Formella, J. M. H. Rabanos, F. I. de Vicente, and F. P. Fontan, “Efficient ray-tracing acceleration techniques for radio propagation modeling,” IEEE Trans. Veh. Technol. 49, 2089–2104 (2000).
[CrossRef]

F. A. Agelet, F. P. Fontan, and A. Formella, “Fast ray-tracing for microcellular and indoor environments,” IEEE Trans. Magn. 33, 1484–1487 (1997).
[CrossRef]

Formella, A.

F. A. Agelet, A. Formella, J. M. H. Rabanos, F. I. de Vicente, and F. P. Fontan, “Efficient ray-tracing acceleration techniques for radio propagation modeling,” IEEE Trans. Veh. Technol. 49, 2089–2104 (2000).
[CrossRef]

F. A. Agelet, F. P. Fontan, and A. Formella, “Fast ray-tracing for microcellular and indoor environments,” IEEE Trans. Magn. 33, 1484–1487 (1997).
[CrossRef]

Fuschini, F.

V. Degli-Esposti, F. Fuschini, E. M. Vitucci, and G. Falciasecca, “Speed-up techniques for ray tracing field prediction models,” IEEE Trans. Antennas Propag. 57, 1469–1480 (2009).
[CrossRef]

Gabillet, Y.

J. P. Rossi and Y. Gabillet, “A mixed ray launching/tracing method for full 3-D UHF propagation modeling and comparison with wide-band measurements,” IEEE Trans. Antennas Propag. 50, 517–523 (2002).
[CrossRef]

Guo, L. X.

Z. Y. Liu and L. X. Guo, “A quasi three-dimensional ray tracing method based on the virtual source tree in urban microcellular environments,” Prog. Electromagn. Res. 118, 397–414 (2011).
[CrossRef]

Gutierrez, O.

M. F. Catedra, J. Perez, F. S. De Adana, and O. Gutierrez, “Efficient ray-tracing techniques for three-dimensional analyses of propagation in mobile communications: application to picocell and microcell scenarios,” IEEE Antennas Propag. Mag. 40(2), 15–28 (1998).
[CrossRef]

Hodjatkashani, F.

C. Saeidi, A. Fard, and F. Hodjatkashani, “Full three-dimensional radio wave propagation prediction model,” IEEE Trans. Antennas Propag. 60, 2462–2471 (2012).
[CrossRef]

Hunukumbure, M.

K. H. Ng, E. K. Tameh, A. Doufexi, M. Hunukumbure, and A. R. Nix, “Efficient multielement ray tracing with site-specific comparisons using measured MIMO channel data,” IEEE Trans. Veh. Technol. 56, 1019–1032 (2007).
[CrossRef]

Iskander, M. F.

M. F. Iskander and Z. Yun, “Propagation prediction models for wireless communication systems,” IEEE Trans. Microwave Theor. Tech. 50, 662–673 (2002).
[CrossRef]

Jahn, A.

M. Dottling, A. Jahn, D. Didascalou, and W. Wiesbeck, “Two- and three-dimensional ray tracing applied to the land mobile satellite (LMS) propagation channel,” IEEE Antennas Propag. Mag. 43(6), 27–37 (2001).
[CrossRef]

Ji, Z.

T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, “A survey of various propagation models for mobile communication,” IEEE Antennas Propag. Mag. 45(3), 51–82 (2003).
[CrossRef]

Johnston, T. L.

G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine, and D. Lavry, “A statistical model of urban multipath propagation,” IEEE Trans. Veh. Technol. 21, 1–9 (1972).
[CrossRef]

Ju, K. M.

J. H. Tarng and K. M. Ju, “A novel 3-D scattering model of 1.8-GHz radio propagation in microcellular urban environment,” IEEE Trans. Electromagn. Compat. 41, 100–106 (1999).
[CrossRef]

Kenny, E. M.

W. M. O’Brien, E. M. Kenny, and P. J. Cullen, “An efficient implementation of a three-dimensional microcell propagation tool for indoor and outdoor urban environments,” IEEE Trans. Veh. Technol. 49, 622–630 (2000).
[CrossRef]

Kim, K.

T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, “A survey of various propagation models for mobile communication,” IEEE Antennas Propag. Mag. 45(3), 51–82 (2003).
[CrossRef]

Lavry, D.

G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine, and D. Lavry, “A statistical model of urban multipath propagation,” IEEE Trans. Veh. Technol. 21, 1–9 (1972).
[CrossRef]

Li, B. H.

H. T. Liu, B. H. Li, and D. S. Qi, “Novel geometrical database model for line-based GIS urban maps in 2D/2.5D ray-tracing algorithms,” Microwave Opt. Technol. Lett. 43, 307–310 (2004).

Liang, G.

H. M. El-Sallabi, G. Liang, H. L. Bertoni, I. T. Rekanos, and P. Vainikainen, “Influence of diffraction coefficient and corner shape on ray prediction of power and delay spread in urban microcells,” IEEE Trans. Antennas Propag. 50, 703–712 (2002).
[CrossRef]

G. Liang and H. L. Bertoni, “A new approach to 3-D ray tracing for propagation prediction in cities,” IEEE Trans. Antennas Propag. 46, 853–863 (1998).
[CrossRef]

Liu, H. T.

H. T. Liu, B. H. Li, and D. S. Qi, “Novel geometrical database model for line-based GIS urban maps in 2D/2.5D ray-tracing algorithms,” Microwave Opt. Technol. Lett. 43, 307–310 (2004).

Liu, Z. Y.

Z. Y. Liu and L. X. Guo, “A quasi three-dimensional ray tracing method based on the virtual source tree in urban microcellular environments,” Prog. Electromagn. Res. 118, 397–414 (2011).
[CrossRef]

Lombardi, G.

V. Degli-Eposti, G. Lombardi, C. Passerini, and G. Riva, “Wide-band measurement and ray-tracing simulation of the 1900-MHz indoor propagation channel: comparison criteria and results,” IEEE Trans. Antennas Propag. 49, 1101–1110 (2001).
[CrossRef]

Medouri, A.

T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, “A survey of various propagation models for mobile communication,” IEEE Antennas Propag. Mag. 45(3), 51–82 (2003).
[CrossRef]

Moreira, F. J. S.

D. N. Schettino, F. J. S. Moreira, and C. G. Rego, “Efficient ray tracing for radio channel characterization of urban scenarios,” IEEE Trans. Magn. 43, 1305–1308 (2007).
[CrossRef]

Myung, N.

H. Son and N. Myung, “A deterministic ray tube method for microcellular wave propagation prediction model,” IEEE Trans. Antennas Propag. 47, 1344–1350 (1999).
[CrossRef]

Ng, K. H.

K. H. Ng, E. K. Tameh, A. Doufexi, M. Hunukumbure, and A. R. Nix, “Efficient multielement ray tracing with site-specific comparisons using measured MIMO channel data,” IEEE Trans. Veh. Technol. 56, 1019–1032 (2007).
[CrossRef]

Nix, A. R.

K. H. Ng, E. K. Tameh, A. Doufexi, M. Hunukumbure, and A. R. Nix, “Efficient multielement ray tracing with site-specific comparisons using measured MIMO channel data,” IEEE Trans. Veh. Technol. 56, 1019–1032 (2007).
[CrossRef]

O’Brien, W. M.

W. M. O’Brien, E. M. Kenny, and P. J. Cullen, “An efficient implementation of a three-dimensional microcell propagation tool for indoor and outdoor urban environments,” IEEE Trans. Veh. Technol. 49, 622–630 (2000).
[CrossRef]

Owens, G. J.

J. A. J. Rustako, N. Amitay, G. J. Owens, and R. S. Roman, “Radio propagation at microwave frequencies for line-of-sight microcellular moblle and personal communications,” IEEE Trans. Veh. Technol. 40, 203–210 (1991).
[CrossRef]

Passerini, C.

V. Degli-Eposti, G. Lombardi, C. Passerini, and G. Riva, “Wide-band measurement and ray-tracing simulation of the 1900-MHz indoor propagation channel: comparison criteria and results,” IEEE Trans. Antennas Propag. 49, 1101–1110 (2001).
[CrossRef]

Perez, J.

M. F. Catedra, J. Perez, F. S. De Adana, and O. Gutierrez, “Efficient ray-tracing techniques for three-dimensional analyses of propagation in mobile communications: application to picocell and microcell scenarios,” IEEE Antennas Propag. Mag. 40(2), 15–28 (1998).
[CrossRef]

Pousset, Y.

P. Combeau, R. Vauzelle, Y. Pousset, and L. Aveneau, “An optimization in computation time for the prediction of radio coverage zones,” Radio Sci. 42, RS1003 (2007).
[CrossRef]

Qi, D. S.

H. T. Liu, B. H. Li, and D. S. Qi, “Novel geometrical database model for line-based GIS urban maps in 2D/2.5D ray-tracing algorithms,” Microwave Opt. Technol. Lett. 43, 307–310 (2004).

Rabanos, J. M. H.

F. A. Agelet, A. Formella, J. M. H. Rabanos, F. I. de Vicente, and F. P. Fontan, “Efficient ray-tracing acceleration techniques for radio propagation modeling,” IEEE Trans. Veh. Technol. 49, 2089–2104 (2000).
[CrossRef]

Rego, C. G.

D. N. Schettino, F. J. S. Moreira, and C. G. Rego, “Efficient ray tracing for radio channel characterization of urban scenarios,” IEEE Trans. Magn. 43, 1305–1308 (2007).
[CrossRef]

Rekanos, I. T.

H. M. El-Sallabi, G. Liang, H. L. Bertoni, I. T. Rekanos, and P. Vainikainen, “Influence of diffraction coefficient and corner shape on ray prediction of power and delay spread in urban microcells,” IEEE Trans. Antennas Propag. 50, 703–712 (2002).
[CrossRef]

Riva, G.

V. Degli-Eposti, G. Lombardi, C. Passerini, and G. Riva, “Wide-band measurement and ray-tracing simulation of the 1900-MHz indoor propagation channel: comparison criteria and results,” IEEE Trans. Antennas Propag. 49, 1101–1110 (2001).
[CrossRef]

Roman, R. S.

J. A. J. Rustako, N. Amitay, G. J. Owens, and R. S. Roman, “Radio propagation at microwave frequencies for line-of-sight microcellular moblle and personal communications,” IEEE Trans. Veh. Technol. 40, 203–210 (1991).
[CrossRef]

Rossi, J. P.

J. P. Rossi and Y. Gabillet, “A mixed ray launching/tracing method for full 3-D UHF propagation modeling and comparison with wide-band measurements,” IEEE Trans. Antennas Propag. 50, 517–523 (2002).
[CrossRef]

Rustako, J. A. J.

J. A. J. Rustako, N. Amitay, G. J. Owens, and R. S. Roman, “Radio propagation at microwave frequencies for line-of-sight microcellular moblle and personal communications,” IEEE Trans. Veh. Technol. 40, 203–210 (1991).
[CrossRef]

Saeidi, C.

C. Saeidi, A. Fard, and F. Hodjatkashani, “Full three-dimensional radio wave propagation prediction model,” IEEE Trans. Antennas Propag. 60, 2462–2471 (2012).
[CrossRef]

Salazar-Palma, M.

T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, “A survey of various propagation models for mobile communication,” IEEE Antennas Propag. Mag. 45(3), 51–82 (2003).
[CrossRef]

Sarkar, T. K.

T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, “A survey of various propagation models for mobile communication,” IEEE Antennas Propag. Mag. 45(3), 51–82 (2003).
[CrossRef]

Schettino, D. N.

D. N. Schettino, F. J. S. Moreira, and C. G. Rego, “Efficient ray tracing for radio channel characterization of urban scenarios,” IEEE Trans. Magn. 43, 1305–1308 (2007).
[CrossRef]

Son, H.

H. Son and N. Myung, “A deterministic ray tube method for microcellular wave propagation prediction model,” IEEE Trans. Antennas Propag. 47, 1344–1350 (1999).
[CrossRef]

Sun, Q.

Q. Sun, S. Y. Tan, and K. C. Teh, “Analytical formulae for path loss prediction in urban street grid microcellular environments,” IEEE Trans. Veh. Technol. 54, 1251–1258 (2005).
[CrossRef]

Tameh, E. K.

K. H. Ng, E. K. Tameh, A. Doufexi, M. Hunukumbure, and A. R. Nix, “Efficient multielement ray tracing with site-specific comparisons using measured MIMO channel data,” IEEE Trans. Veh. Technol. 56, 1019–1032 (2007).
[CrossRef]

Tan, H. S.

S. Y. Tan and H. S. Tan, “A microcellular communications propagation model based on the uniform theory of diffraction and multiple image theory,” IEEE Trans. Antennas Propag. 44, 1317–1326 (1996).
[CrossRef]

S. Y. Tan and H. S. Tan, “UTD propagation model in an urban street scene for microcellular communications,” IEEE Trans. Electromagn. Compat. 35, 423–428 (1993).
[CrossRef]

Tan, S. Y.

Q. Sun, S. Y. Tan, and K. C. Teh, “Analytical formulae for path loss prediction in urban street grid microcellular environments,” IEEE Trans. Veh. Technol. 54, 1251–1258 (2005).
[CrossRef]

S. Y. Tan and H. S. Tan, “A microcellular communications propagation model based on the uniform theory of diffraction and multiple image theory,” IEEE Trans. Antennas Propag. 44, 1317–1326 (1996).
[CrossRef]

S. Y. Tan and H. S. Tan, “UTD propagation model in an urban street scene for microcellular communications,” IEEE Trans. Electromagn. Compat. 35, 423–428 (1993).
[CrossRef]

Tarng, J. H.

J. H. Tarng and K. M. Ju, “A novel 3-D scattering model of 1.8-GHz radio propagation in microcellular urban environment,” IEEE Trans. Electromagn. Compat. 41, 100–106 (1999).
[CrossRef]

Teh, K. C.

Q. Sun, S. Y. Tan, and K. C. Teh, “Analytical formulae for path loss prediction in urban street grid microcellular environments,” IEEE Trans. Veh. Technol. 54, 1251–1258 (2005).
[CrossRef]

Toscano, A.

A. Toscano, F. Bilotti, and L. Vegni, “Fast ray-tracing technique for electromagnetic field prediction in mobile communications,” IEEE Trans. Magn. 39, 1238–1241 (2003).
[CrossRef]

Turin, G. L.

G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine, and D. Lavry, “A statistical model of urban multipath propagation,” IEEE Trans. Veh. Technol. 21, 1–9 (1972).
[CrossRef]

Vainikainen, P.

H. M. El-Sallabi and P. Vainikainen, “Improvements to diffraction coefficient for non-perfectly conducting wedges,” IEEE Trans. Antennas Propag. 53, 3105–3109 (2005).
[CrossRef]

H. M. El-Sallabi, G. Liang, H. L. Bertoni, I. T. Rekanos, and P. Vainikainen, “Influence of diffraction coefficient and corner shape on ray prediction of power and delay spread in urban microcells,” IEEE Trans. Antennas Propag. 50, 703–712 (2002).
[CrossRef]

Vauzelle, R.

P. Combeau, R. Vauzelle, Y. Pousset, and L. Aveneau, “An optimization in computation time for the prediction of radio coverage zones,” Radio Sci. 42, RS1003 (2007).
[CrossRef]

Vegni, L.

A. Toscano, F. Bilotti, and L. Vegni, “Fast ray-tracing technique for electromagnetic field prediction in mobile communications,” IEEE Trans. Magn. 39, 1238–1241 (2003).
[CrossRef]

Vitucci, E. M.

V. Degli-Esposti, F. Fuschini, E. M. Vitucci, and G. Falciasecca, “Speed-up techniques for ray tracing field prediction models,” IEEE Trans. Antennas Propag. 57, 1469–1480 (2009).
[CrossRef]

Whittdker, J. H.

J. H. Whittdker, “Measurements of path loss at 910  MHz for proposed microcell urban mobile systems,” IEEE Trans. Veh. Technol. 37, 125–129 (1988).
[CrossRef]

Wiesbeck, W.

M. Dottling, A. Jahn, D. Didascalou, and W. Wiesbeck, “Two- and three-dimensional ray tracing applied to the land mobile satellite (LMS) propagation channel,” IEEE Antennas Propag. Mag. 43(6), 27–37 (2001).
[CrossRef]

Wyvill, G.

J. G. Cleary and G. Wyvill, “Analysis of an algorithm for fast ray tracing using uniform space subdivision,” Vis. Comput. 4, 65–83 (1988).
[CrossRef]

Yun, Z.

M. F. Iskander and Z. Yun, “Propagation prediction models for wireless communication systems,” IEEE Trans. Microwave Theor. Tech. 50, 662–673 (2002).
[CrossRef]

IEEE Antennas Propag. Mag. (3)

T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, “A survey of various propagation models for mobile communication,” IEEE Antennas Propag. Mag. 45(3), 51–82 (2003).
[CrossRef]

M. Dottling, A. Jahn, D. Didascalou, and W. Wiesbeck, “Two- and three-dimensional ray tracing applied to the land mobile satellite (LMS) propagation channel,” IEEE Antennas Propag. Mag. 43(6), 27–37 (2001).
[CrossRef]

M. F. Catedra, J. Perez, F. S. De Adana, and O. Gutierrez, “Efficient ray-tracing techniques for three-dimensional analyses of propagation in mobile communications: application to picocell and microcell scenarios,” IEEE Antennas Propag. Mag. 40(2), 15–28 (1998).
[CrossRef]

IEEE Trans. Antennas Propag. (9)

H. M. El-Sallabi and P. Vainikainen, “Improvements to diffraction coefficient for non-perfectly conducting wedges,” IEEE Trans. Antennas Propag. 53, 3105–3109 (2005).
[CrossRef]

H. Son and N. Myung, “A deterministic ray tube method for microcellular wave propagation prediction model,” IEEE Trans. Antennas Propag. 47, 1344–1350 (1999).
[CrossRef]

C. Saeidi, A. Fard, and F. Hodjatkashani, “Full three-dimensional radio wave propagation prediction model,” IEEE Trans. Antennas Propag. 60, 2462–2471 (2012).
[CrossRef]

S. Y. Tan and H. S. Tan, “A microcellular communications propagation model based on the uniform theory of diffraction and multiple image theory,” IEEE Trans. Antennas Propag. 44, 1317–1326 (1996).
[CrossRef]

V. Degli-Esposti, F. Fuschini, E. M. Vitucci, and G. Falciasecca, “Speed-up techniques for ray tracing field prediction models,” IEEE Trans. Antennas Propag. 57, 1469–1480 (2009).
[CrossRef]

J. P. Rossi and Y. Gabillet, “A mixed ray launching/tracing method for full 3-D UHF propagation modeling and comparison with wide-band measurements,” IEEE Trans. Antennas Propag. 50, 517–523 (2002).
[CrossRef]

V. Degli-Eposti, G. Lombardi, C. Passerini, and G. Riva, “Wide-band measurement and ray-tracing simulation of the 1900-MHz indoor propagation channel: comparison criteria and results,” IEEE Trans. Antennas Propag. 49, 1101–1110 (2001).
[CrossRef]

H. M. El-Sallabi, G. Liang, H. L. Bertoni, I. T. Rekanos, and P. Vainikainen, “Influence of diffraction coefficient and corner shape on ray prediction of power and delay spread in urban microcells,” IEEE Trans. Antennas Propag. 50, 703–712 (2002).
[CrossRef]

G. Liang and H. L. Bertoni, “A new approach to 3-D ray tracing for propagation prediction in cities,” IEEE Trans. Antennas Propag. 46, 853–863 (1998).
[CrossRef]

IEEE Trans. Electromagn. Compat. (3)

D. Erricolo, “Experimental validation of second-order diffraction coefficients for computation of path-loss past buildings,” IEEE Trans. Electromagn. Compat. 44, 272–273 (2002).
[CrossRef]

J. H. Tarng and K. M. Ju, “A novel 3-D scattering model of 1.8-GHz radio propagation in microcellular urban environment,” IEEE Trans. Electromagn. Compat. 41, 100–106 (1999).
[CrossRef]

S. Y. Tan and H. S. Tan, “UTD propagation model in an urban street scene for microcellular communications,” IEEE Trans. Electromagn. Compat. 35, 423–428 (1993).
[CrossRef]

IEEE Trans. Magn. (3)

D. N. Schettino, F. J. S. Moreira, and C. G. Rego, “Efficient ray tracing for radio channel characterization of urban scenarios,” IEEE Trans. Magn. 43, 1305–1308 (2007).
[CrossRef]

A. Toscano, F. Bilotti, and L. Vegni, “Fast ray-tracing technique for electromagnetic field prediction in mobile communications,” IEEE Trans. Magn. 39, 1238–1241 (2003).
[CrossRef]

F. A. Agelet, F. P. Fontan, and A. Formella, “Fast ray-tracing for microcellular and indoor environments,” IEEE Trans. Magn. 33, 1484–1487 (1997).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (1)

M. F. Iskander and Z. Yun, “Propagation prediction models for wireless communication systems,” IEEE Trans. Microwave Theor. Tech. 50, 662–673 (2002).
[CrossRef]

IEEE Trans. Veh. Technol. (7)

K. H. Ng, E. K. Tameh, A. Doufexi, M. Hunukumbure, and A. R. Nix, “Efficient multielement ray tracing with site-specific comparisons using measured MIMO channel data,” IEEE Trans. Veh. Technol. 56, 1019–1032 (2007).
[CrossRef]

F. A. Agelet, A. Formella, J. M. H. Rabanos, F. I. de Vicente, and F. P. Fontan, “Efficient ray-tracing acceleration techniques for radio propagation modeling,” IEEE Trans. Veh. Technol. 49, 2089–2104 (2000).
[CrossRef]

J. A. J. Rustako, N. Amitay, G. J. Owens, and R. S. Roman, “Radio propagation at microwave frequencies for line-of-sight microcellular moblle and personal communications,” IEEE Trans. Veh. Technol. 40, 203–210 (1991).
[CrossRef]

Q. Sun, S. Y. Tan, and K. C. Teh, “Analytical formulae for path loss prediction in urban street grid microcellular environments,” IEEE Trans. Veh. Technol. 54, 1251–1258 (2005).
[CrossRef]

J. H. Whittdker, “Measurements of path loss at 910  MHz for proposed microcell urban mobile systems,” IEEE Trans. Veh. Technol. 37, 125–129 (1988).
[CrossRef]

W. M. O’Brien, E. M. Kenny, and P. J. Cullen, “An efficient implementation of a three-dimensional microcell propagation tool for indoor and outdoor urban environments,” IEEE Trans. Veh. Technol. 49, 622–630 (2000).
[CrossRef]

G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine, and D. Lavry, “A statistical model of urban multipath propagation,” IEEE Trans. Veh. Technol. 21, 1–9 (1972).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

H. T. Liu, B. H. Li, and D. S. Qi, “Novel geometrical database model for line-based GIS urban maps in 2D/2.5D ray-tracing algorithms,” Microwave Opt. Technol. Lett. 43, 307–310 (2004).

Prog. Electromagn. Res. (1)

Z. Y. Liu and L. X. Guo, “A quasi three-dimensional ray tracing method based on the virtual source tree in urban microcellular environments,” Prog. Electromagn. Res. 118, 397–414 (2011).
[CrossRef]

Radio Sci. (1)

P. Combeau, R. Vauzelle, Y. Pousset, and L. Aveneau, “An optimization in computation time for the prediction of radio coverage zones,” Radio Sci. 42, RS1003 (2007).
[CrossRef]

Vis. Comput. (1)

J. G. Cleary and G. Wyvill, “Analysis of an algorithm for fast ray tracing using uniform space subdivision,” Vis. Comput. 4, 65–83 (1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Storage format of building used in the proposed model.

Fig. 2.
Fig. 2.

Sketch map for determining the orientation face set of wall AB.

Fig. 3.
Fig. 3.

Plan view of the Ottawa city core with four Txs (marked by asterisks).

Fig. 4.
Fig. 4.

Reduction of CPU time based on the improved RT method.

Fig. 5.
Fig. 5.

Radiation and visible areas of reflection sources and bounding boxes for visible areas.

Fig. 6.
Fig. 6.

Visible areas of diffraction sources and corresponding bounding boxes.

Fig. 7.
Fig. 7.

Estimation for three types of ray paths.

Fig. 8.
Fig. 8.

Average processing time for each grid point against spatial step for different Tx locations.

Fig. 9.
Fig. 9.

Reduction in CPU time based on coverage prediction techniques.

Fig. 10.
Fig. 10.

Prediction against measurement for transmitter position T1 along Laurier Street using the improved RT model.

Fig. 11.
Fig. 11.

Comparison of the calculated and measured path loss characteristics for transmitter position T4 along Bank Street.

Fig. 12.
Fig. 12.

Plan view of a Manhattan street grid [28].

Fig. 13.
Fig. 13.

Path loss predictions and measurements along 51st Street.

Tables (2)

Tables Icon

Table 1. CPU Time Creating VST at Different Limit Numbers

Tables Icon

Table 2. Error Statistics Using the Improved RT Method II With Different Antenna Locations (Against the Improved RT Method I)a

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E=E0ftfr·ejkrr·i=1nRi·l=1m(DlAld),
h(t)=i=1NAiδ(tτi)exp(jϑi).
Lmax=20lg((|Rmax|)n/rmin),
Lmax=20lg(1r1·|Dmax·i=1n(RiAir)·l=1m1(DlAld)|),
Lmax=20lg(r2r1(r2+rmin)·|Dmax·(|Rmax|)nn1·i=1n1(RiAir)·l=1m1(DlAld)|),

Metrics