Abstract

One kind of optical element combining Fresnel lens with microlens array is designed simply for LED lighting based on geometrical optics and nonimaging optics. This design method imposes no restriction on the source intensity pattern. The designed element has compact construction and can produce multiple shapes of illumination distribution. Taking square lighting as an example, tolerance analysis is carried out to determine tolerance limits for applying the element in the assembly process. This element can produce on-axis lighting and off-axis lighting.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Gordon and A. Rabl, “Reflectors for uniform far-field irradiance: fundamental limits and example of an axisymmetric solution,” Appl. Opt. 37, 44–47 (1998).
    [CrossRef]
  2. J. C. Miuiano, “Design of three-dimensional nonimaging concentrators with inhomogeneous media,” J. Opt. Soc. Am. A 3, 1345–1353 (1986).
    [CrossRef]
  3. J. C. Miñano, P. Benítez, W. Lin, J. Infante, F. Muñoz, and A. Santamaría, “An application of the SMS method for imaging designs,” Opt. Express 17, 24036–24044 (2009).
    [CrossRef]
  4. G. Wang, L. Wang, L. Li, D. Wang, and Y. Zhang, “Secondary optical lens designed in the method of source-target mapping,” Appl. Opt. 50, 4031–4036 (2011).
    [CrossRef]
  5. F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation using source-target maps,” Opt. Express 18, 5295–5304 (2010).
    [CrossRef]
  6. B. A. Jacobson and R. D. Gengelbach, “Lens for uniform LED illumination: an example of automated optimization using Monte Carlo ray-tracing of an LED source,” Proc. SPIE 4446, 121–128 (2001).
    [CrossRef]
  7. R. J. Koshel, “Simplex optimization method for illumination design,” Opt. Lett. 30, 649–651 (2005).
    [CrossRef]
  8. R. A. Hicks, “Designing a mirror to realize a given projection,” J. Opt. Soc. Am. A 22, 323–330 (2005).
    [CrossRef]
  9. H. Ries, “Tailored freeform optical surfaces,” J. Opt. Soc. Am. A 19, 590–595 (2002).
    [CrossRef]
  10. A. Pawlak and K. Zaremba, “Reflector luminaire with high power light-emitting diodes for general lighting,” Appl. Opt. 47, 467–473 (2008).
    [CrossRef]
  11. G. Wang, L. Wang, F. Li, and G. Zhang, “Collimating lens for light-emitting-diode light source based on non-imaging optics,” Appl. Opt. 51, 1654–1659 (2012).
    [CrossRef]

2012

2011

2010

2009

2008

2005

2002

2001

B. A. Jacobson and R. D. Gengelbach, “Lens for uniform LED illumination: an example of automated optimization using Monte Carlo ray-tracing of an LED source,” Proc. SPIE 4446, 121–128 (2001).
[CrossRef]

1998

1986

Benítez, P.

Cassarly, W. J.

Fournier, F. R.

Gengelbach, R. D.

B. A. Jacobson and R. D. Gengelbach, “Lens for uniform LED illumination: an example of automated optimization using Monte Carlo ray-tracing of an LED source,” Proc. SPIE 4446, 121–128 (2001).
[CrossRef]

Gordon, J. M.

Hicks, R. A.

Infante, J.

Jacobson, B. A.

B. A. Jacobson and R. D. Gengelbach, “Lens for uniform LED illumination: an example of automated optimization using Monte Carlo ray-tracing of an LED source,” Proc. SPIE 4446, 121–128 (2001).
[CrossRef]

Koshel, R. J.

Li, F.

Li, L.

Lin, W.

Miñano, J. C.

Miuiano, J. C.

Muñoz, F.

Pawlak, A.

Rabl, A.

Ries, H.

Rolland, J. P.

Santamaría, A.

Wang, D.

Wang, G.

Wang, L.

Zaremba, K.

Zhang, G.

Zhang, Y.

Appl. Opt.

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Proc. SPIE

B. A. Jacobson and R. D. Gengelbach, “Lens for uniform LED illumination: an example of automated optimization using Monte Carlo ray-tracing of an LED source,” Proc. SPIE 4446, 121–128 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1.
Fig. 1.

Fresnel lens surface and the design principle.

Fig. 2.
Fig. 2.

Solid model of Fresnel lens.

Fig. 3.
Fig. 3.

Variation of lens radius to α max for five values of d .

Fig. 4.
Fig. 4.

Collimation performance of designed lens for a Lambertian source.

Fig. 5.
Fig. 5.

Collimation performance of designed lens for uniform source.

Fig. 6.
Fig. 6.

Influence of the side length of LED chip on collimation performance.

Fig. 7.
Fig. 7.

Microlens design process.

Fig. 8.
Fig. 8.

Calculation process of microlens surface.

Fig. 9.
Fig. 9.

Microlens surface, microlens array board, and the integrated element.

Fig. 10.
Fig. 10.

Illumination distributions for three microlens sizes.

Fig. 11.
Fig. 11.

Shapes of microlens and corresponding illumination distributions.

Fig. 12.
Fig. 12.

Efficiency and uniformity variations for dH of the element.

Fig. 13.
Fig. 13.

Illumination and intensity distributions for dH of the element.

Fig. 14.
Fig. 14.

Efficiency and uniformity variations for dV of the element.

Fig. 15.
Fig. 15.

Illumination and intensity distributions for dV of the element.

Fig. 16.
Fig. 16.

Efficiency and uniformity variations for dT of the element.

Fig. 17.
Fig. 17.

Illumination and intensity distributions for dT of the element.

Fig. 18.
Fig. 18.

Illumination distribution with three deviations.

Fig. 19.
Fig. 19.

On-axis lighting and off-axis lighting.

Tables (1)

Tables Icon

Table 1. Influence of Tooth Width of the Lens on Collimation Performance

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n 0 i × N = n 1 R × N .
A 2 = A 1 + A 2 A 1 R .
n 1 A 2 A 1 + n 1 ( F F A 2 ) · n = S A 1 O .
n 0 O n 1 I = N [ n 2 2 + n 1 2 2 n 1 n 2 ( O · I ) ] 1 / 2 .
N · D = 0 .

Metrics