Abstract

We present an experimental and theoretical study of the energy transfer between modes during the tapering process of an optical nanofiber through spectrogram analysis. The results allow optimization of the tapering process, and we measure transmission in excess of 99.95% for the fundamental mode. We quantify the adiabaticity condition through calculations and place an upper bound on the amount of energy transferred to other modes at each step of the tapering, giving practical limits to the tapering angle.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919–933 (1973).
    [CrossRef]
  2. F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242, 445–455 (2004).
    [CrossRef]
  3. S. Leon-Saval, T. Birks, W. Wadsworth, P. S. J. Russell, and M. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2869 (2004).
    [CrossRef]
  4. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
    [CrossRef]
  5. J. Bures and R. Ghosh, “Power density of the evanescent field in the vicinity of a tapered fiber,” J. Opt. Soc. Am. A 16, 1992–1996 (1999).
    [CrossRef]
  6. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
    [CrossRef]
  7. F. Orucevic, V. Lefèvre-Seguin, and J. Hare, “Transmittance and near-field characterization of sub-wavelength tapered optical fibers,” Opt. Express 15, 13624–13629 (2007).
    [CrossRef]
  8. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).
  9. V. I. Balykin, K. Hakuta, F. L. Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401 (2004).
    [CrossRef]
  10. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
    [CrossRef]
  11. J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson, A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M. Taylor, C. P. Vlahacos, and F. C. Wellstood, “Atoms talking to squids,” Rev. Mex. Fis. 57, 1–5 (2011).
  12. R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).
    [CrossRef]
  13. A. Ashkin, “Trapping of atoms by resonance radiation pressure,” Phys. Rev. Lett. 40, 729–732 (1978).
    [CrossRef]
  14. S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
    [CrossRef]
  15. R. J. Cook and R. K. Hill, “An electromagnetic mirror for neutral atoms,” Opt. Commun. 43, 258–260 (1982).
    [CrossRef]
  16. K.-H. Yang, W. C. Stwalley, S. P. Heneghan, J. T. Bahns, K.-K. Wang, and T. R. Hess, “Examination of effects of TEM01*-mode laser radiation in the trapping of neutral potassium atoms,” Phys. Rev. A 34, 2962–2967 (1986).
    [CrossRef]
  17. N. Davidson, H. Jin Lee, C. S. Adams, M. Kasevich, and S. Chu, “Long atomic coherence times in an optical dipole trap,” Phys. Rev. Lett. 74, 1311–1314 (1995).
    [CrossRef]
  18. S. Kulin, S. Aubin, S. Christe, B. Peker, S. L. Rolston, and L. A. Orozco, “A single hollow-beam optical trap for cold atoms,” J. Opt. B 3, 353–357 (2001).
    [CrossRef]
  19. A. Goban, K. Choi, D. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. Stern, and H. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 1–5 (2012).
    [CrossRef]
  20. X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
    [CrossRef]
  21. K. P. Nayak, F. L. Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19, 14040–14050 (2011).
    [CrossRef]
  22. C. Wuttke, M. Becker, S. Brückner, M. Rothhardt, and A. Rauschenbeutel, “Nanofiber Fabry–Perot microresonator for nonlinear optics and cavity quantum electrodynamics,” Opt. Lett. 37, 1949–1951 (2012).
    [CrossRef]
  23. F. Warken, “Ultra thin glass fibers as a tool for coupling light and matter,” Ph.D. thesis (Rheinische Friedrich-Wilhelms Universitat, 2007).
  24. J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Heat and pull apparatus for ultrahigh transmission optical nanofibers,” (in preparation).
  25. http://drum.lib.umd.edu .
  26. A. Yariv, Optical Electronics in Modern Communications (Oxford University, 1997).
  27. Photon Design Ltd., “FIMMWAVE/FIMMPROP,” http://www.photond.com .
  28. T. Birks and Y. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
    [CrossRef]
  29. M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express 19, 8596–8601 (2011).
    [CrossRef]
  30. S. Ravets, J. E. Hoffman, L. A. Orozco, S. L. Rolston, G. Beadie, and F. K. Fatemi, “A low-loss photonic silica nanofiber for higher-order modes,” Opt. Express 21, 18325–18335 (2013).
    [CrossRef]

2013 (1)

2012 (2)

C. Wuttke, M. Becker, S. Brückner, M. Rothhardt, and A. Rauschenbeutel, “Nanofiber Fabry–Perot microresonator for nonlinear optics and cavity quantum electrodynamics,” Opt. Lett. 37, 1949–1951 (2012).
[CrossRef]

A. Goban, K. Choi, D. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. Stern, and H. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 1–5 (2012).
[CrossRef]

2011 (3)

2010 (1)

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef]

2007 (1)

2006 (1)

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

2004 (3)

V. I. Balykin, K. Hakuta, F. L. Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401 (2004).
[CrossRef]

F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242, 445–455 (2004).
[CrossRef]

S. Leon-Saval, T. Birks, W. Wadsworth, P. S. J. Russell, and M. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2869 (2004).
[CrossRef]

2003 (2)

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

2001 (1)

S. Kulin, S. Aubin, S. Christe, B. Peker, S. L. Rolston, and L. A. Orozco, “A single hollow-beam optical trap for cold atoms,” J. Opt. B 3, 353–357 (2001).
[CrossRef]

2000 (1)

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).
[CrossRef]

1999 (1)

1995 (1)

N. Davidson, H. Jin Lee, C. S. Adams, M. Kasevich, and S. Chu, “Long atomic coherence times in an optical dipole trap,” Phys. Rev. Lett. 74, 1311–1314 (1995).
[CrossRef]

1992 (1)

T. Birks and Y. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

1986 (2)

K.-H. Yang, W. C. Stwalley, S. P. Heneghan, J. T. Bahns, K.-K. Wang, and T. R. Hess, “Examination of effects of TEM01*-mode laser radiation in the trapping of neutral potassium atoms,” Phys. Rev. A 34, 2962–2967 (1986).
[CrossRef]

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
[CrossRef]

1982 (1)

R. J. Cook and R. K. Hill, “An electromagnetic mirror for neutral atoms,” Opt. Commun. 43, 258–260 (1982).
[CrossRef]

1978 (1)

A. Ashkin, “Trapping of atoms by resonance radiation pressure,” Phys. Rev. Lett. 40, 729–732 (1978).
[CrossRef]

1973 (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919–933 (1973).
[CrossRef]

Adams, C. S.

N. Davidson, H. Jin Lee, C. S. Adams, M. Kasevich, and S. Chu, “Long atomic coherence times in an optical dipole trap,” Phys. Rev. Lett. 74, 1311–1314 (1995).
[CrossRef]

Alton, D.

A. Goban, K. Choi, D. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. Stern, and H. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 1–5 (2012).
[CrossRef]

Anderson, J. R.

J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson, A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M. Taylor, C. P. Vlahacos, and F. C. Wellstood, “Atoms talking to squids,” Rev. Mex. Fis. 57, 1–5 (2011).

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Ashkin, A.

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
[CrossRef]

A. Ashkin, “Trapping of atoms by resonance radiation pressure,” Phys. Rev. Lett. 40, 729–732 (1978).
[CrossRef]

Aubin, S.

S. Kulin, S. Aubin, S. Christe, B. Peker, S. L. Rolston, and L. A. Orozco, “A single hollow-beam optical trap for cold atoms,” J. Opt. B 3, 353–357 (2001).
[CrossRef]

Bahns, J. T.

K.-H. Yang, W. C. Stwalley, S. P. Heneghan, J. T. Bahns, K.-K. Wang, and T. R. Hess, “Examination of effects of TEM01*-mode laser radiation in the trapping of neutral potassium atoms,” Phys. Rev. A 34, 2962–2967 (1986).
[CrossRef]

Balykin, V.

F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242, 445–455 (2004).
[CrossRef]

Balykin, V. I.

V. I. Balykin, K. Hakuta, F. L. Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401 (2004).
[CrossRef]

Beadie, G.

Becker, M.

Birks, T.

Bjorkholm, J. E.

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
[CrossRef]

Brückner, S.

Bures, J.

Cable, A.

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
[CrossRef]

Choi, K.

A. Goban, K. Choi, D. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. Stern, and H. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 1–5 (2012).
[CrossRef]

Christe, S.

S. Kulin, S. Aubin, S. Christe, B. Peker, S. L. Rolston, and L. A. Orozco, “A single hollow-beam optical trap for cold atoms,” J. Opt. B 3, 353–357 (2001).
[CrossRef]

Chu, S.

N. Davidson, H. Jin Lee, C. S. Adams, M. Kasevich, and S. Chu, “Long atomic coherence times in an optical dipole trap,” Phys. Rev. Lett. 74, 1311–1314 (1995).
[CrossRef]

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
[CrossRef]

Cook, R. J.

R. J. Cook and R. K. Hill, “An electromagnetic mirror for neutral atoms,” Opt. Commun. 43, 258–260 (1982).
[CrossRef]

Davidson, N.

N. Davidson, H. Jin Lee, C. S. Adams, M. Kasevich, and S. Chu, “Long atomic coherence times in an optical dipole trap,” Phys. Rev. Lett. 74, 1311–1314 (1995).
[CrossRef]

Dawkins, S. T.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef]

Ding, D.

A. Goban, K. Choi, D. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. Stern, and H. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 1–5 (2012).
[CrossRef]

Dragt, A. J.

J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson, A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M. Taylor, C. P. Vlahacos, and F. C. Wellstood, “Atoms talking to squids,” Rev. Mex. Fis. 57, 1–5 (2011).

Fatemi, F. K.

Fujiwara, M.

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Ghosh, R.

Goban, A.

A. Goban, K. Choi, D. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. Stern, and H. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 1–5 (2012).
[CrossRef]

Grimm, R.

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).
[CrossRef]

Grover, J.

J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Heat and pull apparatus for ultrahigh transmission optical nanofibers,” (in preparation).

Grover, J. A.

J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson, A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M. Taylor, C. P. Vlahacos, and F. C. Wellstood, “Atoms talking to squids,” Rev. Mex. Fis. 57, 1–5 (2011).

Guo, X.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

Hafezi, M.

J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson, A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M. Taylor, C. P. Vlahacos, and F. C. Wellstood, “Atoms talking to squids,” Rev. Mex. Fis. 57, 1–5 (2011).

Hakuta, K.

K. P. Nayak, F. L. Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19, 14040–14050 (2011).
[CrossRef]

F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242, 445–455 (2004).
[CrossRef]

V. I. Balykin, K. Hakuta, F. L. Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401 (2004).
[CrossRef]

Hare, J.

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Heneghan, S. P.

K.-H. Yang, W. C. Stwalley, S. P. Heneghan, J. T. Bahns, K.-K. Wang, and T. R. Hess, “Examination of effects of TEM01*-mode laser radiation in the trapping of neutral potassium atoms,” Phys. Rev. A 34, 2962–2967 (1986).
[CrossRef]

Hess, T. R.

K.-H. Yang, W. C. Stwalley, S. P. Heneghan, J. T. Bahns, K.-K. Wang, and T. R. Hess, “Examination of effects of TEM01*-mode laser radiation in the trapping of neutral potassium atoms,” Phys. Rev. A 34, 2962–2967 (1986).
[CrossRef]

Hill, R. K.

R. J. Cook and R. K. Hill, “An electromagnetic mirror for neutral atoms,” Opt. Commun. 43, 258–260 (1982).
[CrossRef]

Hoffman, J. E.

S. Ravets, J. E. Hoffman, L. A. Orozco, S. L. Rolston, G. Beadie, and F. K. Fatemi, “A low-loss photonic silica nanofiber for higher-order modes,” Opt. Express 21, 18325–18335 (2013).
[CrossRef]

J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson, A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M. Taylor, C. P. Vlahacos, and F. C. Wellstood, “Atoms talking to squids,” Rev. Mex. Fis. 57, 1–5 (2011).

J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Heat and pull apparatus for ultrahigh transmission optical nanofibers,” (in preparation).

Jiang, X.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

Jin Lee, H.

N. Davidson, H. Jin Lee, C. S. Adams, M. Kasevich, and S. Chu, “Long atomic coherence times in an optical dipole trap,” Phys. Rev. Lett. 74, 1311–1314 (1995).
[CrossRef]

Kasevich, M.

N. Davidson, H. Jin Lee, C. S. Adams, M. Kasevich, and S. Chu, “Long atomic coherence times in an optical dipole trap,” Phys. Rev. Lett. 74, 1311–1314 (1995).
[CrossRef]

Kawai, Y.

Kien, F. L.

K. P. Nayak, F. L. Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19, 14040–14050 (2011).
[CrossRef]

V. I. Balykin, K. Hakuta, F. L. Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401 (2004).
[CrossRef]

F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242, 445–455 (2004).
[CrossRef]

Kim, Z.

J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson, A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M. Taylor, C. P. Vlahacos, and F. C. Wellstood, “Atoms talking to squids,” Rev. Mex. Fis. 57, 1–5 (2011).

Kimble, H.

A. Goban, K. Choi, D. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. Stern, and H. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 1–5 (2012).
[CrossRef]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef]

Kordell, P. R.

J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Heat and pull apparatus for ultrahigh transmission optical nanofibers,” (in preparation).

Kulin, S.

S. Kulin, S. Aubin, S. Christe, B. Peker, S. L. Rolston, and L. A. Orozco, “A single hollow-beam optical trap for cold atoms,” J. Opt. B 3, 353–357 (2001).
[CrossRef]

Lacroûte, C.

A. Goban, K. Choi, D. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. Stern, and H. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 1–5 (2012).
[CrossRef]

Lefèvre-Seguin, V.

Leon-Saval, S.

Li, Y.

T. Birks and Y. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

Liang, J.

F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242, 445–455 (2004).
[CrossRef]

Liang, J. Q.

V. I. Balykin, K. Hakuta, F. L. Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401 (2004).
[CrossRef]

Lobb, C. J.

J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson, A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M. Taylor, C. P. Vlahacos, and F. C. Wellstood, “Atoms talking to squids,” Rev. Mex. Fis. 57, 1–5 (2011).

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

Mason, M.

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Miyazaki, H. T.

Morinaga, M.

V. I. Balykin, K. Hakuta, F. L. Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401 (2004).
[CrossRef]

Nakajima, K.

Nayak, K. P.

Orozco, L. A.

S. Ravets, J. E. Hoffman, L. A. Orozco, S. L. Rolston, G. Beadie, and F. K. Fatemi, “A low-loss photonic silica nanofiber for higher-order modes,” Opt. Express 21, 18325–18335 (2013).
[CrossRef]

J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson, A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M. Taylor, C. P. Vlahacos, and F. C. Wellstood, “Atoms talking to squids,” Rev. Mex. Fis. 57, 1–5 (2011).

S. Kulin, S. Aubin, S. Christe, B. Peker, S. L. Rolston, and L. A. Orozco, “A single hollow-beam optical trap for cold atoms,” J. Opt. B 3, 353–357 (2001).
[CrossRef]

J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Heat and pull apparatus for ultrahigh transmission optical nanofibers,” (in preparation).

Orucevic, F.

Ovchinnikov, Y. B.

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).
[CrossRef]

Painter, O. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef]

Peker, B.

S. Kulin, S. Aubin, S. Christe, B. Peker, S. L. Rolston, and L. A. Orozco, “A single hollow-beam optical trap for cold atoms,” J. Opt. B 3, 353–357 (2001).
[CrossRef]

Pototschnig, M.

A. Goban, K. Choi, D. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. Stern, and H. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 1–5 (2012).
[CrossRef]

Rauschenbeutel, A.

C. Wuttke, M. Becker, S. Brückner, M. Rothhardt, and A. Rauschenbeutel, “Nanofiber Fabry–Perot microresonator for nonlinear optics and cavity quantum electrodynamics,” Opt. Lett. 37, 1949–1951 (2012).
[CrossRef]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef]

Ravets, S.

S. Ravets, J. E. Hoffman, L. A. Orozco, S. L. Rolston, G. Beadie, and F. K. Fatemi, “A low-loss photonic silica nanofiber for higher-order modes,” Opt. Express 21, 18325–18335 (2013).
[CrossRef]

J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Heat and pull apparatus for ultrahigh transmission optical nanofibers,” (in preparation).

Reitz, D.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef]

Rolston, S. L.

S. Ravets, J. E. Hoffman, L. A. Orozco, S. L. Rolston, G. Beadie, and F. K. Fatemi, “A low-loss photonic silica nanofiber for higher-order modes,” Opt. Express 21, 18325–18335 (2013).
[CrossRef]

J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson, A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M. Taylor, C. P. Vlahacos, and F. C. Wellstood, “Atoms talking to squids,” Rev. Mex. Fis. 57, 1–5 (2011).

S. Kulin, S. Aubin, S. Christe, B. Peker, S. L. Rolston, and L. A. Orozco, “A single hollow-beam optical trap for cold atoms,” J. Opt. B 3, 353–357 (2001).
[CrossRef]

J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Heat and pull apparatus for ultrahigh transmission optical nanofibers,” (in preparation).

Rothhardt, M.

Russell, P. S. J.

Sagué, G.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef]

Schmidt, R.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

Solano, P.

J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Heat and pull apparatus for ultrahigh transmission optical nanofibers,” (in preparation).

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef]

Stern, N.

A. Goban, K. Choi, D. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. Stern, and H. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 1–5 (2012).
[CrossRef]

Stwalley, W. C.

K.-H. Yang, W. C. Stwalley, S. P. Heneghan, J. T. Bahns, K.-K. Wang, and T. R. Hess, “Examination of effects of TEM01*-mode laser radiation in the trapping of neutral potassium atoms,” Phys. Rev. A 34, 2962–2967 (1986).
[CrossRef]

Sugimoto, Y.

Takeuchi, S.

Taylor, J. M.

J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson, A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M. Taylor, C. P. Vlahacos, and F. C. Wellstood, “Atoms talking to squids,” Rev. Mex. Fis. 57, 1–5 (2011).

Thiele, T.

A. Goban, K. Choi, D. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. Stern, and H. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 1–5 (2012).
[CrossRef]

Tong, L.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Toubaru, K.

Tsao, A.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

Vahala, K. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef]

Vetsch, E.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef]

Vienne, G.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

Vlahacos, C. P.

J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson, A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M. Taylor, C. P. Vlahacos, and F. C. Wellstood, “Atoms talking to squids,” Rev. Mex. Fis. 57, 1–5 (2011).

Wadsworth, W.

Wang, K.-K.

K.-H. Yang, W. C. Stwalley, S. P. Heneghan, J. T. Bahns, K.-K. Wang, and T. R. Hess, “Examination of effects of TEM01*-mode laser radiation in the trapping of neutral potassium atoms,” Phys. Rev. A 34, 2962–2967 (1986).
[CrossRef]

Warken, F.

F. Warken, “Ultra thin glass fibers as a tool for coupling light and matter,” Ph.D. thesis (Rheinische Friedrich-Wilhelms Universitat, 2007).

Weidemuller, M.

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).
[CrossRef]

Wellstood, F. C.

J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson, A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M. Taylor, C. P. Vlahacos, and F. C. Wellstood, “Atoms talking to squids,” Rev. Mex. Fis. 57, 1–5 (2011).

Wong-Campos, J. D.

J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Heat and pull apparatus for ultrahigh transmission optical nanofibers,” (in preparation).

Wood, A. K.

J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson, A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M. Taylor, C. P. Vlahacos, and F. C. Wellstood, “Atoms talking to squids,” Rev. Mex. Fis. 57, 1–5 (2011).

Wuttke, C.

Yang, D.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

Yang, K.-H.

K.-H. Yang, W. C. Stwalley, S. P. Heneghan, J. T. Bahns, K.-K. Wang, and T. R. Hess, “Examination of effects of TEM01*-mode laser radiation in the trapping of neutral potassium atoms,” Phys. Rev. A 34, 2962–2967 (1986).
[CrossRef]

Yang, Q.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

Yariv, A.

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919–933 (1973).
[CrossRef]

A. Yariv, Optical Electronics in Modern Communications (Oxford University, 1997).

Adv. At. Mol. Opt. Phys. (1)

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919–933 (1973).
[CrossRef]

J. Lightwave Technol. (1)

T. Birks and Y. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

J. Opt. B (1)

S. Kulin, S. Aubin, S. Christe, B. Peker, S. L. Rolston, and L. A. Orozco, “A single hollow-beam optical trap for cold atoms,” J. Opt. B 3, 353–357 (2001).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nature (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Opt. Commun. (2)

F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242, 445–455 (2004).
[CrossRef]

R. J. Cook and R. K. Hill, “An electromagnetic mirror for neutral atoms,” Opt. Commun. 43, 258–260 (1982).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. A (2)

K.-H. Yang, W. C. Stwalley, S. P. Heneghan, J. T. Bahns, K.-K. Wang, and T. R. Hess, “Examination of effects of TEM01*-mode laser radiation in the trapping of neutral potassium atoms,” Phys. Rev. A 34, 2962–2967 (1986).
[CrossRef]

V. I. Balykin, K. Hakuta, F. L. Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401 (2004).
[CrossRef]

Phys. Rev. Lett. (6)

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef]

A. Ashkin, “Trapping of atoms by resonance radiation pressure,” Phys. Rev. Lett. 40, 729–732 (1978).
[CrossRef]

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
[CrossRef]

N. Davidson, H. Jin Lee, C. S. Adams, M. Kasevich, and S. Chu, “Long atomic coherence times in an optical dipole trap,” Phys. Rev. Lett. 74, 1311–1314 (1995).
[CrossRef]

A. Goban, K. Choi, D. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. Stern, and H. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 1–5 (2012).
[CrossRef]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef]

Rev. Mex. Fis. (1)

J. E. Hoffman, J. A. Grover, Z. Kim, A. K. Wood, J. R. Anderson, A. J. Dragt, M. Hafezi, C. J. Lobb, L. A. Orozco, S. L. Rolston, J. M. Taylor, C. P. Vlahacos, and F. C. Wellstood, “Atoms talking to squids,” Rev. Mex. Fis. 57, 1–5 (2011).

Other (6)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

F. Warken, “Ultra thin glass fibers as a tool for coupling light and matter,” Ph.D. thesis (Rheinische Friedrich-Wilhelms Universitat, 2007).

J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Heat and pull apparatus for ultrahigh transmission optical nanofibers,” (in preparation).

http://drum.lib.umd.edu .

A. Yariv, Optical Electronics in Modern Communications (Oxford University, 1997).

Photon Design Ltd., “FIMMWAVE/FIMMPROP,” http://www.photond.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1.

(a) Schematic of the stretched fiber. At a given time, the fiber is composed of two tapers and a uniform waist of radius r and length w. The total stretch is equal to L. (b) Calculated intensity profile of the mode for a radius of fiber equal to 60 μm, 15 μm, and 190 nm. Note that the position axes are not quantitative, and have been scaled to make the plots visible. The profiles are normalized to their maximum power.

Fig. 2.
Fig. 2.

Dispersion relations for various modes TE0m, TM0m, HElm, and EHlm (l=1 to 5) as a function of radius calculated for a three-layer model using FIMMPROP. Here, nair=nvacuum=1. We show the first few modes of each family. (a) and (b) Three-dimensional representation of the dispersions for different mode families. (c) Projection for the smaller values of R.

Fig. 3.
Fig. 3.

Upper boundary for the taper angle Ω as a function of the radius of the fiber set by zb=zt. Note the logarithmic scale for the vertical axis. The core-to-cladding diameter ratio for this fiber is 2.535/62.55 and is fixed for the entirety of the pull. ncore=1.45861 and nclad=1.45367.

Fig. 4.
Fig. 4.

Transmission of one section (tapering from 25.5 to 23.5 μm) as a function of angle when the input is the fundamental mode. (a) Amplitude of the fundamental HE11 (continuous blue) and the first higher-order mode EH11 (dashed green). (b) Phase difference between the fundamental and the first higher-order mode.

Fig. 5.
Fig. 5.

Optimal adiabatic tapers calculated with the genetic algorithm for T=99.90% (blue crosses and continuous line) and T=99.99% (red-dotted and -dashed line), where the intermode energy transfers are limited. Each marker corresponds to the optimum angle for a section. The lines are guides for the eye.

Fig. 6.
Fig. 6.

Optimal taper profiles for T=99.90% (continuous blue line) and T=99.99% (dashed red line). The profiles are only based on the dots from Fig. 5 and not on the continuous lines. Note that the horizontal axis scale is in centimeters, whereas the vertical axis scale is in micrometers.

Fig. 7.
Fig. 7.

Study of fiber profile for 99.99% transmission with optimized length given by the genetic algorithm. (a) Taper angles and fiber radius, squares with the continuous line to guide the eye. (b) Fiber radius and fiber length with a final length of 3.7 mm using the results in (a). (c) Fundamental mode transmission as a function of fiber radius for the optimized adiabatic fiber (red-dashed line) and the optimized nonadiabatic fiber (green continuous line).

Fig. 8.
Fig. 8.

Mode evolution for a 2 mrad linear fiber down to 250 nm radius. During the propagation through the taper, some energy is transferred from the fundamental HE11 (blue thin continuous line) to four higher-order modes EH11 (green long-dashed line), EH12 (light blue-dotted line), HE12 (red-dashed–dotted line), and EH13 (purple thick continuous line). The final transmission through one taper is 99.97% on the HE11 fundamental mode.

Fig. 9.
Fig. 9.

(a) Transmission through a 2 mrad fiber as a function of time during the manufacturing process. (b) Evolution of the waist radius during the pull, calculated from the algorithm described in [24]. The final radius is 250 nm.

Fig. 10.
Fig. 10.

Zoom of the transmission of the 2 mrad pull shown in Fig. 9, when the radius of the waist is near 20 μm. We see oscillations in the transmission signal, due to the beating between the fundamental mode and higher-order modes excited at a radius of 20 μm. The top vertical scale is the fiber radius at the waist.

Fig. 11.
Fig. 11.

Schematic of the modal evolution in the transition region. All the power is initially contained in the fundamental mode (blue profile). When the core of the fiber becomes too small compared to the wavelength, the light escapes into the cladding (green arrows) and some higher-order modes can be excited (red profile). The radius of the waist is equal to 20 μm, so that the excited modes do not experience any cutoff as they propagate through the waveguide. (a) The length of the fiber is an integer number of beating lengths. (b) Length of the fiber, not an integer of beating lengths. The mode profiles were calculated with FIMMPROP.

Fig. 12.
Fig. 12.

Transmission spectrogram of a 2 mrad pull (see the time evolution in Fig. 9) as a function of the stretch L of the fiber, showing the chirp of the beating frequency and the abrupt end of the beating. The top vertical scale shows the waist radius calculated from the algorithm. The colormap corresponds to the power spectral density (PSD).

Fig. 13.
Fig. 13.

Study of the differences between the fundamental mode and the first four excited modes of family 1. (a) Δβ1,j as a function of length along the fiber axis (difference between the indices of refraction at step 75). (b) Phase accumulation Φ1,j as a function of step. (c) Spatial frequency K1,j of the beating as a function of step. The lines (long-dashed red, continuous blue, short-dashed black, and long–short dashed green) join the calculated points.

Fig. 14.
Fig. 14.

Identification of the modes beating for the 2 mrad tapered fiber spectrogram of Fig. 12. Only modes from family 1 are beating.

Fig. 15.
Fig. 15.

(a) Normalized transmission through the fiber as a function of time during the manufacturing process. (b) Evolution of the radius of the waist during the pull. Based on the algorithm, we initially taper the fiber with a 2 mrad angle until a radius of 20 μm; the angle changes to 0.75 mrad until the radius of the fiber is equal to 6 μm, where the radius exponentially decreases down to 250 nm.

Fig. 16.
Fig. 16.

Spectrogram of the transmission data shown in Fig. 15. The solid black curves are the ones given by the simulation. The modes are labeled in the figure. The total transmission in the fundamental is 0.97850. For R2μm we calculate from the PSD that the remaining energy is distributed between seven higher-order modes as follows: TE01 (0.08%), TM01 (0.05%), EH11 (0.35%), EH12 (0.05%), HE12 (98.4%), HE13 (0.2%), and HE21 (0.87%).

Fig. 17.
Fig. 17.

Study of the asymmetry of a pulled fiber. The fiber has a 10 μm radius with an angle change from 2 to 0.75 mrad at 20 μm. (a) 100 images taken with an optical microscope stacked and horizontally compressed to enhance any asymmetries. (b) Profile of the bottom edge (blue curve) and top edge (red curve) of the fiber. The abrupt change in angle at 20 μm introduces an asymmetry at this radius. (c) Relative difference between the two edges (normalized by the diameter of the fiber) as a function of z.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

V=2πλan12n22,
zt=Rtan(Ω).
zb=2πβ1β2=λneff,1neff,2,
(L)n=fiberneffn(z)dz.
Φi,j(L)=0L[βi(r(z))βj(r(z))]dz,
Ki,j(L)=12πdΦi,jdL.

Metrics