Abstract

Effects of fabrication conditions on the double-peak structure observed in fiber Bragg gratings at harmonics of the Bragg wavelength were investigated, showing that slight variations in the alignment of the phase mask can affect the grating spectra significantly. A single peak occurs only when the incident beam direction is perfectly normal with respect to the fiber.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill, Y. Fuji, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
    [CrossRef]
  2. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
    [CrossRef]
  3. A. Othonos and K. Kalli, Fiber Bragg Gratings (Artech House, 1999).
  4. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
    [CrossRef]
  5. J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008).
    [CrossRef]
  6. N. M. Dragomir, C. Rollinson, S. A. Wade, A. J. Stevenson, S. F. Collins, G. W. Baxter, P. M. Farrell, and A. Roberts, “Nondestructive imaging of a type I optical fiber Bragg grating,” Opt. Lett. 28, 789–791 (2003).
    [CrossRef]
  7. C. W. Smelser, S. J. Mihailov, D. Grobnic, P. Lu, R. B. Walker, H. Ding, and X. Dai, “Multiple-beam interference patterns in optical fiber generated with ultrafast pulses and a phase mask,” Opt. Lett. 29, 1458–1460 (2004).
    [CrossRef]
  8. J. D. Mills, C. W. J. Hillman, B. H. Blott, and W. S. Brocklesby, “Imaging of free-space interference patterns used to manufacture fiber Bragg gratings,” Appl. Opt. 39, 6128–6135 (2000).
    [CrossRef]
  9. B. P. Kouskousis, C. M. Rollinson, D. J. Kitcher, S. F. Collins, G. W. Baxter, S. A. Wade, N. M. Dragomir, and A. Roberts, “Quantitative investigation of the refractive-index modulation within the core of a fiber Bragg grating,” Opt. Express 14, 10332–10338 (2006).
    [CrossRef]
  10. C. M. Rollinson, S. A. Wade, N. M. Dragomir, G. W. Baxter, S. F. Collins, and A. Roberts, “Reflections near 1030 nm from 1540 nm fibre Bragg gratings: Evidence of a complex refractive index structure,” Opt. Commun. 256, 310–318 (2005).
    [CrossRef]
  11. P. E. Dyer, R. J. Farley, R. Giedl, K. C. Byron, and D. Reid, “High reflectivity fibre gratings produced by incubated damage using a 193 nm ArF laser,” Electron. Lett. 30, 860–862 (1994).
    [CrossRef]
  12. S. P. Yam, Z. Brodzeli, B. P. Kouskousis, C. M. Rollinson, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fabrication of a π-phase-shifted fiber Bragg grating at twice the Bragg wavelength with the standard phase mask technique,” Opt. Lett. 34, 2021–2023 (2009).
    [CrossRef]
  13. B. Malo, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, “Single-excimer-pulse writing of fiber gratings by use of a zero-order nulled phase mask: grating spectral response and visualization of index perturbations,” Opt. Lett. 18, 1277–1279 (1993).
    [CrossRef]
  14. S. P. Yam, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Occurrence of features of fiber Bragg grating spectra having a wavelength corresponding to the phase mask periodicity,” J. Electron. Sci. Technol. 6, 458–461 (2008).
  15. C. M. Rollinson, S. A. Wade, N. M. Dragomir, A. Roberts, G. W. Baxter, and S. F. Collins, “Three parameter sensing with a single Bragg grating in non-birefringent fiber,” in Proceedings of Topical Meeting on Bragg Gratings, Poling, and Photosensitivity (BGPP) (Engineers Australia, 2005), pp. 92–94.
  16. S. P. Yam, C. M. Rollinson, D. J. Kitcher, G. W. Baxter, and S. F. Collins, “Transverse strain response of transmission dips at 2/3 of the Bragg wavelength in a fiber Bragg grating,” in 18th International Conference on Optical Fiber Sensors (Optical Society of America, 2006), paper TuE47.
  17. J. Canning and M. G. Sceats, “Pi-phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electron. Lett. 30, 1344–1345 (1994).
    [CrossRef]
  18. S. P. Yam, G. W. Baxter, S. A. Wade, and S. F. Collins, “Modelling of an alternative pi-phase-shifted fibre Bragg grating operating at twice the Bragg wavelength,” in 35th Australian Conference on Optical Fibre Technology (ACOFT), 2010 (Australian Institute of Physics, 2010), p. 659.
  19. C. M. Rollinson, S. A. Wade, B. P. Kouskousis, D. J. Kitcher, G. W. Baxter, and S. F. Collins, “Variations of the growth of harmonic reflections in fiber Bragg gratings fabricated using phase masks,” J. Opt. Soc. Am. A 29, 1259–1268 (2012).
    [CrossRef]
  20. H. K. Bal, N. M. Dragomir, F. Sidiroglou, S. A. Wade, G. W. Baxter, and S. F. Collins, “Response of some pi-phase-shifted Bragg gratings to elevated pressure,” Proc. SPIE 7753, 775389 (2011).
    [CrossRef]
  21. S. Tomljenovic-Hanic and J. D. Love, “Symmetry-selective reflection gratings,” J. Opt. Soc. Am. A 22, 1615–1619 (2005).
    [CrossRef]
  22. H. K. Bal, F. Sidiroglou, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fibre Bragg grating transverse strain sensing using reflections at twice the Bragg wavelength,” Meas. Sci. Technol. 21, 094004 (2010).
    [CrossRef]
  23. P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis and application of a 0/1 order Talbot interferometer for 193 nm laser grating formation,” Opt. Commun. 129, 98–108 (1996).
    [CrossRef]
  24. L. Li, L. Zhao, K. Gao, R. Huang, and Z. Fang, “Influence effect of beam divergence on fiber Bragg grating fabricated by UV imprinting,” Acta Opt. Sin. 22, 749–752 (2002).
  25. R. Kashyap, R. Wyatt, and R. J. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating,” Electron. Lett. 29, 154–156 (1993).
    [CrossRef]
  26. T. Erdogan and J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13, 296–313 (1996).
    [CrossRef]
  27. S. P. Yam, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Consistency of optical alignment during FBG fabrication and the spectral responses at twice the Bragg wavelength,” in 18th Australian Institute of Physics National Congress (AIP) (Australian Institute of Physics, 2008), p. 180.
  28. S. Legoubin, M. Douay, P. Bernage, P. Niay, S. Boj, and E. Delevaque, “Free spectral range variations of grating-based Fabry-Perot filters photowritten in optical fibers,” J. Opt. Soc. Am. A 12, 1687–1694 (1995).
    [CrossRef]
  29. S. C. Kaddu, D. J. Booth, D. D. Garchev, and S. F. Collins, “Intrinsic fibre Fabry-Perot sensors based on co-located Bragg gratings,” Opt. Commun. 142, 189–192 (1997).
    [CrossRef]
  30. H. K. Bal, W. Brown, N. M. Dragomir, S. A. Wade, F. Sidiroglou, G. W. Baxter, and S. F. Collins, “Comparison of spectra and images of Bragg gratings written in three different optical fibres,” in Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics IQEC/CLEO Pacific Rim 2011 (Australian Optical Society, 2011), pp. 139–141.
  31. S. F. Collins, S. P. Yam, H. K. Bal, B. P. Kouskousis, C. M. Rollinson, F. Sidiroglou, Z. Brodzeli, S. A. Wade, and G. W. Baxter, “Fiber Bragg gratings at twice the Bragg wavelength: properties and sensor applications,” in 2nd Asia-Pacific Optical Sensors Conference, Guangzhou, China, 28–30June2010.

2012 (1)

2011 (1)

H. K. Bal, N. M. Dragomir, F. Sidiroglou, S. A. Wade, G. W. Baxter, and S. F. Collins, “Response of some pi-phase-shifted Bragg gratings to elevated pressure,” Proc. SPIE 7753, 775389 (2011).
[CrossRef]

2010 (1)

H. K. Bal, F. Sidiroglou, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fibre Bragg grating transverse strain sensing using reflections at twice the Bragg wavelength,” Meas. Sci. Technol. 21, 094004 (2010).
[CrossRef]

2009 (1)

2008 (2)

S. P. Yam, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Occurrence of features of fiber Bragg grating spectra having a wavelength corresponding to the phase mask periodicity,” J. Electron. Sci. Technol. 6, 458–461 (2008).

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008).
[CrossRef]

2006 (1)

2005 (2)

C. M. Rollinson, S. A. Wade, N. M. Dragomir, G. W. Baxter, S. F. Collins, and A. Roberts, “Reflections near 1030 nm from 1540 nm fibre Bragg gratings: Evidence of a complex refractive index structure,” Opt. Commun. 256, 310–318 (2005).
[CrossRef]

S. Tomljenovic-Hanic and J. D. Love, “Symmetry-selective reflection gratings,” J. Opt. Soc. Am. A 22, 1615–1619 (2005).
[CrossRef]

2004 (1)

2003 (1)

2002 (1)

L. Li, L. Zhao, K. Gao, R. Huang, and Z. Fang, “Influence effect of beam divergence on fiber Bragg grating fabricated by UV imprinting,” Acta Opt. Sin. 22, 749–752 (2002).

2000 (1)

1997 (3)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

S. C. Kaddu, D. J. Booth, D. D. Garchev, and S. F. Collins, “Intrinsic fibre Fabry-Perot sensors based on co-located Bragg gratings,” Opt. Commun. 142, 189–192 (1997).
[CrossRef]

1996 (2)

T. Erdogan and J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13, 296–313 (1996).
[CrossRef]

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis and application of a 0/1 order Talbot interferometer for 193 nm laser grating formation,” Opt. Commun. 129, 98–108 (1996).
[CrossRef]

1995 (1)

1994 (2)

J. Canning and M. G. Sceats, “Pi-phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electron. Lett. 30, 1344–1345 (1994).
[CrossRef]

P. E. Dyer, R. J. Farley, R. Giedl, K. C. Byron, and D. Reid, “High reflectivity fibre gratings produced by incubated damage using a 193 nm ArF laser,” Electron. Lett. 30, 860–862 (1994).
[CrossRef]

1993 (2)

1978 (1)

K. O. Hill, Y. Fuji, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Albert, J.

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Bal, H. K.

H. K. Bal, N. M. Dragomir, F. Sidiroglou, S. A. Wade, G. W. Baxter, and S. F. Collins, “Response of some pi-phase-shifted Bragg gratings to elevated pressure,” Proc. SPIE 7753, 775389 (2011).
[CrossRef]

H. K. Bal, F. Sidiroglou, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fibre Bragg grating transverse strain sensing using reflections at twice the Bragg wavelength,” Meas. Sci. Technol. 21, 094004 (2010).
[CrossRef]

H. K. Bal, W. Brown, N. M. Dragomir, S. A. Wade, F. Sidiroglou, G. W. Baxter, and S. F. Collins, “Comparison of spectra and images of Bragg gratings written in three different optical fibres,” in Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics IQEC/CLEO Pacific Rim 2011 (Australian Optical Society, 2011), pp. 139–141.

S. F. Collins, S. P. Yam, H. K. Bal, B. P. Kouskousis, C. M. Rollinson, F. Sidiroglou, Z. Brodzeli, S. A. Wade, and G. W. Baxter, “Fiber Bragg gratings at twice the Bragg wavelength: properties and sensor applications,” in 2nd Asia-Pacific Optical Sensors Conference, Guangzhou, China, 28–30June2010.

Baxter, G. W.

C. M. Rollinson, S. A. Wade, B. P. Kouskousis, D. J. Kitcher, G. W. Baxter, and S. F. Collins, “Variations of the growth of harmonic reflections in fiber Bragg gratings fabricated using phase masks,” J. Opt. Soc. Am. A 29, 1259–1268 (2012).
[CrossRef]

H. K. Bal, N. M. Dragomir, F. Sidiroglou, S. A. Wade, G. W. Baxter, and S. F. Collins, “Response of some pi-phase-shifted Bragg gratings to elevated pressure,” Proc. SPIE 7753, 775389 (2011).
[CrossRef]

H. K. Bal, F. Sidiroglou, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fibre Bragg grating transverse strain sensing using reflections at twice the Bragg wavelength,” Meas. Sci. Technol. 21, 094004 (2010).
[CrossRef]

S. P. Yam, Z. Brodzeli, B. P. Kouskousis, C. M. Rollinson, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fabrication of a π-phase-shifted fiber Bragg grating at twice the Bragg wavelength with the standard phase mask technique,” Opt. Lett. 34, 2021–2023 (2009).
[CrossRef]

S. P. Yam, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Occurrence of features of fiber Bragg grating spectra having a wavelength corresponding to the phase mask periodicity,” J. Electron. Sci. Technol. 6, 458–461 (2008).

B. P. Kouskousis, C. M. Rollinson, D. J. Kitcher, S. F. Collins, G. W. Baxter, S. A. Wade, N. M. Dragomir, and A. Roberts, “Quantitative investigation of the refractive-index modulation within the core of a fiber Bragg grating,” Opt. Express 14, 10332–10338 (2006).
[CrossRef]

C. M. Rollinson, S. A. Wade, N. M. Dragomir, G. W. Baxter, S. F. Collins, and A. Roberts, “Reflections near 1030 nm from 1540 nm fibre Bragg gratings: Evidence of a complex refractive index structure,” Opt. Commun. 256, 310–318 (2005).
[CrossRef]

N. M. Dragomir, C. Rollinson, S. A. Wade, A. J. Stevenson, S. F. Collins, G. W. Baxter, P. M. Farrell, and A. Roberts, “Nondestructive imaging of a type I optical fiber Bragg grating,” Opt. Lett. 28, 789–791 (2003).
[CrossRef]

C. M. Rollinson, S. A. Wade, N. M. Dragomir, A. Roberts, G. W. Baxter, and S. F. Collins, “Three parameter sensing with a single Bragg grating in non-birefringent fiber,” in Proceedings of Topical Meeting on Bragg Gratings, Poling, and Photosensitivity (BGPP) (Engineers Australia, 2005), pp. 92–94.

S. P. Yam, C. M. Rollinson, D. J. Kitcher, G. W. Baxter, and S. F. Collins, “Transverse strain response of transmission dips at 2/3 of the Bragg wavelength in a fiber Bragg grating,” in 18th International Conference on Optical Fiber Sensors (Optical Society of America, 2006), paper TuE47.

S. P. Yam, G. W. Baxter, S. A. Wade, and S. F. Collins, “Modelling of an alternative pi-phase-shifted fibre Bragg grating operating at twice the Bragg wavelength,” in 35th Australian Conference on Optical Fibre Technology (ACOFT), 2010 (Australian Institute of Physics, 2010), p. 659.

H. K. Bal, W. Brown, N. M. Dragomir, S. A. Wade, F. Sidiroglou, G. W. Baxter, and S. F. Collins, “Comparison of spectra and images of Bragg gratings written in three different optical fibres,” in Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics IQEC/CLEO Pacific Rim 2011 (Australian Optical Society, 2011), pp. 139–141.

S. P. Yam, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Consistency of optical alignment during FBG fabrication and the spectral responses at twice the Bragg wavelength,” in 18th Australian Institute of Physics National Congress (AIP) (Australian Institute of Physics, 2008), p. 180.

S. F. Collins, S. P. Yam, H. K. Bal, B. P. Kouskousis, C. M. Rollinson, F. Sidiroglou, Z. Brodzeli, S. A. Wade, and G. W. Baxter, “Fiber Bragg gratings at twice the Bragg wavelength: properties and sensor applications,” in 2nd Asia-Pacific Optical Sensors Conference, Guangzhou, China, 28–30June2010.

Bernage, P.

Bilodeau, F.

Blott, B. H.

Boj, S.

Booth, D. J.

S. C. Kaddu, D. J. Booth, D. D. Garchev, and S. F. Collins, “Intrinsic fibre Fabry-Perot sensors based on co-located Bragg gratings,” Opt. Commun. 142, 189–192 (1997).
[CrossRef]

Brocklesby, W. S.

Brodzeli, Z.

H. K. Bal, F. Sidiroglou, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fibre Bragg grating transverse strain sensing using reflections at twice the Bragg wavelength,” Meas. Sci. Technol. 21, 094004 (2010).
[CrossRef]

S. P. Yam, Z. Brodzeli, B. P. Kouskousis, C. M. Rollinson, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fabrication of a π-phase-shifted fiber Bragg grating at twice the Bragg wavelength with the standard phase mask technique,” Opt. Lett. 34, 2021–2023 (2009).
[CrossRef]

S. P. Yam, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Occurrence of features of fiber Bragg grating spectra having a wavelength corresponding to the phase mask periodicity,” J. Electron. Sci. Technol. 6, 458–461 (2008).

S. P. Yam, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Consistency of optical alignment during FBG fabrication and the spectral responses at twice the Bragg wavelength,” in 18th Australian Institute of Physics National Congress (AIP) (Australian Institute of Physics, 2008), p. 180.

S. F. Collins, S. P. Yam, H. K. Bal, B. P. Kouskousis, C. M. Rollinson, F. Sidiroglou, Z. Brodzeli, S. A. Wade, and G. W. Baxter, “Fiber Bragg gratings at twice the Bragg wavelength: properties and sensor applications,” in 2nd Asia-Pacific Optical Sensors Conference, Guangzhou, China, 28–30June2010.

Brown, W.

H. K. Bal, W. Brown, N. M. Dragomir, S. A. Wade, F. Sidiroglou, G. W. Baxter, and S. F. Collins, “Comparison of spectra and images of Bragg gratings written in three different optical fibres,” in Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics IQEC/CLEO Pacific Rim 2011 (Australian Optical Society, 2011), pp. 139–141.

Byron, K. C.

P. E. Dyer, R. J. Farley, R. Giedl, K. C. Byron, and D. Reid, “High reflectivity fibre gratings produced by incubated damage using a 193 nm ArF laser,” Electron. Lett. 30, 860–862 (1994).
[CrossRef]

Campbell, R. J.

R. Kashyap, R. Wyatt, and R. J. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating,” Electron. Lett. 29, 154–156 (1993).
[CrossRef]

Canning, J.

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008).
[CrossRef]

J. Canning and M. G. Sceats, “Pi-phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electron. Lett. 30, 1344–1345 (1994).
[CrossRef]

Collins, S. F.

C. M. Rollinson, S. A. Wade, B. P. Kouskousis, D. J. Kitcher, G. W. Baxter, and S. F. Collins, “Variations of the growth of harmonic reflections in fiber Bragg gratings fabricated using phase masks,” J. Opt. Soc. Am. A 29, 1259–1268 (2012).
[CrossRef]

H. K. Bal, N. M. Dragomir, F. Sidiroglou, S. A. Wade, G. W. Baxter, and S. F. Collins, “Response of some pi-phase-shifted Bragg gratings to elevated pressure,” Proc. SPIE 7753, 775389 (2011).
[CrossRef]

H. K. Bal, F. Sidiroglou, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fibre Bragg grating transverse strain sensing using reflections at twice the Bragg wavelength,” Meas. Sci. Technol. 21, 094004 (2010).
[CrossRef]

S. P. Yam, Z. Brodzeli, B. P. Kouskousis, C. M. Rollinson, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fabrication of a π-phase-shifted fiber Bragg grating at twice the Bragg wavelength with the standard phase mask technique,” Opt. Lett. 34, 2021–2023 (2009).
[CrossRef]

S. P. Yam, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Occurrence of features of fiber Bragg grating spectra having a wavelength corresponding to the phase mask periodicity,” J. Electron. Sci. Technol. 6, 458–461 (2008).

B. P. Kouskousis, C. M. Rollinson, D. J. Kitcher, S. F. Collins, G. W. Baxter, S. A. Wade, N. M. Dragomir, and A. Roberts, “Quantitative investigation of the refractive-index modulation within the core of a fiber Bragg grating,” Opt. Express 14, 10332–10338 (2006).
[CrossRef]

C. M. Rollinson, S. A. Wade, N. M. Dragomir, G. W. Baxter, S. F. Collins, and A. Roberts, “Reflections near 1030 nm from 1540 nm fibre Bragg gratings: Evidence of a complex refractive index structure,” Opt. Commun. 256, 310–318 (2005).
[CrossRef]

N. M. Dragomir, C. Rollinson, S. A. Wade, A. J. Stevenson, S. F. Collins, G. W. Baxter, P. M. Farrell, and A. Roberts, “Nondestructive imaging of a type I optical fiber Bragg grating,” Opt. Lett. 28, 789–791 (2003).
[CrossRef]

S. C. Kaddu, D. J. Booth, D. D. Garchev, and S. F. Collins, “Intrinsic fibre Fabry-Perot sensors based on co-located Bragg gratings,” Opt. Commun. 142, 189–192 (1997).
[CrossRef]

H. K. Bal, W. Brown, N. M. Dragomir, S. A. Wade, F. Sidiroglou, G. W. Baxter, and S. F. Collins, “Comparison of spectra and images of Bragg gratings written in three different optical fibres,” in Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics IQEC/CLEO Pacific Rim 2011 (Australian Optical Society, 2011), pp. 139–141.

S. F. Collins, S. P. Yam, H. K. Bal, B. P. Kouskousis, C. M. Rollinson, F. Sidiroglou, Z. Brodzeli, S. A. Wade, and G. W. Baxter, “Fiber Bragg gratings at twice the Bragg wavelength: properties and sensor applications,” in 2nd Asia-Pacific Optical Sensors Conference, Guangzhou, China, 28–30June2010.

S. P. Yam, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Consistency of optical alignment during FBG fabrication and the spectral responses at twice the Bragg wavelength,” in 18th Australian Institute of Physics National Congress (AIP) (Australian Institute of Physics, 2008), p. 180.

S. P. Yam, C. M. Rollinson, D. J. Kitcher, G. W. Baxter, and S. F. Collins, “Transverse strain response of transmission dips at 2/3 of the Bragg wavelength in a fiber Bragg grating,” in 18th International Conference on Optical Fiber Sensors (Optical Society of America, 2006), paper TuE47.

S. P. Yam, G. W. Baxter, S. A. Wade, and S. F. Collins, “Modelling of an alternative pi-phase-shifted fibre Bragg grating operating at twice the Bragg wavelength,” in 35th Australian Conference on Optical Fibre Technology (ACOFT), 2010 (Australian Institute of Physics, 2010), p. 659.

C. M. Rollinson, S. A. Wade, N. M. Dragomir, A. Roberts, G. W. Baxter, and S. F. Collins, “Three parameter sensing with a single Bragg grating in non-birefringent fiber,” in Proceedings of Topical Meeting on Bragg Gratings, Poling, and Photosensitivity (BGPP) (Engineers Australia, 2005), pp. 92–94.

Dai, X.

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Delevaque, E.

Ding, H.

Douay, M.

Dragomir, N. M.

H. K. Bal, N. M. Dragomir, F. Sidiroglou, S. A. Wade, G. W. Baxter, and S. F. Collins, “Response of some pi-phase-shifted Bragg gratings to elevated pressure,” Proc. SPIE 7753, 775389 (2011).
[CrossRef]

B. P. Kouskousis, C. M. Rollinson, D. J. Kitcher, S. F. Collins, G. W. Baxter, S. A. Wade, N. M. Dragomir, and A. Roberts, “Quantitative investigation of the refractive-index modulation within the core of a fiber Bragg grating,” Opt. Express 14, 10332–10338 (2006).
[CrossRef]

C. M. Rollinson, S. A. Wade, N. M. Dragomir, G. W. Baxter, S. F. Collins, and A. Roberts, “Reflections near 1030 nm from 1540 nm fibre Bragg gratings: Evidence of a complex refractive index structure,” Opt. Commun. 256, 310–318 (2005).
[CrossRef]

N. M. Dragomir, C. Rollinson, S. A. Wade, A. J. Stevenson, S. F. Collins, G. W. Baxter, P. M. Farrell, and A. Roberts, “Nondestructive imaging of a type I optical fiber Bragg grating,” Opt. Lett. 28, 789–791 (2003).
[CrossRef]

C. M. Rollinson, S. A. Wade, N. M. Dragomir, A. Roberts, G. W. Baxter, and S. F. Collins, “Three parameter sensing with a single Bragg grating in non-birefringent fiber,” in Proceedings of Topical Meeting on Bragg Gratings, Poling, and Photosensitivity (BGPP) (Engineers Australia, 2005), pp. 92–94.

H. K. Bal, W. Brown, N. M. Dragomir, S. A. Wade, F. Sidiroglou, G. W. Baxter, and S. F. Collins, “Comparison of spectra and images of Bragg gratings written in three different optical fibres,” in Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics IQEC/CLEO Pacific Rim 2011 (Australian Optical Society, 2011), pp. 139–141.

Dyer, P. E.

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis and application of a 0/1 order Talbot interferometer for 193 nm laser grating formation,” Opt. Commun. 129, 98–108 (1996).
[CrossRef]

P. E. Dyer, R. J. Farley, R. Giedl, K. C. Byron, and D. Reid, “High reflectivity fibre gratings produced by incubated damage using a 193 nm ArF laser,” Electron. Lett. 30, 860–862 (1994).
[CrossRef]

Erdogan, T.

Fang, Z.

L. Li, L. Zhao, K. Gao, R. Huang, and Z. Fang, “Influence effect of beam divergence on fiber Bragg grating fabricated by UV imprinting,” Acta Opt. Sin. 22, 749–752 (2002).

Farley, R. J.

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis and application of a 0/1 order Talbot interferometer for 193 nm laser grating formation,” Opt. Commun. 129, 98–108 (1996).
[CrossRef]

P. E. Dyer, R. J. Farley, R. Giedl, K. C. Byron, and D. Reid, “High reflectivity fibre gratings produced by incubated damage using a 193 nm ArF laser,” Electron. Lett. 30, 860–862 (1994).
[CrossRef]

Farrell, P. M.

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Fuji, Y.

K. O. Hill, Y. Fuji, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Gao, K.

L. Li, L. Zhao, K. Gao, R. Huang, and Z. Fang, “Influence effect of beam divergence on fiber Bragg grating fabricated by UV imprinting,” Acta Opt. Sin. 22, 749–752 (2002).

Garchev, D. D.

S. C. Kaddu, D. J. Booth, D. D. Garchev, and S. F. Collins, “Intrinsic fibre Fabry-Perot sensors based on co-located Bragg gratings,” Opt. Commun. 142, 189–192 (1997).
[CrossRef]

Giedl, R.

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis and application of a 0/1 order Talbot interferometer for 193 nm laser grating formation,” Opt. Commun. 129, 98–108 (1996).
[CrossRef]

P. E. Dyer, R. J. Farley, R. Giedl, K. C. Byron, and D. Reid, “High reflectivity fibre gratings produced by incubated damage using a 193 nm ArF laser,” Electron. Lett. 30, 860–862 (1994).
[CrossRef]

Grobnic, D.

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

B. Malo, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, “Single-excimer-pulse writing of fiber gratings by use of a zero-order nulled phase mask: grating spectral response and visualization of index perturbations,” Opt. Lett. 18, 1277–1279 (1993).
[CrossRef]

K. O. Hill, Y. Fuji, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Hillman, C. W. J.

Huang, R.

L. Li, L. Zhao, K. Gao, R. Huang, and Z. Fang, “Influence effect of beam divergence on fiber Bragg grating fabricated by UV imprinting,” Acta Opt. Sin. 22, 749–752 (2002).

Johnson, D. C.

B. Malo, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, “Single-excimer-pulse writing of fiber gratings by use of a zero-order nulled phase mask: grating spectral response and visualization of index perturbations,” Opt. Lett. 18, 1277–1279 (1993).
[CrossRef]

K. O. Hill, Y. Fuji, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Kaddu, S. C.

S. C. Kaddu, D. J. Booth, D. D. Garchev, and S. F. Collins, “Intrinsic fibre Fabry-Perot sensors based on co-located Bragg gratings,” Opt. Commun. 142, 189–192 (1997).
[CrossRef]

Kalli, K.

A. Othonos and K. Kalli, Fiber Bragg Gratings (Artech House, 1999).

Kashyap, R.

R. Kashyap, R. Wyatt, and R. J. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating,” Electron. Lett. 29, 154–156 (1993).
[CrossRef]

Kawasaki, B. S.

K. O. Hill, Y. Fuji, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Kitcher, D. J.

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Kouskousis, B. P.

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Legoubin, S.

Li, L.

L. Li, L. Zhao, K. Gao, R. Huang, and Z. Fang, “Influence effect of beam divergence on fiber Bragg grating fabricated by UV imprinting,” Acta Opt. Sin. 22, 749–752 (2002).

Love, J. D.

Lu, P.

Malo, B.

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

Mihailov, S. J.

Mills, J. D.

Niay, P.

Othonos, A.

A. Othonos and K. Kalli, Fiber Bragg Gratings (Artech House, 1999).

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Reid, D.

P. E. Dyer, R. J. Farley, R. Giedl, K. C. Byron, and D. Reid, “High reflectivity fibre gratings produced by incubated damage using a 193 nm ArF laser,” Electron. Lett. 30, 860–862 (1994).
[CrossRef]

Roberts, A.

B. P. Kouskousis, C. M. Rollinson, D. J. Kitcher, S. F. Collins, G. W. Baxter, S. A. Wade, N. M. Dragomir, and A. Roberts, “Quantitative investigation of the refractive-index modulation within the core of a fiber Bragg grating,” Opt. Express 14, 10332–10338 (2006).
[CrossRef]

C. M. Rollinson, S. A. Wade, N. M. Dragomir, G. W. Baxter, S. F. Collins, and A. Roberts, “Reflections near 1030 nm from 1540 nm fibre Bragg gratings: Evidence of a complex refractive index structure,” Opt. Commun. 256, 310–318 (2005).
[CrossRef]

N. M. Dragomir, C. Rollinson, S. A. Wade, A. J. Stevenson, S. F. Collins, G. W. Baxter, P. M. Farrell, and A. Roberts, “Nondestructive imaging of a type I optical fiber Bragg grating,” Opt. Lett. 28, 789–791 (2003).
[CrossRef]

C. M. Rollinson, S. A. Wade, N. M. Dragomir, A. Roberts, G. W. Baxter, and S. F. Collins, “Three parameter sensing with a single Bragg grating in non-birefringent fiber,” in Proceedings of Topical Meeting on Bragg Gratings, Poling, and Photosensitivity (BGPP) (Engineers Australia, 2005), pp. 92–94.

Rollinson, C.

Rollinson, C. M.

C. M. Rollinson, S. A. Wade, B. P. Kouskousis, D. J. Kitcher, G. W. Baxter, and S. F. Collins, “Variations of the growth of harmonic reflections in fiber Bragg gratings fabricated using phase masks,” J. Opt. Soc. Am. A 29, 1259–1268 (2012).
[CrossRef]

S. P. Yam, Z. Brodzeli, B. P. Kouskousis, C. M. Rollinson, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fabrication of a π-phase-shifted fiber Bragg grating at twice the Bragg wavelength with the standard phase mask technique,” Opt. Lett. 34, 2021–2023 (2009).
[CrossRef]

B. P. Kouskousis, C. M. Rollinson, D. J. Kitcher, S. F. Collins, G. W. Baxter, S. A. Wade, N. M. Dragomir, and A. Roberts, “Quantitative investigation of the refractive-index modulation within the core of a fiber Bragg grating,” Opt. Express 14, 10332–10338 (2006).
[CrossRef]

C. M. Rollinson, S. A. Wade, N. M. Dragomir, G. W. Baxter, S. F. Collins, and A. Roberts, “Reflections near 1030 nm from 1540 nm fibre Bragg gratings: Evidence of a complex refractive index structure,” Opt. Commun. 256, 310–318 (2005).
[CrossRef]

C. M. Rollinson, S. A. Wade, N. M. Dragomir, A. Roberts, G. W. Baxter, and S. F. Collins, “Three parameter sensing with a single Bragg grating in non-birefringent fiber,” in Proceedings of Topical Meeting on Bragg Gratings, Poling, and Photosensitivity (BGPP) (Engineers Australia, 2005), pp. 92–94.

S. P. Yam, C. M. Rollinson, D. J. Kitcher, G. W. Baxter, and S. F. Collins, “Transverse strain response of transmission dips at 2/3 of the Bragg wavelength in a fiber Bragg grating,” in 18th International Conference on Optical Fiber Sensors (Optical Society of America, 2006), paper TuE47.

S. F. Collins, S. P. Yam, H. K. Bal, B. P. Kouskousis, C. M. Rollinson, F. Sidiroglou, Z. Brodzeli, S. A. Wade, and G. W. Baxter, “Fiber Bragg gratings at twice the Bragg wavelength: properties and sensor applications,” in 2nd Asia-Pacific Optical Sensors Conference, Guangzhou, China, 28–30June2010.

Sceats, M. G.

J. Canning and M. G. Sceats, “Pi-phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electron. Lett. 30, 1344–1345 (1994).
[CrossRef]

Sidiroglou, F.

H. K. Bal, N. M. Dragomir, F. Sidiroglou, S. A. Wade, G. W. Baxter, and S. F. Collins, “Response of some pi-phase-shifted Bragg gratings to elevated pressure,” Proc. SPIE 7753, 775389 (2011).
[CrossRef]

H. K. Bal, F. Sidiroglou, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fibre Bragg grating transverse strain sensing using reflections at twice the Bragg wavelength,” Meas. Sci. Technol. 21, 094004 (2010).
[CrossRef]

H. K. Bal, W. Brown, N. M. Dragomir, S. A. Wade, F. Sidiroglou, G. W. Baxter, and S. F. Collins, “Comparison of spectra and images of Bragg gratings written in three different optical fibres,” in Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics IQEC/CLEO Pacific Rim 2011 (Australian Optical Society, 2011), pp. 139–141.

S. F. Collins, S. P. Yam, H. K. Bal, B. P. Kouskousis, C. M. Rollinson, F. Sidiroglou, Z. Brodzeli, S. A. Wade, and G. W. Baxter, “Fiber Bragg gratings at twice the Bragg wavelength: properties and sensor applications,” in 2nd Asia-Pacific Optical Sensors Conference, Guangzhou, China, 28–30June2010.

Sipe, J. E.

Smelser, C. W.

Stevenson, A. J.

Tomljenovic-Hanic, S.

Wade, S. A.

C. M. Rollinson, S. A. Wade, B. P. Kouskousis, D. J. Kitcher, G. W. Baxter, and S. F. Collins, “Variations of the growth of harmonic reflections in fiber Bragg gratings fabricated using phase masks,” J. Opt. Soc. Am. A 29, 1259–1268 (2012).
[CrossRef]

H. K. Bal, N. M. Dragomir, F. Sidiroglou, S. A. Wade, G. W. Baxter, and S. F. Collins, “Response of some pi-phase-shifted Bragg gratings to elevated pressure,” Proc. SPIE 7753, 775389 (2011).
[CrossRef]

H. K. Bal, F. Sidiroglou, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fibre Bragg grating transverse strain sensing using reflections at twice the Bragg wavelength,” Meas. Sci. Technol. 21, 094004 (2010).
[CrossRef]

S. P. Yam, Z. Brodzeli, B. P. Kouskousis, C. M. Rollinson, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fabrication of a π-phase-shifted fiber Bragg grating at twice the Bragg wavelength with the standard phase mask technique,” Opt. Lett. 34, 2021–2023 (2009).
[CrossRef]

S. P. Yam, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Occurrence of features of fiber Bragg grating spectra having a wavelength corresponding to the phase mask periodicity,” J. Electron. Sci. Technol. 6, 458–461 (2008).

B. P. Kouskousis, C. M. Rollinson, D. J. Kitcher, S. F. Collins, G. W. Baxter, S. A. Wade, N. M. Dragomir, and A. Roberts, “Quantitative investigation of the refractive-index modulation within the core of a fiber Bragg grating,” Opt. Express 14, 10332–10338 (2006).
[CrossRef]

C. M. Rollinson, S. A. Wade, N. M. Dragomir, G. W. Baxter, S. F. Collins, and A. Roberts, “Reflections near 1030 nm from 1540 nm fibre Bragg gratings: Evidence of a complex refractive index structure,” Opt. Commun. 256, 310–318 (2005).
[CrossRef]

N. M. Dragomir, C. Rollinson, S. A. Wade, A. J. Stevenson, S. F. Collins, G. W. Baxter, P. M. Farrell, and A. Roberts, “Nondestructive imaging of a type I optical fiber Bragg grating,” Opt. Lett. 28, 789–791 (2003).
[CrossRef]

C. M. Rollinson, S. A. Wade, N. M. Dragomir, A. Roberts, G. W. Baxter, and S. F. Collins, “Three parameter sensing with a single Bragg grating in non-birefringent fiber,” in Proceedings of Topical Meeting on Bragg Gratings, Poling, and Photosensitivity (BGPP) (Engineers Australia, 2005), pp. 92–94.

S. P. Yam, G. W. Baxter, S. A. Wade, and S. F. Collins, “Modelling of an alternative pi-phase-shifted fibre Bragg grating operating at twice the Bragg wavelength,” in 35th Australian Conference on Optical Fibre Technology (ACOFT), 2010 (Australian Institute of Physics, 2010), p. 659.

S. P. Yam, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Consistency of optical alignment during FBG fabrication and the spectral responses at twice the Bragg wavelength,” in 18th Australian Institute of Physics National Congress (AIP) (Australian Institute of Physics, 2008), p. 180.

H. K. Bal, W. Brown, N. M. Dragomir, S. A. Wade, F. Sidiroglou, G. W. Baxter, and S. F. Collins, “Comparison of spectra and images of Bragg gratings written in three different optical fibres,” in Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics IQEC/CLEO Pacific Rim 2011 (Australian Optical Society, 2011), pp. 139–141.

S. F. Collins, S. P. Yam, H. K. Bal, B. P. Kouskousis, C. M. Rollinson, F. Sidiroglou, Z. Brodzeli, S. A. Wade, and G. W. Baxter, “Fiber Bragg gratings at twice the Bragg wavelength: properties and sensor applications,” in 2nd Asia-Pacific Optical Sensors Conference, Guangzhou, China, 28–30June2010.

Walker, R. B.

Wyatt, R.

R. Kashyap, R. Wyatt, and R. J. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating,” Electron. Lett. 29, 154–156 (1993).
[CrossRef]

Yam, S. P.

S. P. Yam, Z. Brodzeli, B. P. Kouskousis, C. M. Rollinson, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fabrication of a π-phase-shifted fiber Bragg grating at twice the Bragg wavelength with the standard phase mask technique,” Opt. Lett. 34, 2021–2023 (2009).
[CrossRef]

S. P. Yam, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Occurrence of features of fiber Bragg grating spectra having a wavelength corresponding to the phase mask periodicity,” J. Electron. Sci. Technol. 6, 458–461 (2008).

S. P. Yam, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Consistency of optical alignment during FBG fabrication and the spectral responses at twice the Bragg wavelength,” in 18th Australian Institute of Physics National Congress (AIP) (Australian Institute of Physics, 2008), p. 180.

S. F. Collins, S. P. Yam, H. K. Bal, B. P. Kouskousis, C. M. Rollinson, F. Sidiroglou, Z. Brodzeli, S. A. Wade, and G. W. Baxter, “Fiber Bragg gratings at twice the Bragg wavelength: properties and sensor applications,” in 2nd Asia-Pacific Optical Sensors Conference, Guangzhou, China, 28–30June2010.

S. P. Yam, G. W. Baxter, S. A. Wade, and S. F. Collins, “Modelling of an alternative pi-phase-shifted fibre Bragg grating operating at twice the Bragg wavelength,” in 35th Australian Conference on Optical Fibre Technology (ACOFT), 2010 (Australian Institute of Physics, 2010), p. 659.

S. P. Yam, C. M. Rollinson, D. J. Kitcher, G. W. Baxter, and S. F. Collins, “Transverse strain response of transmission dips at 2/3 of the Bragg wavelength in a fiber Bragg grating,” in 18th International Conference on Optical Fiber Sensors (Optical Society of America, 2006), paper TuE47.

Zhao, L.

L. Li, L. Zhao, K. Gao, R. Huang, and Z. Fang, “Influence effect of beam divergence on fiber Bragg grating fabricated by UV imprinting,” Acta Opt. Sin. 22, 749–752 (2002).

Acta Opt. Sin. (1)

L. Li, L. Zhao, K. Gao, R. Huang, and Z. Fang, “Influence effect of beam divergence on fiber Bragg grating fabricated by UV imprinting,” Acta Opt. Sin. 22, 749–752 (2002).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. O. Hill, Y. Fuji, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Electron. Lett. (3)

P. E. Dyer, R. J. Farley, R. Giedl, K. C. Byron, and D. Reid, “High reflectivity fibre gratings produced by incubated damage using a 193 nm ArF laser,” Electron. Lett. 30, 860–862 (1994).
[CrossRef]

J. Canning and M. G. Sceats, “Pi-phase-shifted periodic distributed structures in optical fibres by UV post-processing,” Electron. Lett. 30, 1344–1345 (1994).
[CrossRef]

R. Kashyap, R. Wyatt, and R. J. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating,” Electron. Lett. 29, 154–156 (1993).
[CrossRef]

J. Electron. Sci. Technol. (1)

S. P. Yam, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Occurrence of features of fiber Bragg grating spectra having a wavelength corresponding to the phase mask periodicity,” J. Electron. Sci. Technol. 6, 458–461 (2008).

J. Lightwave Technol. (2)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

J. Opt. Soc. Am. A (4)

Laser Photon. Rev. (1)

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008).
[CrossRef]

Meas. Sci. Technol. (1)

H. K. Bal, F. Sidiroglou, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fibre Bragg grating transverse strain sensing using reflections at twice the Bragg wavelength,” Meas. Sci. Technol. 21, 094004 (2010).
[CrossRef]

Opt. Commun. (3)

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis and application of a 0/1 order Talbot interferometer for 193 nm laser grating formation,” Opt. Commun. 129, 98–108 (1996).
[CrossRef]

C. M. Rollinson, S. A. Wade, N. M. Dragomir, G. W. Baxter, S. F. Collins, and A. Roberts, “Reflections near 1030 nm from 1540 nm fibre Bragg gratings: Evidence of a complex refractive index structure,” Opt. Commun. 256, 310–318 (2005).
[CrossRef]

S. C. Kaddu, D. J. Booth, D. D. Garchev, and S. F. Collins, “Intrinsic fibre Fabry-Perot sensors based on co-located Bragg gratings,” Opt. Commun. 142, 189–192 (1997).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Proc. SPIE (1)

H. K. Bal, N. M. Dragomir, F. Sidiroglou, S. A. Wade, G. W. Baxter, and S. F. Collins, “Response of some pi-phase-shifted Bragg gratings to elevated pressure,” Proc. SPIE 7753, 775389 (2011).
[CrossRef]

Other (7)

S. P. Yam, G. W. Baxter, S. A. Wade, and S. F. Collins, “Modelling of an alternative pi-phase-shifted fibre Bragg grating operating at twice the Bragg wavelength,” in 35th Australian Conference on Optical Fibre Technology (ACOFT), 2010 (Australian Institute of Physics, 2010), p. 659.

C. M. Rollinson, S. A. Wade, N. M. Dragomir, A. Roberts, G. W. Baxter, and S. F. Collins, “Three parameter sensing with a single Bragg grating in non-birefringent fiber,” in Proceedings of Topical Meeting on Bragg Gratings, Poling, and Photosensitivity (BGPP) (Engineers Australia, 2005), pp. 92–94.

S. P. Yam, C. M. Rollinson, D. J. Kitcher, G. W. Baxter, and S. F. Collins, “Transverse strain response of transmission dips at 2/3 of the Bragg wavelength in a fiber Bragg grating,” in 18th International Conference on Optical Fiber Sensors (Optical Society of America, 2006), paper TuE47.

A. Othonos and K. Kalli, Fiber Bragg Gratings (Artech House, 1999).

H. K. Bal, W. Brown, N. M. Dragomir, S. A. Wade, F. Sidiroglou, G. W. Baxter, and S. F. Collins, “Comparison of spectra and images of Bragg gratings written in three different optical fibres,” in Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics IQEC/CLEO Pacific Rim 2011 (Australian Optical Society, 2011), pp. 139–141.

S. F. Collins, S. P. Yam, H. K. Bal, B. P. Kouskousis, C. M. Rollinson, F. Sidiroglou, Z. Brodzeli, S. A. Wade, and G. W. Baxter, “Fiber Bragg gratings at twice the Bragg wavelength: properties and sensor applications,” in 2nd Asia-Pacific Optical Sensors Conference, Guangzhou, China, 28–30June2010.

S. P. Yam, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Consistency of optical alignment during FBG fabrication and the spectral responses at twice the Bragg wavelength,” in 18th Australian Institute of Physics National Congress (AIP) (Australian Institute of Physics, 2008), p. 180.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Examples of spectra at (a) the Bragg wavelength and (b) twice the Bragg wavelength for gratings written in HI 1060 FLEX fiber with the 536 nm pitch phase mask (PM1).

Fig. 2.
Fig. 2.

Examples of spectra at (a) half the Bragg wavelength and (b) 2/3 the Bragg wavelength and (c) the Bragg wavelength for gratings written in GF1 fiber, (d) at half the Bragg wavelength and (e) 2/3 the Bragg wavelength and (f) the Bragg wavelength for gratings written in HI 1060 FLEX fiber with the 1.0703 μm pitch phase mask (PM2).

Fig. 3.
Fig. 3.

Schematic of the three experimental investigations [(a), (b), and (c)] and for each of these the manner in which the fiber core is being moved within the phase mask diffraction field [(d), (e), and (f)], respectively: (a) and (d) moving the fiber away from the phase mask, (b) and (e) tilting of the phase mask about the laser beam, and (c) and (f) inclining the fiber at an angle with respect to the phase mask.

Fig. 4.
Fig. 4.

Examples of spectra for rotating the phase mask for gratings written in HI 1060 FLEX fiber with the 536 nm pitch phase mask (PM1) at minimum rotation angle (0°, thin line) and maximum rotation angle (3.9°, thick line).

Fig. 5.
Fig. 5.

Results at twice the Bragg wavelength for when the phase mask was rotated for (a) the wavelength of the two peaks and (b) their separation, for gratings written with HI 1060 FLEX fiber and PM1 combination. The dashed line in (a) is a fit of 1/cosθ, and in (b) a linear trend line.

Fig. 6.
Fig. 6.

Examples of spectra for tilting the fiber relative to the phase mask for GF1 fiber and 1.0703 μm phase mask at (a) peak separation (fiber angle 0.07°) and (b) single peak (fiber angle 0°) and for HI 1060 FLEX fiber and 536 nm phase mask at (c) peak separation (fiber angle 0.10°) and (d) single peak (fiber angle 0°).

Fig. 7.
Fig. 7.

Results for the GF1 fiber and 1.0703 μm phase mask for when the fiber was tilted for (a) the individual wavelengths of the two peaks and (b) their wavelength separation. The dashed lines are linear fits to the data.

Fig. 8.
Fig. 8.

Results for the HI 1060 FLEX fiber and 536 nm phase mask for when the fiber was tilted for (a) the individual wavelengths of the two peaks and (b) their wavelength separation. The dashed lines are linear fits to the data.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ(m)=2mneffΛ,
λ(m)=neffmΛpm=λBm,
λ(m)=2neffmΛpm=2λBm.

Metrics