Abstract

The mathematical model of a speckle-suppression method based on two Barker code-type diffractive optical elements (DOEs) moving in orthogonal directions is developed. The analytic formulae for speckle suppression efficiency are obtained. The model indicates that the one pair of DOEs can be used for laser beams of different colors. The speckle contrast is not dependent on the distance from the viewer to the screen until the distance decreases below the distance where the spatial resolution of the eye on the screen is less than the length of the image of the DOE structure period on the screen. The analysis of the simulated results demonstrates that the method can decrease the speckle contrast to less than 5%, which is below human eye sensitivity, with an optical efficiency greater than 90%.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. V. Chellappan, E. Erden, and H. Urey, “Laser-based displays: a review,” Appl. Opt. 49, F79–F98 (2010).
    [CrossRef]
  2. J. C. Dainty, Laser Speckle and Related Phenomena (Spinger-Verlag, 1975).
  3. J. W. Goodman, Speckle Phenomena in Optics. Theory and Applications (Roberts, 2006).
  4. P. Janssens and K. Malfait, “Future prospects of high-end laser projectors,” Proc. SPIE 7232, 7232–7234 (2009).
    [CrossRef]
  5. N. George and N. A. Jain, “Speckle reduction using multiple tones of illumination,” Appl. Opt. 12, 1202–1212 (1973).
    [CrossRef]
  6. A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T(2008).
    [CrossRef]
  7. Y. Zhang, H. Dong, R. Wang, J. Duan, A. Shi, Q. Fang, and Y. Liu, “Demonstration of a home projector based on RGB semiconductor lasers,” Appl. Opt. 51, 3584–3589 (2012).
    [CrossRef]
  8. B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
    [CrossRef]
  9. A. R. Sarmani, M. H. Abu Bakar, A. A. Bakar, F. R. Adikan, and M. A. Mahdi, “Spectral variations of the output spectrum in a random distributed feedback Raman fiber laser,” Opt. Express 19, 14152–14159 (2011).
    [CrossRef]
  10. E. G. Rawson, A. B. Nafarrate, R. E. Norton, and J. W. Goodman, “Speckle-free rear-projection screen using two close screens in slow relative motion,” J. Opt. Soc. Am. 66, 1290–1294(1976).
    [CrossRef]
  11. Y. Kuratomi, K. Sekiya, H. Satoh, T. Tomiyama, T. Kawakami, B. Katagiri, Y. Suzuki, and T. Uchid, “Speckle reduction mechanism in laser rear projection displays using a small moving diffuser,” J. Opt. Soc. Am. A 27, 1812–1817 (2010).
    [CrossRef]
  12. L. Wang, T. Tschudi, T. Halldorsson, and P. R. Pétursson, “Speckle reduction in laser projection systems by diffractive optical elements,” Appl. Opt. 37, 1770–1775 (1998).
    [CrossRef]
  13. S. Kubota and J. W. Goodman, “Very efficient speckle contrast reduction realized by moving diffuser device,” Appl. Opt. 49, 4385–4391 (2010).
    [CrossRef]
  14. J. I. Trisnadi, “Hadamard speckle contrast reduction,” Opt. Lett. 29, 11–13 (2004).
    [CrossRef]
  15. J. I. Trisnadi, “Method, apparatus and diffuser for reducing laser speckle,” U.S. patent 6,747,781 (8June2004).
  16. Z. Gao, W. Tong, V. Kartashov, M. N. Akram, and X. Chen, “Replacing two-dimensional binary phase matrix by a pair of one-dimensional dynamic phase matrices for laser speckle reduction,” J. Display Technol. 8, 291–295 (2012).
    [CrossRef]
  17. V. Yurlov, A. Lapchuk, S.-K. Yun, J-H. Song, and H.-S. Yang, “Speckle suppression in scanning laser display,” Appl. Opt. 47, 179–187 (2008).
    [CrossRef]
  18. S. K. Yun, J. Song, T. W. Lee, V. Yurlov, H. W. Park, C. Park, H. Kim, J. Yang, J. Cheong, and A. Lapchuk, “Spatial optical modulator (SOM): Samsung’s light modulator for the next generation laser display,” Proc. Soc. Inf. Disp. 29-1, 551–555 (2006).
    [CrossRef]
  19. J. I. Trisnadi, C. B. Carlisle, and V. Monteverde, “Overview and applications of grating light valve TM based optical write engines for high-speed digital imaging,” Proc. SPIE 5348, 52–64 (2004).
    [CrossRef]
  20. M. W. Kowarz, J. C. Brazas, and J. G. Phalen, “Conformal grating electromechanical system (GEMS) for high-speed digital light modulation,” in Micro Electro Mechanical Systems, 2002: Fifteenth IEEE International Conference Digest (IEEE, 2002), pp. 568–573.
  21. R. Sprague, M. Champion, M. Brown, D. Brown, M. Freeman, and M. Niesten, “Mobile projectors using scanned beam displays,” in Mobile Displays, Technology and Applications, K. Bhowmik, Z. Li, and P. J. Bos, eds. (Wiley, 2008).
  22. W. O. Davis, R. Sprague, and J. Miller, “MEMS-based pico projector display,” in Optical MEMS and Nanophotonics, 2008 IEEE/LEOS International Conference (IEEE, 2008), pp. 31–32.
  23. V. Yurlov, A. Lapchuk, S. Yun, J. Song, I. Yeo, H. Yang, and S. An, “Speckle suppression in scanning laser displays: aberration and defocusing of the projection system,” Appl. Opt. 48, 80–90 (2009).
    [CrossRef]
  24. M. N. Akram, K. Kartashov, and Z. Tong, “Speckle reduction in line-scan laser projectors using binary phase codes,” Opt. Lett. 35, 444–446 (2010).
    [CrossRef]
  25. Z. Tong, X. Chen, M. N. Akram, and A. Aksnes, “Compound speckle characterization method and reduction by optical design,” J. Display Technol. 8, 132–137 (2012).
    [CrossRef]
  26. S.-D. An, A. Lapchuk, V. Yurlov, J. H. Song, H. W. Park, J. W. Jang, W. C. Shin, S. Kargapoltsev, and S.-K. Yun, “Speckle suppression in laser display using several partially coherent beams,” Opt. Express 17, 92–103 (2009).
    [CrossRef]
  27. D. Kohler, W. L. Seitz, T. R. Loree, and S. D. Gardner, “Speckle reduction in pulsed-laser photographs,” Opt. Commun. 12, 24–28 (1974).
    [CrossRef]
  28. M. J. Sun and Z. K. Lu, “Speckle suppression with a rotating light pipe,” Opt. Eng. 49, 024202 (2010).
    [CrossRef]
  29. D. S. Mehta, D. N. Naik, R. K. Singh, and M. Takeda, “Laser speckle reduction by multimode optical fiber bundle with combined temporal, spatial, and angular diversity,” Appl. Opt. 51, 1894–1904 (2012).
    [CrossRef]
  30. B. Dingel, S. Kawata, and S. Minami, “Speckle reduction with virtual incoherent laser illumination using a modified fiber array,” Optik 94, 132–136 (1993).
  31. B. Dingel and S. Kawata, “Speckle-free image in a laser-diode microscope by using the optical feedback effect,” Opt. Lett. 18, 549–551 (1993).
    [CrossRef]
  32. J. Kim, E. Kim, D. T. Miller, and T. E. Milner, “Speckle reduction in OCT with multimode source fiber,” Proc. SPIE 5317, 246–250 (2004).
    [CrossRef]
  33. J. G. Manni and J. W. Goodman, “Versatile method for achieving 1% speckle contrast in large-venue laser projection displays using a stationary multimode optical fiber,” Opt. Express 20, 11288–11312 (2012).
    [CrossRef]
  34. J. W. Goodman, Statistical Optics (Wiley, 2000).
  35. P. Borwein and M. J. Mossinghoff, “Barker sequences and flat polynomials,” in Number Theory PolynomialsLondon Mathematical Society Lecture Notes Series (Cambridge University, 2008), Vol. 352, pp. 71–88.
  36. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

2012 (6)

2011 (1)

2010 (5)

2009 (3)

2008 (2)

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T(2008).
[CrossRef]

V. Yurlov, A. Lapchuk, S.-K. Yun, J-H. Song, and H.-S. Yang, “Speckle suppression in scanning laser display,” Appl. Opt. 47, 179–187 (2008).
[CrossRef]

2006 (1)

S. K. Yun, J. Song, T. W. Lee, V. Yurlov, H. W. Park, C. Park, H. Kim, J. Yang, J. Cheong, and A. Lapchuk, “Spatial optical modulator (SOM): Samsung’s light modulator for the next generation laser display,” Proc. Soc. Inf. Disp. 29-1, 551–555 (2006).
[CrossRef]

2004 (3)

J. I. Trisnadi, C. B. Carlisle, and V. Monteverde, “Overview and applications of grating light valve TM based optical write engines for high-speed digital imaging,” Proc. SPIE 5348, 52–64 (2004).
[CrossRef]

J. I. Trisnadi, “Hadamard speckle contrast reduction,” Opt. Lett. 29, 11–13 (2004).
[CrossRef]

J. Kim, E. Kim, D. T. Miller, and T. E. Milner, “Speckle reduction in OCT with multimode source fiber,” Proc. SPIE 5317, 246–250 (2004).
[CrossRef]

1998 (1)

1993 (2)

B. Dingel, S. Kawata, and S. Minami, “Speckle reduction with virtual incoherent laser illumination using a modified fiber array,” Optik 94, 132–136 (1993).

B. Dingel and S. Kawata, “Speckle-free image in a laser-diode microscope by using the optical feedback effect,” Opt. Lett. 18, 549–551 (1993).
[CrossRef]

1976 (1)

1974 (1)

D. Kohler, W. L. Seitz, T. R. Loree, and S. D. Gardner, “Speckle reduction in pulsed-laser photographs,” Opt. Commun. 12, 24–28 (1974).
[CrossRef]

1973 (1)

Abu Bakar, M. H.

Adikan, F. R.

Akram, M. N.

Aksnes, A.

An, S.

An, S.-D.

Bakar, A. A.

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Borwein, P.

P. Borwein and M. J. Mossinghoff, “Barker sequences and flat polynomials,” in Number Theory PolynomialsLondon Mathematical Society Lecture Notes Series (Cambridge University, 2008), Vol. 352, pp. 71–88.

Brazas, J. C.

M. W. Kowarz, J. C. Brazas, and J. G. Phalen, “Conformal grating electromechanical system (GEMS) for high-speed digital light modulation,” in Micro Electro Mechanical Systems, 2002: Fifteenth IEEE International Conference Digest (IEEE, 2002), pp. 568–573.

Brown, D.

R. Sprague, M. Champion, M. Brown, D. Brown, M. Freeman, and M. Niesten, “Mobile projectors using scanned beam displays,” in Mobile Displays, Technology and Applications, K. Bhowmik, Z. Li, and P. J. Bos, eds. (Wiley, 2008).

Brown, M.

R. Sprague, M. Champion, M. Brown, D. Brown, M. Freeman, and M. Niesten, “Mobile projectors using scanned beam displays,” in Mobile Displays, Technology and Applications, K. Bhowmik, Z. Li, and P. J. Bos, eds. (Wiley, 2008).

Cao, H.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[CrossRef]

Carlisle, C. B.

J. I. Trisnadi, C. B. Carlisle, and V. Monteverde, “Overview and applications of grating light valve TM based optical write engines for high-speed digital imaging,” Proc. SPIE 5348, 52–64 (2004).
[CrossRef]

Champion, M.

R. Sprague, M. Champion, M. Brown, D. Brown, M. Freeman, and M. Niesten, “Mobile projectors using scanned beam displays,” in Mobile Displays, Technology and Applications, K. Bhowmik, Z. Li, and P. J. Bos, eds. (Wiley, 2008).

Chellappan, K. V.

Chen, X.

Cheong, J.

S. K. Yun, J. Song, T. W. Lee, V. Yurlov, H. W. Park, C. Park, H. Kim, J. Yang, J. Cheong, and A. Lapchuk, “Spatial optical modulator (SOM): Samsung’s light modulator for the next generation laser display,” Proc. Soc. Inf. Disp. 29-1, 551–555 (2006).
[CrossRef]

Choma, M. A.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[CrossRef]

Dainty, J. C.

J. C. Dainty, Laser Speckle and Related Phenomena (Spinger-Verlag, 1975).

Davis, W. O.

W. O. Davis, R. Sprague, and J. Miller, “MEMS-based pico projector display,” in Optical MEMS and Nanophotonics, 2008 IEEE/LEOS International Conference (IEEE, 2008), pp. 31–32.

Dingel, B.

B. Dingel, S. Kawata, and S. Minami, “Speckle reduction with virtual incoherent laser illumination using a modified fiber array,” Optik 94, 132–136 (1993).

B. Dingel and S. Kawata, “Speckle-free image in a laser-diode microscope by using the optical feedback effect,” Opt. Lett. 18, 549–551 (1993).
[CrossRef]

Dong, H.

Duan, J.

Erden, E.

Fang, Q.

Freeman, M.

R. Sprague, M. Champion, M. Brown, D. Brown, M. Freeman, and M. Niesten, “Mobile projectors using scanned beam displays,” in Mobile Displays, Technology and Applications, K. Bhowmik, Z. Li, and P. J. Bos, eds. (Wiley, 2008).

Furukawa, A.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T(2008).
[CrossRef]

Gao, Z.

Gardner, S. D.

D. Kohler, W. L. Seitz, T. R. Loree, and S. D. Gardner, “Speckle reduction in pulsed-laser photographs,” Opt. Commun. 12, 24–28 (1974).
[CrossRef]

George, N.

Goodman, J. W.

Halldorsson, T.

Hirata, S.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T(2008).
[CrossRef]

Imanishi, D.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T(2008).
[CrossRef]

Ito, S.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T(2008).
[CrossRef]

Jain, N. A.

Jang, J. W.

Janssens, P.

P. Janssens and K. Malfait, “Future prospects of high-end laser projectors,” Proc. SPIE 7232, 7232–7234 (2009).
[CrossRef]

Kargapoltsev, S.

Kartashov, K.

Kartashov, V.

Katagiri, B.

Kawakami, T.

Kawata, S.

B. Dingel, S. Kawata, and S. Minami, “Speckle reduction with virtual incoherent laser illumination using a modified fiber array,” Optik 94, 132–136 (1993).

B. Dingel and S. Kawata, “Speckle-free image in a laser-diode microscope by using the optical feedback effect,” Opt. Lett. 18, 549–551 (1993).
[CrossRef]

Kim, E.

J. Kim, E. Kim, D. T. Miller, and T. E. Milner, “Speckle reduction in OCT with multimode source fiber,” Proc. SPIE 5317, 246–250 (2004).
[CrossRef]

Kim, H.

S. K. Yun, J. Song, T. W. Lee, V. Yurlov, H. W. Park, C. Park, H. Kim, J. Yang, J. Cheong, and A. Lapchuk, “Spatial optical modulator (SOM): Samsung’s light modulator for the next generation laser display,” Proc. Soc. Inf. Disp. 29-1, 551–555 (2006).
[CrossRef]

Kim, J.

J. Kim, E. Kim, D. T. Miller, and T. E. Milner, “Speckle reduction in OCT with multimode source fiber,” Proc. SPIE 5317, 246–250 (2004).
[CrossRef]

Kohler, D.

D. Kohler, W. L. Seitz, T. R. Loree, and S. D. Gardner, “Speckle reduction in pulsed-laser photographs,” Opt. Commun. 12, 24–28 (1974).
[CrossRef]

Kowarz, M. W.

M. W. Kowarz, J. C. Brazas, and J. G. Phalen, “Conformal grating electromechanical system (GEMS) for high-speed digital light modulation,” in Micro Electro Mechanical Systems, 2002: Fifteenth IEEE International Conference Digest (IEEE, 2002), pp. 568–573.

Kubota, S.

Kuratomi, Y.

Lapchuk, A.

Lee, T. W.

S. K. Yun, J. Song, T. W. Lee, V. Yurlov, H. W. Park, C. Park, H. Kim, J. Yang, J. Cheong, and A. Lapchuk, “Spatial optical modulator (SOM): Samsung’s light modulator for the next generation laser display,” Proc. Soc. Inf. Disp. 29-1, 551–555 (2006).
[CrossRef]

Liu, Y.

Loree, T. R.

D. Kohler, W. L. Seitz, T. R. Loree, and S. D. Gardner, “Speckle reduction in pulsed-laser photographs,” Opt. Commun. 12, 24–28 (1974).
[CrossRef]

Lu, Z. K.

M. J. Sun and Z. K. Lu, “Speckle suppression with a rotating light pipe,” Opt. Eng. 49, 024202 (2010).
[CrossRef]

Mahdi, M. A.

Malfait, K.

P. Janssens and K. Malfait, “Future prospects of high-end laser projectors,” Proc. SPIE 7232, 7232–7234 (2009).
[CrossRef]

Manni, J. G.

Mehta, D. S.

Miller, D. T.

J. Kim, E. Kim, D. T. Miller, and T. E. Milner, “Speckle reduction in OCT with multimode source fiber,” Proc. SPIE 5317, 246–250 (2004).
[CrossRef]

Miller, J.

W. O. Davis, R. Sprague, and J. Miller, “MEMS-based pico projector display,” in Optical MEMS and Nanophotonics, 2008 IEEE/LEOS International Conference (IEEE, 2008), pp. 31–32.

Milner, T. E.

J. Kim, E. Kim, D. T. Miller, and T. E. Milner, “Speckle reduction in OCT with multimode source fiber,” Proc. SPIE 5317, 246–250 (2004).
[CrossRef]

Minami, S.

B. Dingel, S. Kawata, and S. Minami, “Speckle reduction with virtual incoherent laser illumination using a modified fiber array,” Optik 94, 132–136 (1993).

Monteverde, V.

J. I. Trisnadi, C. B. Carlisle, and V. Monteverde, “Overview and applications of grating light valve TM based optical write engines for high-speed digital imaging,” Proc. SPIE 5348, 52–64 (2004).
[CrossRef]

Mossinghoff, M. J.

P. Borwein and M. J. Mossinghoff, “Barker sequences and flat polynomials,” in Number Theory PolynomialsLondon Mathematical Society Lecture Notes Series (Cambridge University, 2008), Vol. 352, pp. 71–88.

Nafarrate, A. B.

Naik, D. N.

Niesten, M.

R. Sprague, M. Champion, M. Brown, D. Brown, M. Freeman, and M. Niesten, “Mobile projectors using scanned beam displays,” in Mobile Displays, Technology and Applications, K. Bhowmik, Z. Li, and P. J. Bos, eds. (Wiley, 2008).

Norton, R. E.

Ohse, N.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T(2008).
[CrossRef]

Park, C.

S. K. Yun, J. Song, T. W. Lee, V. Yurlov, H. W. Park, C. Park, H. Kim, J. Yang, J. Cheong, and A. Lapchuk, “Spatial optical modulator (SOM): Samsung’s light modulator for the next generation laser display,” Proc. Soc. Inf. Disp. 29-1, 551–555 (2006).
[CrossRef]

Park, H. W.

S.-D. An, A. Lapchuk, V. Yurlov, J. H. Song, H. W. Park, J. W. Jang, W. C. Shin, S. Kargapoltsev, and S.-K. Yun, “Speckle suppression in laser display using several partially coherent beams,” Opt. Express 17, 92–103 (2009).
[CrossRef]

S. K. Yun, J. Song, T. W. Lee, V. Yurlov, H. W. Park, C. Park, H. Kim, J. Yang, J. Cheong, and A. Lapchuk, “Spatial optical modulator (SOM): Samsung’s light modulator for the next generation laser display,” Proc. Soc. Inf. Disp. 29-1, 551–555 (2006).
[CrossRef]

Pétursson, P. R.

Phalen, J. G.

M. W. Kowarz, J. C. Brazas, and J. G. Phalen, “Conformal grating electromechanical system (GEMS) for high-speed digital light modulation,” in Micro Electro Mechanical Systems, 2002: Fifteenth IEEE International Conference Digest (IEEE, 2002), pp. 568–573.

Rawson, E. G.

Redding, B.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[CrossRef]

Sarmani, A. R.

Sato, Y.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T(2008).
[CrossRef]

Satoh, H.

Seitz, W. L.

D. Kohler, W. L. Seitz, T. R. Loree, and S. D. Gardner, “Speckle reduction in pulsed-laser photographs,” Opt. Commun. 12, 24–28 (1974).
[CrossRef]

Sekiya, K.

Shi, A.

Shin, W. C.

Singh, R. K.

Song, J.

V. Yurlov, A. Lapchuk, S. Yun, J. Song, I. Yeo, H. Yang, and S. An, “Speckle suppression in scanning laser displays: aberration and defocusing of the projection system,” Appl. Opt. 48, 80–90 (2009).
[CrossRef]

S. K. Yun, J. Song, T. W. Lee, V. Yurlov, H. W. Park, C. Park, H. Kim, J. Yang, J. Cheong, and A. Lapchuk, “Spatial optical modulator (SOM): Samsung’s light modulator for the next generation laser display,” Proc. Soc. Inf. Disp. 29-1, 551–555 (2006).
[CrossRef]

Song, J. H.

Song, J-H.

Sprague, R.

W. O. Davis, R. Sprague, and J. Miller, “MEMS-based pico projector display,” in Optical MEMS and Nanophotonics, 2008 IEEE/LEOS International Conference (IEEE, 2008), pp. 31–32.

R. Sprague, M. Champion, M. Brown, D. Brown, M. Freeman, and M. Niesten, “Mobile projectors using scanned beam displays,” in Mobile Displays, Technology and Applications, K. Bhowmik, Z. Li, and P. J. Bos, eds. (Wiley, 2008).

Sun, M. J.

M. J. Sun and Z. K. Lu, “Speckle suppression with a rotating light pipe,” Opt. Eng. 49, 024202 (2010).
[CrossRef]

Suzuki, Y.

Takeda, M.

Tamamura, K.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T(2008).
[CrossRef]

Tomiyama, T.

Tong, W.

Tong, Z.

Trisnadi, J. I.

J. I. Trisnadi, “Hadamard speckle contrast reduction,” Opt. Lett. 29, 11–13 (2004).
[CrossRef]

J. I. Trisnadi, C. B. Carlisle, and V. Monteverde, “Overview and applications of grating light valve TM based optical write engines for high-speed digital imaging,” Proc. SPIE 5348, 52–64 (2004).
[CrossRef]

J. I. Trisnadi, “Method, apparatus and diffuser for reducing laser speckle,” U.S. patent 6,747,781 (8June2004).

Tschudi, T.

Uchid, T.

Urey, H.

Wakabayashi, K.

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T(2008).
[CrossRef]

Wang, L.

Wang, R.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Yang, H.

Yang, H.-S.

Yang, J.

S. K. Yun, J. Song, T. W. Lee, V. Yurlov, H. W. Park, C. Park, H. Kim, J. Yang, J. Cheong, and A. Lapchuk, “Spatial optical modulator (SOM): Samsung’s light modulator for the next generation laser display,” Proc. Soc. Inf. Disp. 29-1, 551–555 (2006).
[CrossRef]

Yeo, I.

Yun, S.

Yun, S. K.

S. K. Yun, J. Song, T. W. Lee, V. Yurlov, H. W. Park, C. Park, H. Kim, J. Yang, J. Cheong, and A. Lapchuk, “Spatial optical modulator (SOM): Samsung’s light modulator for the next generation laser display,” Proc. Soc. Inf. Disp. 29-1, 551–555 (2006).
[CrossRef]

Yun, S.-K.

Yurlov, V.

Zhang, Y.

Appl. Opt. (8)

J. Display Technol. (2)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Nat. Photonics (1)

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[CrossRef]

Opt. Commun. (1)

D. Kohler, W. L. Seitz, T. R. Loree, and S. D. Gardner, “Speckle reduction in pulsed-laser photographs,” Opt. Commun. 12, 24–28 (1974).
[CrossRef]

Opt. Eng. (1)

M. J. Sun and Z. K. Lu, “Speckle suppression with a rotating light pipe,” Opt. Eng. 49, 024202 (2010).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Optik (1)

B. Dingel, S. Kawata, and S. Minami, “Speckle reduction with virtual incoherent laser illumination using a modified fiber array,” Optik 94, 132–136 (1993).

Proc. Soc. Inf. Disp. (1)

S. K. Yun, J. Song, T. W. Lee, V. Yurlov, H. W. Park, C. Park, H. Kim, J. Yang, J. Cheong, and A. Lapchuk, “Spatial optical modulator (SOM): Samsung’s light modulator for the next generation laser display,” Proc. Soc. Inf. Disp. 29-1, 551–555 (2006).
[CrossRef]

Proc. SPIE (4)

J. I. Trisnadi, C. B. Carlisle, and V. Monteverde, “Overview and applications of grating light valve TM based optical write engines for high-speed digital imaging,” Proc. SPIE 5348, 52–64 (2004).
[CrossRef]

A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE 6911, 69110T(2008).
[CrossRef]

J. Kim, E. Kim, D. T. Miller, and T. E. Milner, “Speckle reduction in OCT with multimode source fiber,” Proc. SPIE 5317, 246–250 (2004).
[CrossRef]

P. Janssens and K. Malfait, “Future prospects of high-end laser projectors,” Proc. SPIE 7232, 7232–7234 (2009).
[CrossRef]

Other (9)

J. W. Goodman, Statistical Optics (Wiley, 2000).

P. Borwein and M. J. Mossinghoff, “Barker sequences and flat polynomials,” in Number Theory PolynomialsLondon Mathematical Society Lecture Notes Series (Cambridge University, 2008), Vol. 352, pp. 71–88.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

J. C. Dainty, Laser Speckle and Related Phenomena (Spinger-Verlag, 1975).

J. W. Goodman, Speckle Phenomena in Optics. Theory and Applications (Roberts, 2006).

M. W. Kowarz, J. C. Brazas, and J. G. Phalen, “Conformal grating electromechanical system (GEMS) for high-speed digital light modulation,” in Micro Electro Mechanical Systems, 2002: Fifteenth IEEE International Conference Digest (IEEE, 2002), pp. 568–573.

R. Sprague, M. Champion, M. Brown, D. Brown, M. Freeman, and M. Niesten, “Mobile projectors using scanned beam displays,” in Mobile Displays, Technology and Applications, K. Bhowmik, Z. Li, and P. J. Bos, eds. (Wiley, 2008).

W. O. Davis, R. Sprague, and J. Miller, “MEMS-based pico projector display,” in Optical MEMS and Nanophotonics, 2008 IEEE/LEOS International Conference (IEEE, 2008), pp. 31–32.

J. I. Trisnadi, “Method, apparatus and diffuser for reducing laser speckle,” U.S. patent 6,747,781 (8June2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Optical scheme of the laser projector with two Barker-code-type DOEs.

Fig. 2.
Fig. 2.

Cross section of the Barker code-type DOE and the corresponding Barker-code sequences.

Fig. 3.
Fig. 3.

Barker code-type DOE of length 7: (a) and the autocorrelation function A(x), (b) and A0(x), (c) for different values of N (not scaled).

Fig. 4.
Fig. 4.

Dependence of the speckle contrast (simulation results) on the ratio of the eye’s (photo camera) lateral resolution (on the distance of the eye to the screen—upper axis) to the DOE period calculated with different formulae. Solid line, exact formula. (a) N=7 and (b) N=13; S0 is the distance where D0=NT.

Fig. 5.
Fig. 5.

Dependence of the speckle-suppression coefficient kspy and the optical efficiency on the wavelength for different numerical apertures, NA1, of the objective lens of the projector.

Fig. 6.
Fig. 6.

Dependence of the autocorrelation function A(y) of the screen (along the y direction) on the wavelength (simulation results): NA/(λ/T)=5; N=13.

Fig. 7.
Fig. 7.

Dependence of the speckle-suppression coefficient kspy on NA (N=13) for blue, red, and green laser beams.

Fig. 8.
Fig. 8.

Dependence of the optical efficiency of the speckle-suppression method on the NA (N=13).

Fig. 9.
Fig. 9.

Dependence of the autocorrelation function A(y) on the NA: λ=0.53μm; N=13.

Fig. 10.
Fig. 10.

Dependence of the speckle-suppression coefficient kspx on the numerical aperture of the objective lens for laser beams of different colors.

Fig. 11.
Fig. 11.

Dependence of A0 on NA for λ=λgr=0.53μm.

Fig. 12.
Fig. 12.

A0(x) for different NA: λbl=0.40μm; N=13.

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

C=σII=I2I2I,
ksp=1/C.
ksp=kspλkspθksppol,
kspλ(πhΔλ/2)0.5/λ,
C=C0N,
Escr(x,y,t)=E0(x,y)H(xV1t)H(yV2t),
E(ξ,η,t)=D1E0λa2b2·r(x,y)H(x+V1t)H(y+V1t)exp(jk(x2+y2)/2a)sinc{2πD(abξ+x)}sinc{2πD(abη+y)}dxdy,
I(x,y)=1Δt0Δt0|E(x,y,t)|2dt=G0E020Δt0r(x1,y1)r*(x2,y2)Sinc[2πD(x+x1)]Sinc[2πD(x+x2)]Sinc[2πD(y+y1)]Sinc[2πD(y+y2)]ejkx12x22+y12y222aAd(x1,x2,y1y2)dx1dx2dy1dy2dt,
A2d(x1,x2,y1,y2)=1TV1Δt0H(x1V1t)H(x2V1t)H(y1V2t)H(y2V2t)dt=1Δt0V10NTH(x)H*(x+x2x1)H(xNM+y1MNx1)H(xN*M+y2MNx1)dx,
I(x,y)=G0E02RSinc2[2πD(x+x1)]Sinc2[2πD(y+y1)]A2d(x1,x1,y1,y1)dx1dy1=G0E02RSinc2[2πDx1]Sinc2[2πDy1]A2d(x1,x1,y1,y1)dx1dy1.
I2=E04G02F(x1,x2,x3,x4,y1,y2,y3,y4)A2d(x1,x2,y1,y2,)Sinc[2πDx1]Sinc[2πDx2]Sinc[2πDy1]Sinc[2πDy2]×A2d(x3,x4,y3,y4)Sinc[2πDx3]Sinc[2πDx4]Sinc[2πDy3]Sinc[2πDy4]ejkx12x22+x32x422aejky12y22+y32y422adx1dx2dx3dx4dy1dy2dy3dy4,
F(x1,x2,x3,x4,y1,y2,y3,y4)=r(x1,y1)r*(x2,y2)r(x3,y3)r*(x4,y4)=R2[δ(x1x2)δ(x3x4)(y1y2)δ(y3y4)+δ(x2x3)δ(x1x4)δ(y2y3)δ(y1y4)].
I2=In1+In2,
In1=R2E04G02δ(x1x2)δ(x3x4)A2d(x1,x2,y1,y2)A2d(x3,x4,y3,y4)Sinc[2πDx1]Sinc[2πDx2]Sinc[2πDx3]Sinc[2πDx4]ejkx12x22+x32x422a×Sinc[2πDy1]Sinc[2πDy2]Sinc[2πDy3]Sinc[2πDy4]ejky12y22+y32y422aδ(x1x2)δ(x3x4)dx1dx2dx3dx4dy1dy2dy3dy4=R2E04G02A2d(x1,x1,y1,y1)Sinc2[2πDx1][2πDy1]dx1dy1A2d(x3,x3,y3,y3)Sinc2[2πDx3]Sinc2Sinc3[2πDy3]dx3dy3=I2,
In2=R2E04G02A2d(x1,x2,y1,y2)A2d(x3,x4,y3,y4)Sinc[2πDx1]Sinc[2πDx2]Sinc[2πDy1]Sinc[2πDy2]Sinc[2πDx3]Sinc[2πDx4]Sinc[2πDy3]Sinc[2πDy4]ejkx12x22+x32x422aejky12y22+y32y422aδ(y2y3)δ(y1y4)δ(x2x3)δ(x1x4)dx1dx2dx3dx4dy1dy2dy3dx4=R2E04G02|A2d(x1,x2y1,y2)|2Sinc2[2πDx1]Sinc2[2πDx2]Sinc2[2πDy1]Sinc2[2πDy2]dx1dx2dy1dy2.
C=|A2d(x1,x2,y1,y2)|2Sinc2[2πDx1]Sinc2[2πDy1]Sinc2[2πDx2]Sinc2[2πDy2]dx1dx2dy2dy2(Sinc2[2πD(x1)]Sinc2[2πD(y1)]A(x1,x1,y1,y1)dx1dy1)2.
A2d(x1,x2,y1,y2)=1Δt0V10TH(xNM+y1NMx1)H(xNM+y2NMx1)k=0N1H(x+kT)H*(x+kT+x2x1)dx.
k=0N1H(x+k*T)H*(x+k*T+x2x1)=A0(x2x1+mod(x/T))A0(x2x1)=n=1NBiBi+k,
N=3Capr=0.21;Cer=0.18(M=1),Cex=0.16(2),Cex=0.15(5);N=7Capr=0.088;Cex=0.083(M=1),Cex=0.073(2),Cex=0.071(4);Cex=0.070(7);N=11Capr=0.055;Cex=0.053(M=1),Cex=0.047(2),Cex=0.044(7);Cex=0.044(11).
A2d(x1,x2,y1,y2)=A0(x2x1)N*TV10NTH(u+y1)H*(u+y2)du=CA0(x2-x1)A(y2y1),
C=|A0(x2x1)|2Sinc2[2πDx1]Sinc2[2πDx2]dx1dx2|A(y2y1)|2Sinc2[2πDy1]Sinc2[2πDy2]dy1dy2A0(0)A(0)Sinc2[2πD(x1)]Sinc2[2πD(y1)]dx1dy1.
C=|A0(u2)|2Sinc2[2πDu1]Sinc2[2πD(u1+u2)]du1du2|A(v2)|2Sinc2[2πDv1]Sinc2[2πD(u1+u2)]dv1dv2A0(0)A(0)Sinc2[2πD(x1)]Sinc2[2πD(y1)]dx1dy1,
C=Cx*Cy=122|A0(Du)A0(0)|2Q(u)du2|A(Dv)A(0)|2Q(v)dv,
Cx=2|A0(Du)A0(0)|2Q(u)du,
Cy=2|A(Dv)A(0)|2Q(v)dv.
Cx2=4-|A0(Du)|2Q(u)duA0(0)4i=-Q(iNT/D)-T/2DT/2Ddx+σ1=4TDi=-Q(iNT/D)+σ1,
Cy2=2|A(Dv)|2|A(0)|2Q(v)dv2i=Q(iNT/D)T/DT/D(1xD/T)2dx+σ2=4T3Di=Q(iNT/D)+σ2,
Cx24TDi=Q(iNT/D),
Cy24T3Di=Q(iNT/D).
Cx24TDQ(0)=23N0,
Cy2=8T3DQ(0)=49N0,
ksp=1/C;kspx=1/Cx;kspy=1/Cy.
Af/A(0)=Af0/A(0)+(1Af0/A(0))sin2(πλgr2λ).

Metrics