Abstract

Driving on an analogy with the technique of composite pulses in quantum physics, we theoretically propose a broadband Faraday rotator and thus a broadband optical isolator, which is composed of sequences of ordinary Faraday rotators and achromatic quarter-wave plates rotated at the predetermined angles.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Lord Rayleigh, “On the constant of magnetic rotation of light in bisulphide of carbon,” Phil. Trans. R. Soc. London 176, 343–366 (1885).
    [CrossRef]
  2. L. A. Ferreira, J. L. Santos, and F. Farahi, “Polarization-induced noise in a fiber-optic Michelson interferometer with Faraday rotator mirror elements,” Appl. Opt. 34, 6399–6402 (1995).
    [CrossRef]
  3. J. Berguet and N. Gisin, “Interferometer using 3×3 coupler and Faraday mirrors,” Opt. Lett. 20, 1447–1449 (1995).
    [CrossRef]
  4. C. Vinegoni, M. Wegmuller, B. Huttner, and N. Gisin, “All optical switching in a highly birefringent and a standard telecom fiber using a Faraday mirror stabilization scheme,” Opt. Commun. 182, 335–341 (2000).
    [CrossRef]
  5. S. Saito, K. Yokoyama, and Y. Fujii, “Light circulator using Faraday effect of heavy flint glass,” Proc. IEEE 52, 979–979 (1964).
    [CrossRef]
  6. E. H. Turner and R. H. Stolen, “Fiber Faraday circulator,” J. Opt. Soc. Am. 69, 1483–1483 (1979).
  7. E. H. Turner and R. H. Stolen, “Fiber Faraday circulator or isolator,” Opt. Lett. 6, 322–323 (1981).
    [CrossRef]
  8. S. Yamashite, K. Hotate, and M. Ito, “Polarization properties of a reflective fiber amplifier employing a circulator and a Faraday rotator mirror,” J. Lightwave Technol. 14, 385–390 (1996).
    [CrossRef]
  9. H. Iwamura, S. Hayashi, and H. Iwasaki, “A compact optical isolator using a Y3Fe5O12 crystal for near infra-red radiation,” Opt. Quantum Electron. 10, 393–398 (1978).
    [CrossRef]
  10. T. F. Johnston and W. Proffitt, “Design and performance of a broad-band optical diode to enforce one-direction traveling-wave operation of a ring laser,” IEEE J. Quantum Electron. 16, 483–488 (1980).
    [CrossRef]
  11. P. A. Schulz, “Wavelength independent Faraday isolator,” Appl. Opt. 28, 4458–4464 (1989).
    [CrossRef]
  12. P. A. Schulz, “Broadband Faraday isolator,” U.S. patent 5,052,786 (1October1991).
  13. V. A. Parfefov and V. A. Parfenov, “Broadband Faraday isolator for gravitational wave detectors” Classical Quantum Gravity 19, 1865–1870 (2002).
    [CrossRef]
  14. A. Ardavan, “Exploiting the Poincaré–Bloch symmetry to design high-fidelity broadband composite linear retarders,” New J. Phys. 9, 24 (2007).
    [CrossRef]
  15. S. S. Ivanov, A. A. Rangelov, N. V. Vitanov, T. Peters, and T. Halfmann, “Highly efficient broadband conversion of light polarization by composite retarders,” J. Opt. Soc. Am. A 29, 265–269 (2012).
    [CrossRef]
  16. H. Kuratsuji and S. Kakigi, “Maxwell–Schrödinger equation for polarized light and evolution of the Stokes parameters,” Phys. Rev. Lett. 80, 1888–1891 (1998).
    [CrossRef]
  17. H. Kuratsuji, R. Botet, and R. Seto, “Electromagnetic gyration,” Prog. Theor. Phys. 117, 195–217 (2007).
    [CrossRef]
  18. A. A. Rangelov, U. Gaubatz, and N. V. Vitanov, “Broadband adiabatic conversion of light polarization,” Opt. Commun. 283, 3891–3894 (2010).
    [CrossRef]
  19. R. Botet and H. Kuratsuji, “Light-polarization tunneling in optically active media,” J. Phys. A 41, 035301 (2008).
    [CrossRef]
  20. R. Botet and H. Kuratsuji, “Polarization of an electromagnetic wave in a randomly birefringent medium: a stochastic theory of the Stokes parameters,” Phys. Rev. E 81, 036602 (2010).
    [CrossRef]
  21. P. Hariharan and P. E. Ciddor, “Broadband optical isolator,” Opt. Laser Technol. 29, 83–84 (1997).
    [CrossRef]
  22. J. S. Kim and J. K. Chang, “Achromatic polarization rotator and circular polarizer consisting of two wave plates of the same material,” J. Korean Phys. Soc. 48, 51–55 (2006).
    [CrossRef]
  23. H. Hurvitz and R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31, 493–495 (1941).
    [CrossRef]
  24. A. B. Villaverde, D. A. Donatti, and D. G. Bozinis, “Terbium gallium garnet Verdet constant measurements with pulsed magnetic field,” J. Phys. C 11, L495–L498 (1978).
    [CrossRef]
  25. X. Chen, B. Lavorel, J. P. Boquillon, R. Saint-Loup, and M. Jannin, “Optical rotary power at the resonance of the terbium F76→D54 line in terbium gallium garnet,” Solid-State Electron. 42, 1765–1766 (1998).
    [CrossRef]
  26. H. Yoshida, K. Tsubakimoto, Y. Fujimoto, K. Mikami, H. Fujita, N. Miyanaga, H. Nozawa, H. Yagi, T. Yanigatani, Y. Nagata, and H. Kinoshita, “Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator,” Opt. Express 19, 15181–15187 (2011).
    [CrossRef]
  27. MolTech GmbH Faraday crystal TGG, http://www.mt-berlin.com/frames_cryst/descriptions/faraday.htm .
  28. L. Weller, K. S. Kleinbach, M. A. Zentile, S. Knappe, I. G. Hughes, and C. S. Adams, “An optical isolator using an atomic vapor in the hyperfine Paschen–Back regime,” Opt. Lett. 37, 3405–3407 (2012).
    [CrossRef]
  29. E. A. Khazanov, “Compensation of thermally induced polarisation distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999).
    [CrossRef]
  30. E. A. Khazanov, “A new Faraday rotator for high average power lasers,” Quantum Electron. 31, 351–356 (2001).
    [CrossRef]
  31. E. A. Khazanov, N. F. Andreev, A. Malshakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
    [CrossRef]
  32. R. V. Kiyan, A. A. Fotiadi, and O. V. Shakin, “A bidirectional ring fiber laser with 90° Faraday rotator as the nonreciprocal phase element. II. Experiment,” Tech. Phys. Lett. 29, 450–453 (2003).
    [CrossRef]
  33. X. S. Yao, L. Yan, and Y. Shi, “Highly repeatable all-solid-state polarization-state generator,” Opt. Lett. 30, 1324–1326 (2005).
    [CrossRef]
  34. Y. Zhang, C. Yang, S. Li, H. Yan, J. Yin, C. Gu, and G. Jin, “Complete polarization controller based on magneto-optic crystals and fixed quarter wave plates,” Opt. Express 14, 3484–3490 (2006).
    [CrossRef]
  35. ThorLabs isolators at 780 nm, http://thorlabs.com/newgrouppage9.cfm?objectgroup_id=4914 .
  36. Quantum Technology, Inc. antireflective coatings, http://www.quantumtech.com/apps/901.pdf .
  37. Tydex coatings, http://www.tydexoptics.com/pdf/Coatings.pdf .
  38. ThorLabs broadband optical isolators, http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6302 .
  39. Del Mar Photonics broadband optical isolators, http://www.dmphotonics.com/Faradays_broadband.htm .
  40. Newport broadband optical isolators, http://search.newport.com/?x2=sku q2=ISO-05-800-BB-P .
  41. M. H. Levitt and R. Freeman, “NMR population inversion using a composite pulse,” J. Magn. Reson. 33, 473–476 (1979).
    [CrossRef]
  42. M. H. Levitt, “Composite pulses,” Prog. Nucl. Magn. Reson. Spectrosc. 18, 61–122 (1986).
    [CrossRef]
  43. J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4, 383–387 (2005).
    [CrossRef]
  44. Z. Yu, F. Xu, X. Lin, X. Song, and X. Qian, “Tunable broadband isolator based on electro-optically induced linear gratings in a nonlinear photonic crystal,” Opt. Lett. 35, 3327–3329 (2010).
    [CrossRef]
  45. Z. Yu and S. Fan, “Optical isolation: a non-magnetic approach,” Nat. Photonics 5, 517–519 (2011).
    [CrossRef]
  46. M. S. Kang, A. Butsch, and P. St. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics 5, 549–553 (2011).
    [CrossRef]

2012 (2)

2011 (3)

H. Yoshida, K. Tsubakimoto, Y. Fujimoto, K. Mikami, H. Fujita, N. Miyanaga, H. Nozawa, H. Yagi, T. Yanigatani, Y. Nagata, and H. Kinoshita, “Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator,” Opt. Express 19, 15181–15187 (2011).
[CrossRef]

Z. Yu and S. Fan, “Optical isolation: a non-magnetic approach,” Nat. Photonics 5, 517–519 (2011).
[CrossRef]

M. S. Kang, A. Butsch, and P. St. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics 5, 549–553 (2011).
[CrossRef]

2010 (3)

Z. Yu, F. Xu, X. Lin, X. Song, and X. Qian, “Tunable broadband isolator based on electro-optically induced linear gratings in a nonlinear photonic crystal,” Opt. Lett. 35, 3327–3329 (2010).
[CrossRef]

A. A. Rangelov, U. Gaubatz, and N. V. Vitanov, “Broadband adiabatic conversion of light polarization,” Opt. Commun. 283, 3891–3894 (2010).
[CrossRef]

R. Botet and H. Kuratsuji, “Polarization of an electromagnetic wave in a randomly birefringent medium: a stochastic theory of the Stokes parameters,” Phys. Rev. E 81, 036602 (2010).
[CrossRef]

2008 (1)

R. Botet and H. Kuratsuji, “Light-polarization tunneling in optically active media,” J. Phys. A 41, 035301 (2008).
[CrossRef]

2007 (2)

A. Ardavan, “Exploiting the Poincaré–Bloch symmetry to design high-fidelity broadband composite linear retarders,” New J. Phys. 9, 24 (2007).
[CrossRef]

H. Kuratsuji, R. Botet, and R. Seto, “Electromagnetic gyration,” Prog. Theor. Phys. 117, 195–217 (2007).
[CrossRef]

2006 (2)

J. S. Kim and J. K. Chang, “Achromatic polarization rotator and circular polarizer consisting of two wave plates of the same material,” J. Korean Phys. Soc. 48, 51–55 (2006).
[CrossRef]

Y. Zhang, C. Yang, S. Li, H. Yan, J. Yin, C. Gu, and G. Jin, “Complete polarization controller based on magneto-optic crystals and fixed quarter wave plates,” Opt. Express 14, 3484–3490 (2006).
[CrossRef]

2005 (2)

X. S. Yao, L. Yan, and Y. Shi, “Highly repeatable all-solid-state polarization-state generator,” Opt. Lett. 30, 1324–1326 (2005).
[CrossRef]

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4, 383–387 (2005).
[CrossRef]

2004 (1)

E. A. Khazanov, N. F. Andreev, A. Malshakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

2003 (1)

R. V. Kiyan, A. A. Fotiadi, and O. V. Shakin, “A bidirectional ring fiber laser with 90° Faraday rotator as the nonreciprocal phase element. II. Experiment,” Tech. Phys. Lett. 29, 450–453 (2003).
[CrossRef]

2002 (1)

V. A. Parfefov and V. A. Parfenov, “Broadband Faraday isolator for gravitational wave detectors” Classical Quantum Gravity 19, 1865–1870 (2002).
[CrossRef]

2001 (1)

E. A. Khazanov, “A new Faraday rotator for high average power lasers,” Quantum Electron. 31, 351–356 (2001).
[CrossRef]

2000 (1)

C. Vinegoni, M. Wegmuller, B. Huttner, and N. Gisin, “All optical switching in a highly birefringent and a standard telecom fiber using a Faraday mirror stabilization scheme,” Opt. Commun. 182, 335–341 (2000).
[CrossRef]

1999 (1)

E. A. Khazanov, “Compensation of thermally induced polarisation distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999).
[CrossRef]

1998 (2)

X. Chen, B. Lavorel, J. P. Boquillon, R. Saint-Loup, and M. Jannin, “Optical rotary power at the resonance of the terbium F76→D54 line in terbium gallium garnet,” Solid-State Electron. 42, 1765–1766 (1998).
[CrossRef]

H. Kuratsuji and S. Kakigi, “Maxwell–Schrödinger equation for polarized light and evolution of the Stokes parameters,” Phys. Rev. Lett. 80, 1888–1891 (1998).
[CrossRef]

1997 (1)

P. Hariharan and P. E. Ciddor, “Broadband optical isolator,” Opt. Laser Technol. 29, 83–84 (1997).
[CrossRef]

1996 (1)

S. Yamashite, K. Hotate, and M. Ito, “Polarization properties of a reflective fiber amplifier employing a circulator and a Faraday rotator mirror,” J. Lightwave Technol. 14, 385–390 (1996).
[CrossRef]

1995 (2)

1989 (1)

1986 (1)

M. H. Levitt, “Composite pulses,” Prog. Nucl. Magn. Reson. Spectrosc. 18, 61–122 (1986).
[CrossRef]

1981 (1)

1980 (1)

T. F. Johnston and W. Proffitt, “Design and performance of a broad-band optical diode to enforce one-direction traveling-wave operation of a ring laser,” IEEE J. Quantum Electron. 16, 483–488 (1980).
[CrossRef]

1979 (2)

E. H. Turner and R. H. Stolen, “Fiber Faraday circulator,” J. Opt. Soc. Am. 69, 1483–1483 (1979).

M. H. Levitt and R. Freeman, “NMR population inversion using a composite pulse,” J. Magn. Reson. 33, 473–476 (1979).
[CrossRef]

1978 (2)

H. Iwamura, S. Hayashi, and H. Iwasaki, “A compact optical isolator using a Y3Fe5O12 crystal for near infra-red radiation,” Opt. Quantum Electron. 10, 393–398 (1978).
[CrossRef]

A. B. Villaverde, D. A. Donatti, and D. G. Bozinis, “Terbium gallium garnet Verdet constant measurements with pulsed magnetic field,” J. Phys. C 11, L495–L498 (1978).
[CrossRef]

1964 (1)

S. Saito, K. Yokoyama, and Y. Fujii, “Light circulator using Faraday effect of heavy flint glass,” Proc. IEEE 52, 979–979 (1964).
[CrossRef]

1941 (1)

1885 (1)

Lord Rayleigh, “On the constant of magnetic rotation of light in bisulphide of carbon,” Phil. Trans. R. Soc. London 176, 343–366 (1885).
[CrossRef]

Adams, C. S.

Amin, R.

E. A. Khazanov, N. F. Andreev, A. Malshakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

Andreev, N. F.

E. A. Khazanov, N. F. Andreev, A. Malshakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

Ardavan, A.

A. Ardavan, “Exploiting the Poincaré–Bloch symmetry to design high-fidelity broadband composite linear retarders,” New J. Phys. 9, 24 (2007).
[CrossRef]

Berguet, J.

Boquillon, J. P.

X. Chen, B. Lavorel, J. P. Boquillon, R. Saint-Loup, and M. Jannin, “Optical rotary power at the resonance of the terbium F76→D54 line in terbium gallium garnet,” Solid-State Electron. 42, 1765–1766 (1998).
[CrossRef]

Botet, R.

R. Botet and H. Kuratsuji, “Polarization of an electromagnetic wave in a randomly birefringent medium: a stochastic theory of the Stokes parameters,” Phys. Rev. E 81, 036602 (2010).
[CrossRef]

R. Botet and H. Kuratsuji, “Light-polarization tunneling in optically active media,” J. Phys. A 41, 035301 (2008).
[CrossRef]

H. Kuratsuji, R. Botet, and R. Seto, “Electromagnetic gyration,” Prog. Theor. Phys. 117, 195–217 (2007).
[CrossRef]

Bozinis, D. G.

A. B. Villaverde, D. A. Donatti, and D. G. Bozinis, “Terbium gallium garnet Verdet constant measurements with pulsed magnetic field,” J. Phys. C 11, L495–L498 (1978).
[CrossRef]

Butsch, A.

M. S. Kang, A. Butsch, and P. St. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics 5, 549–553 (2011).
[CrossRef]

Chang, J. K.

J. S. Kim and J. K. Chang, “Achromatic polarization rotator and circular polarizer consisting of two wave plates of the same material,” J. Korean Phys. Soc. 48, 51–55 (2006).
[CrossRef]

Chen, X.

X. Chen, B. Lavorel, J. P. Boquillon, R. Saint-Loup, and M. Jannin, “Optical rotary power at the resonance of the terbium F76→D54 line in terbium gallium garnet,” Solid-State Electron. 42, 1765–1766 (1998).
[CrossRef]

Ciddor, P. E.

P. Hariharan and P. E. Ciddor, “Broadband optical isolator,” Opt. Laser Technol. 29, 83–84 (1997).
[CrossRef]

Donatti, D. A.

A. B. Villaverde, D. A. Donatti, and D. G. Bozinis, “Terbium gallium garnet Verdet constant measurements with pulsed magnetic field,” J. Phys. C 11, L495–L498 (1978).
[CrossRef]

Fan, S.

Z. Yu and S. Fan, “Optical isolation: a non-magnetic approach,” Nat. Photonics 5, 517–519 (2011).
[CrossRef]

Farahi, F.

Ferreira, L. A.

Fotiadi, A. A.

R. V. Kiyan, A. A. Fotiadi, and O. V. Shakin, “A bidirectional ring fiber laser with 90° Faraday rotator as the nonreciprocal phase element. II. Experiment,” Tech. Phys. Lett. 29, 450–453 (2003).
[CrossRef]

Freeman, R.

M. H. Levitt and R. Freeman, “NMR population inversion using a composite pulse,” J. Magn. Reson. 33, 473–476 (1979).
[CrossRef]

Fujii, Y.

S. Saito, K. Yokoyama, and Y. Fujii, “Light circulator using Faraday effect of heavy flint glass,” Proc. IEEE 52, 979–979 (1964).
[CrossRef]

Fujimoto, Y.

Fujita, H.

Gaubatz, U.

A. A. Rangelov, U. Gaubatz, and N. V. Vitanov, “Broadband adiabatic conversion of light polarization,” Opt. Commun. 283, 3891–3894 (2010).
[CrossRef]

Gisin, N.

C. Vinegoni, M. Wegmuller, B. Huttner, and N. Gisin, “All optical switching in a highly birefringent and a standard telecom fiber using a Faraday mirror stabilization scheme,” Opt. Commun. 182, 335–341 (2000).
[CrossRef]

J. Berguet and N. Gisin, “Interferometer using 3×3 coupler and Faraday mirrors,” Opt. Lett. 20, 1447–1449 (1995).
[CrossRef]

Gu, C.

Halfmann, T.

Hariharan, P.

P. Hariharan and P. E. Ciddor, “Broadband optical isolator,” Opt. Laser Technol. 29, 83–84 (1997).
[CrossRef]

Hayashi, S.

H. Iwamura, S. Hayashi, and H. Iwasaki, “A compact optical isolator using a Y3Fe5O12 crystal for near infra-red radiation,” Opt. Quantum Electron. 10, 393–398 (1978).
[CrossRef]

Hotate, K.

S. Yamashite, K. Hotate, and M. Ito, “Polarization properties of a reflective fiber amplifier employing a circulator and a Faraday rotator mirror,” J. Lightwave Technol. 14, 385–390 (1996).
[CrossRef]

Hughes, I. G.

Hurvitz, H.

Huttner, B.

C. Vinegoni, M. Wegmuller, B. Huttner, and N. Gisin, “All optical switching in a highly birefringent and a standard telecom fiber using a Faraday mirror stabilization scheme,” Opt. Commun. 182, 335–341 (2000).
[CrossRef]

Hwang, J.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4, 383–387 (2005).
[CrossRef]

Ishikawa, K.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4, 383–387 (2005).
[CrossRef]

Ito, M.

S. Yamashite, K. Hotate, and M. Ito, “Polarization properties of a reflective fiber amplifier employing a circulator and a Faraday rotator mirror,” J. Lightwave Technol. 14, 385–390 (1996).
[CrossRef]

Ivanov, I. A.

E. A. Khazanov, N. F. Andreev, A. Malshakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

Ivanov, S. S.

Iwamura, H.

H. Iwamura, S. Hayashi, and H. Iwasaki, “A compact optical isolator using a Y3Fe5O12 crystal for near infra-red radiation,” Opt. Quantum Electron. 10, 393–398 (1978).
[CrossRef]

Iwasaki, H.

H. Iwamura, S. Hayashi, and H. Iwasaki, “A compact optical isolator using a Y3Fe5O12 crystal for near infra-red radiation,” Opt. Quantum Electron. 10, 393–398 (1978).
[CrossRef]

Jannin, M.

X. Chen, B. Lavorel, J. P. Boquillon, R. Saint-Loup, and M. Jannin, “Optical rotary power at the resonance of the terbium F76→D54 line in terbium gallium garnet,” Solid-State Electron. 42, 1765–1766 (1998).
[CrossRef]

Jin, G.

Johnston, T. F.

T. F. Johnston and W. Proffitt, “Design and performance of a broad-band optical diode to enforce one-direction traveling-wave operation of a ring laser,” IEEE J. Quantum Electron. 16, 483–488 (1980).
[CrossRef]

Jones, R. C.

Kakigi, S.

H. Kuratsuji and S. Kakigi, “Maxwell–Schrödinger equation for polarized light and evolution of the Stokes parameters,” Phys. Rev. Lett. 80, 1888–1891 (1998).
[CrossRef]

Kang, M. S.

M. S. Kang, A. Butsch, and P. St. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics 5, 549–553 (2011).
[CrossRef]

Khazanov, E. A.

E. A. Khazanov, N. F. Andreev, A. Malshakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

E. A. Khazanov, “A new Faraday rotator for high average power lasers,” Quantum Electron. 31, 351–356 (2001).
[CrossRef]

E. A. Khazanov, “Compensation of thermally induced polarisation distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999).
[CrossRef]

Kim, J. S.

J. S. Kim and J. K. Chang, “Achromatic polarization rotator and circular polarizer consisting of two wave plates of the same material,” J. Korean Phys. Soc. 48, 51–55 (2006).
[CrossRef]

Kinoshita, H.

Kiyan, R. V.

R. V. Kiyan, A. A. Fotiadi, and O. V. Shakin, “A bidirectional ring fiber laser with 90° Faraday rotator as the nonreciprocal phase element. II. Experiment,” Tech. Phys. Lett. 29, 450–453 (2003).
[CrossRef]

Kleinbach, K. S.

Knappe, S.

Kuratsuji, H.

R. Botet and H. Kuratsuji, “Polarization of an electromagnetic wave in a randomly birefringent medium: a stochastic theory of the Stokes parameters,” Phys. Rev. E 81, 036602 (2010).
[CrossRef]

R. Botet and H. Kuratsuji, “Light-polarization tunneling in optically active media,” J. Phys. A 41, 035301 (2008).
[CrossRef]

H. Kuratsuji, R. Botet, and R. Seto, “Electromagnetic gyration,” Prog. Theor. Phys. 117, 195–217 (2007).
[CrossRef]

H. Kuratsuji and S. Kakigi, “Maxwell–Schrödinger equation for polarized light and evolution of the Stokes parameters,” Phys. Rev. Lett. 80, 1888–1891 (1998).
[CrossRef]

Lavorel, B.

X. Chen, B. Lavorel, J. P. Boquillon, R. Saint-Loup, and M. Jannin, “Optical rotary power at the resonance of the terbium F76→D54 line in terbium gallium garnet,” Solid-State Electron. 42, 1765–1766 (1998).
[CrossRef]

Levitt, M. H.

M. H. Levitt, “Composite pulses,” Prog. Nucl. Magn. Reson. Spectrosc. 18, 61–122 (1986).
[CrossRef]

M. H. Levitt and R. Freeman, “NMR population inversion using a composite pulse,” J. Magn. Reson. 33, 473–476 (1979).
[CrossRef]

Li, S.

Lin, X.

Malshakov, A.

E. A. Khazanov, N. F. Andreev, A. Malshakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

Mikami, K.

Miyanaga, N.

Mueller, G.

E. A. Khazanov, N. F. Andreev, A. Malshakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

Nagata, Y.

Nishimura, S.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4, 383–387 (2005).
[CrossRef]

Nozawa, H.

Palashov, O.

E. A. Khazanov, N. F. Andreev, A. Malshakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

Parfefov, V. A.

V. A. Parfefov and V. A. Parfenov, “Broadband Faraday isolator for gravitational wave detectors” Classical Quantum Gravity 19, 1865–1870 (2002).
[CrossRef]

Parfenov, V. A.

V. A. Parfefov and V. A. Parfenov, “Broadband Faraday isolator for gravitational wave detectors” Classical Quantum Gravity 19, 1865–1870 (2002).
[CrossRef]

Park, B.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4, 383–387 (2005).
[CrossRef]

Peters, T.

Poteomkin, A. K.

E. A. Khazanov, N. F. Andreev, A. Malshakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

Proffitt, W.

T. F. Johnston and W. Proffitt, “Design and performance of a broad-band optical diode to enforce one-direction traveling-wave operation of a ring laser,” IEEE J. Quantum Electron. 16, 483–488 (1980).
[CrossRef]

Qian, X.

Rangelov, A. A.

Rayleigh, Lord

Lord Rayleigh, “On the constant of magnetic rotation of light in bisulphide of carbon,” Phil. Trans. R. Soc. London 176, 343–366 (1885).
[CrossRef]

Reitze, D. H.

E. A. Khazanov, N. F. Andreev, A. Malshakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

Russell, P. St. J.

M. S. Kang, A. Butsch, and P. St. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics 5, 549–553 (2011).
[CrossRef]

Saint-Loup, R.

X. Chen, B. Lavorel, J. P. Boquillon, R. Saint-Loup, and M. Jannin, “Optical rotary power at the resonance of the terbium F76→D54 line in terbium gallium garnet,” Solid-State Electron. 42, 1765–1766 (1998).
[CrossRef]

Saito, S.

S. Saito, K. Yokoyama, and Y. Fujii, “Light circulator using Faraday effect of heavy flint glass,” Proc. IEEE 52, 979–979 (1964).
[CrossRef]

Santos, J. L.

Schulz, P. A.

P. A. Schulz, “Wavelength independent Faraday isolator,” Appl. Opt. 28, 4458–4464 (1989).
[CrossRef]

P. A. Schulz, “Broadband Faraday isolator,” U.S. patent 5,052,786 (1October1991).

Sergeev, A.

E. A. Khazanov, N. F. Andreev, A. Malshakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

Seto, R.

H. Kuratsuji, R. Botet, and R. Seto, “Electromagnetic gyration,” Prog. Theor. Phys. 117, 195–217 (2007).
[CrossRef]

Shakin, O. V.

R. V. Kiyan, A. A. Fotiadi, and O. V. Shakin, “A bidirectional ring fiber laser with 90° Faraday rotator as the nonreciprocal phase element. II. Experiment,” Tech. Phys. Lett. 29, 450–453 (2003).
[CrossRef]

Shaykin, A. A.

E. A. Khazanov, N. F. Andreev, A. Malshakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

Shi, Y.

Song, M. H.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4, 383–387 (2005).
[CrossRef]

Song, X.

Stolen, R. H.

E. H. Turner and R. H. Stolen, “Fiber Faraday circulator or isolator,” Opt. Lett. 6, 322–323 (1981).
[CrossRef]

E. H. Turner and R. H. Stolen, “Fiber Faraday circulator,” J. Opt. Soc. Am. 69, 1483–1483 (1979).

Takanishi, Y.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4, 383–387 (2005).
[CrossRef]

Takezoe, H.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4, 383–387 (2005).
[CrossRef]

Tanner, D. B.

E. A. Khazanov, N. F. Andreev, A. Malshakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

Toyooka, T.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4, 383–387 (2005).
[CrossRef]

Tsubakimoto, K.

Turner, E. H.

E. H. Turner and R. H. Stolen, “Fiber Faraday circulator or isolator,” Opt. Lett. 6, 322–323 (1981).
[CrossRef]

E. H. Turner and R. H. Stolen, “Fiber Faraday circulator,” J. Opt. Soc. Am. 69, 1483–1483 (1979).

Villaverde, A. B.

A. B. Villaverde, D. A. Donatti, and D. G. Bozinis, “Terbium gallium garnet Verdet constant measurements with pulsed magnetic field,” J. Phys. C 11, L495–L498 (1978).
[CrossRef]

Vinegoni, C.

C. Vinegoni, M. Wegmuller, B. Huttner, and N. Gisin, “All optical switching in a highly birefringent and a standard telecom fiber using a Faraday mirror stabilization scheme,” Opt. Commun. 182, 335–341 (2000).
[CrossRef]

Vitanov, N. V.

Wegmuller, M.

C. Vinegoni, M. Wegmuller, B. Huttner, and N. Gisin, “All optical switching in a highly birefringent and a standard telecom fiber using a Faraday mirror stabilization scheme,” Opt. Commun. 182, 335–341 (2000).
[CrossRef]

Weller, L.

Wu, J. W.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4, 383–387 (2005).
[CrossRef]

Xu, F.

Yagi, H.

Yamashite, S.

S. Yamashite, K. Hotate, and M. Ito, “Polarization properties of a reflective fiber amplifier employing a circulator and a Faraday rotator mirror,” J. Lightwave Technol. 14, 385–390 (1996).
[CrossRef]

Yan, H.

Yan, L.

Yang, C.

Yanigatani, T.

Yao, X. S.

Yin, J.

Yokoyama, K.

S. Saito, K. Yokoyama, and Y. Fujii, “Light circulator using Faraday effect of heavy flint glass,” Proc. IEEE 52, 979–979 (1964).
[CrossRef]

Yoshida, H.

Yu, Z.

Zelenogorsky, V.

E. A. Khazanov, N. F. Andreev, A. Malshakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

Zentile, M. A.

Zhang, Y.

Appl. Opt. (2)

Classical Quantum Gravity (1)

V. A. Parfefov and V. A. Parfenov, “Broadband Faraday isolator for gravitational wave detectors” Classical Quantum Gravity 19, 1865–1870 (2002).
[CrossRef]

IEEE J. Quantum Electron. (2)

E. A. Khazanov, N. F. Andreev, A. Malshakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

T. F. Johnston and W. Proffitt, “Design and performance of a broad-band optical diode to enforce one-direction traveling-wave operation of a ring laser,” IEEE J. Quantum Electron. 16, 483–488 (1980).
[CrossRef]

J. Korean Phys. Soc. (1)

J. S. Kim and J. K. Chang, “Achromatic polarization rotator and circular polarizer consisting of two wave plates of the same material,” J. Korean Phys. Soc. 48, 51–55 (2006).
[CrossRef]

J. Lightwave Technol. (1)

S. Yamashite, K. Hotate, and M. Ito, “Polarization properties of a reflective fiber amplifier employing a circulator and a Faraday rotator mirror,” J. Lightwave Technol. 14, 385–390 (1996).
[CrossRef]

J. Magn. Reson. (1)

M. H. Levitt and R. Freeman, “NMR population inversion using a composite pulse,” J. Magn. Reson. 33, 473–476 (1979).
[CrossRef]

J. Opt. Soc. Am. (2)

E. H. Turner and R. H. Stolen, “Fiber Faraday circulator,” J. Opt. Soc. Am. 69, 1483–1483 (1979).

H. Hurvitz and R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31, 493–495 (1941).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. A (1)

R. Botet and H. Kuratsuji, “Light-polarization tunneling in optically active media,” J. Phys. A 41, 035301 (2008).
[CrossRef]

J. Phys. C (1)

A. B. Villaverde, D. A. Donatti, and D. G. Bozinis, “Terbium gallium garnet Verdet constant measurements with pulsed magnetic field,” J. Phys. C 11, L495–L498 (1978).
[CrossRef]

Nat. Mater. (1)

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4, 383–387 (2005).
[CrossRef]

Nat. Photonics (2)

Z. Yu and S. Fan, “Optical isolation: a non-magnetic approach,” Nat. Photonics 5, 517–519 (2011).
[CrossRef]

M. S. Kang, A. Butsch, and P. St. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics 5, 549–553 (2011).
[CrossRef]

New J. Phys. (1)

A. Ardavan, “Exploiting the Poincaré–Bloch symmetry to design high-fidelity broadband composite linear retarders,” New J. Phys. 9, 24 (2007).
[CrossRef]

Opt. Commun. (2)

A. A. Rangelov, U. Gaubatz, and N. V. Vitanov, “Broadband adiabatic conversion of light polarization,” Opt. Commun. 283, 3891–3894 (2010).
[CrossRef]

C. Vinegoni, M. Wegmuller, B. Huttner, and N. Gisin, “All optical switching in a highly birefringent and a standard telecom fiber using a Faraday mirror stabilization scheme,” Opt. Commun. 182, 335–341 (2000).
[CrossRef]

Opt. Express (2)

Opt. Laser Technol. (1)

P. Hariharan and P. E. Ciddor, “Broadband optical isolator,” Opt. Laser Technol. 29, 83–84 (1997).
[CrossRef]

Opt. Lett. (5)

Opt. Quantum Electron. (1)

H. Iwamura, S. Hayashi, and H. Iwasaki, “A compact optical isolator using a Y3Fe5O12 crystal for near infra-red radiation,” Opt. Quantum Electron. 10, 393–398 (1978).
[CrossRef]

Phil. Trans. R. Soc. London (1)

Lord Rayleigh, “On the constant of magnetic rotation of light in bisulphide of carbon,” Phil. Trans. R. Soc. London 176, 343–366 (1885).
[CrossRef]

Phys. Rev. E (1)

R. Botet and H. Kuratsuji, “Polarization of an electromagnetic wave in a randomly birefringent medium: a stochastic theory of the Stokes parameters,” Phys. Rev. E 81, 036602 (2010).
[CrossRef]

Phys. Rev. Lett. (1)

H. Kuratsuji and S. Kakigi, “Maxwell–Schrödinger equation for polarized light and evolution of the Stokes parameters,” Phys. Rev. Lett. 80, 1888–1891 (1998).
[CrossRef]

Proc. IEEE (1)

S. Saito, K. Yokoyama, and Y. Fujii, “Light circulator using Faraday effect of heavy flint glass,” Proc. IEEE 52, 979–979 (1964).
[CrossRef]

Prog. Nucl. Magn. Reson. Spectrosc. (1)

M. H. Levitt, “Composite pulses,” Prog. Nucl. Magn. Reson. Spectrosc. 18, 61–122 (1986).
[CrossRef]

Prog. Theor. Phys. (1)

H. Kuratsuji, R. Botet, and R. Seto, “Electromagnetic gyration,” Prog. Theor. Phys. 117, 195–217 (2007).
[CrossRef]

Quantum Electron. (2)

E. A. Khazanov, “Compensation of thermally induced polarisation distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999).
[CrossRef]

E. A. Khazanov, “A new Faraday rotator for high average power lasers,” Quantum Electron. 31, 351–356 (2001).
[CrossRef]

Solid-State Electron. (1)

X. Chen, B. Lavorel, J. P. Boquillon, R. Saint-Loup, and M. Jannin, “Optical rotary power at the resonance of the terbium F76→D54 line in terbium gallium garnet,” Solid-State Electron. 42, 1765–1766 (1998).
[CrossRef]

Tech. Phys. Lett. (1)

R. V. Kiyan, A. A. Fotiadi, and O. V. Shakin, “A bidirectional ring fiber laser with 90° Faraday rotator as the nonreciprocal phase element. II. Experiment,” Tech. Phys. Lett. 29, 450–453 (2003).
[CrossRef]

Other (8)

MolTech GmbH Faraday crystal TGG, http://www.mt-berlin.com/frames_cryst/descriptions/faraday.htm .

P. A. Schulz, “Broadband Faraday isolator,” U.S. patent 5,052,786 (1October1991).

ThorLabs isolators at 780 nm, http://thorlabs.com/newgrouppage9.cfm?objectgroup_id=4914 .

Quantum Technology, Inc. antireflective coatings, http://www.quantumtech.com/apps/901.pdf .

Tydex coatings, http://www.tydexoptics.com/pdf/Coatings.pdf .

ThorLabs broadband optical isolators, http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6302 .

Del Mar Photonics broadband optical isolators, http://www.dmphotonics.com/Faradays_broadband.htm .

Newport broadband optical isolators, http://search.newport.com/?x2=sku q2=ISO-05-800-BB-P .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic picture of the standard Faraday isolator.

Fig. 2.
Fig. 2.

Composite sequence for N=3 given by Eq. (17), with quarter-wave plates (blue) and Faraday rotators (red) of rotation angles θk (k=1, 2, 3). Polarizers are rotated at 45° with respect to each other.

Fig. 3.
Fig. 3.

Transmission and isolation properties of the composite Faraday isolators as compared to the isolator based on a single rotator (black curve), versus the Faraday rotation angle. The numbers on the curves refer to the sequences of 3 (red curves marked with no. 3) [Eq. (17)], 4 (green curves marked with no. 4) [Eq. (16)], and 5 (blue curves marked with no. 5) [Eq. (18)] elements.

Fig. 4.
Fig. 4.

Same as Fig. 3 but versus the wavelength for narrowband 45° and 90° Faraday rotators tuned to 780 nm.

Tables (1)

Tables Icon

Table 1. Rotation Angles (αk, βk) (in Degrees) for a Broadband Faraday Rotator with N=3 [Eq. (17)], 4 [Eq. (16)], and 5 [Eq. (18)] Constituent Elements

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

R(θ)=[cosθsinθsinθcosθ].
J(α)=[eiα00eiα].
θ(λ)=ν(λ)BL,
ν(λ)=Kλ02λ2,
Jθ(α,β)=R(β)J(π/4)R(β)R(θ)R(α)J(π/4)R(α)
J¯θ(α,β)=R(α)J1(π/4)R(α)R(θ)R(β)J1(π/4)R(β).
W=12[11ii].
Jθ(α,β)=[iei(αβ)sin(θα+β)iei(α+β)cos(θα+β)iei(α+β)cos(θα+β)iei(αβ)sin(θα+β)],
J¯θ(α,β)=[iei(αβ)sin(θ+αβ)iei(α+β)cos(θ+αβ)iei(α+β)cos(θ+αβ)iei(αβ)sin(θ+αβ)]
Jf(N)=JθN(αN,βN)JθN1(αN1,βN1)×Jθ2(α2,β2)Jθ1(α1,β1)
Jb(N)=J¯θ1(α1,β1)J¯θ2(α2,β2)×J¯θN1(αN1,βN1)J¯θN(αN,βN)
Jk(N)(θ)=Jk(N)(θ0)+(θθ0)1!θJk(N)(θ0)++(θθ0)nn!nθnJk(N)(θ0),
kθkJf(N)(θ0)=0andkθkJb(N)(θ0)=0fork=1,2,,N12.
Tf=Iforw/I0=|PDJf(N)PV|in|2,
Tb=Iback/I0=|PVJb(N)PD|in|2,
D=10log[TbTf].
J0=12[1i001+i]
Jf(N)=Jπ/4(α4,β4)Jπ/4(α3,β3)×Jπ/4(α2,β2)Jπ/4(α1,β1).
Jf(N)=Jπ/4(α3,β3)Jπ/2(α2,β2)Jπ/4(α1,β1).
Jf(N)=Jπ/4(α5,β5)Jπ/2(α4,β4)Jπ/2(α3,β3)Jπ/2(α2,β2)Jπ/4(α1,β1).

Metrics