Abstract

Orthogonal polynomials can be used for representing complex surfaces on a specific domain. In optics, Zernike polynomials have widespread applications in testing optical instruments, measuring wavefront distributions, and aberration theory. This orthogonal set on the unit circle has an appropriate matching with the shape of optical system components, such as entrance and exit pupils. The existence of noise in the process of representation estimation of optical surfaces causes a reduction of precision in the process of estimation. Different strategies are developed to manage unwanted noise effects and to preserve the quality of the estimation. This article studies the modeling of phase wavefront aberrations in third-order optics by using a combination of Zernike and pseudo-Zernike polynomials and shows how this combination may increase the robustness of the estimation process of phase wavefront aberration distribution.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription