F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photon. 4, 780–785 (2010).

[CrossRef]

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).

[CrossRef]

S. B. Kang, “Optical and dielectric properties of chalcogenide glasses at terahertz frequencies,” ETRI J. 31, 667–674(2009).

[CrossRef]

Y. Lai, J. Ng, H. Yang, D. Han, J. Xiao, Z. Q. Zhang, and C. T. Chang, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).

[CrossRef]

V. Arrizón, D. Sánchez-de-la-Llave, U. Ruiz, and G. Méndez, “Efficient generation of an arbitrary nondiffracting Bessel beam employing its phase modulation,” Opt. Lett. 34, 1456–1458 (2009).

[CrossRef]

I. A. Litvin, M. G. McLaren, and A. Forbes, “Propagation of obstructed Bessel and Bessel-Gauss beams,” Proc. SPIE 7062, 706218 (2008).

[CrossRef]

U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt. 53, 69–152 (2008).

[CrossRef]

F. Wu, Y. Chen, and D. Guo, “Nanosecond pulsed Bessel-Gauss beam generated directly from Nd:YAG axicon-based resonator,” Appl. Opt. 46, 4943–4947 (2007).

[CrossRef]

F. Cakoni, “A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media,” Inverse Probl. Imaging 1, 443–456 (2007).

V. S. Ilchenko, M. Mohageg, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Efficient generation of truncated Bessel beams using cylindrical waveguides,” Opt. Express 15, 5866–5871 (2007).

[CrossRef]

T. Tsai, E. McLeod, and C. B. Arnold, “Generating Bessel beams with a tunable acoustic gradient index of refraction lens,” Proc. SPIE 6326, 63261F (2006).

[CrossRef]

Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by radially polrized beam,” Opt. Lett. 31, 1726–1728 (2006).

[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).

[CrossRef]

B. Gang and L. Peijun, “Inverse medium scattering problems for electromagnetic waves,” SIAM J. Appl. Math. 65, 2049–2066 (2005).

[CrossRef]

M. Lei and B. Yao, “Characteristics of beam profiles of Gaussian beam passing through an axicon,” Opt. Commun. 239, 367–372 (2004).

[CrossRef]

H. Hadar, “The interior transmission problem for anisotropic Maxwell’s equations and its applications to the inverse problem,” Math. Methods Appl. Sci. 27, 2111–2129 (2004).

[CrossRef]

A. Zakery, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).

[CrossRef]

H. Hadar and P. Monk, “The linear sampling method for solving the electromagnetic inverse medium problem,” Inverse Probl. 18, 891–906 (2002).

[CrossRef]

J. Canning, “Diffraction-free mode generation and propagation in optical waveguides,” Opt. Commun. 207, 35–39 (2002).

[CrossRef]

R. M. Herman and T. A. Wiggins, “Propagation and focusing of Bessel-Gauss, generalized Bessel-Gauss and modified Bessel-Gauss beams,” J. Opt. Soc. Am. A 18, 170–176 (2001).

[CrossRef]

W. Fenga, W. K. Choia, L. K. Beraa, M. Jib, and C. Y. Yangb, “Optical characterization of as-prepared and rapid thermal oxidized partially strain compensated Si1xyGexCy films,” Mater. Sci. Semicond. Process. 4, 655–659 (2001).

[CrossRef]

O. Dorn, H. Bertete-Aguirre, J. G. Berryman, and G. C. Papanicolaou, “A nonlinear inversion method for 3D electromagnetic imaging using adjoint fields,” Inverse Probl. 15, 1523–1558 (1999).

[CrossRef]

S. Chavez-Cerda, “A new approach to Bessel beams,” J. Mod. Opt. 46, 923–930 (1999).

W. Cong, N. Chen, and B. Gu, “Generation of nondiffracting beams by diffractive phase elements,” J. Opt. Soc. Am. 15, 2362–2364 (1998).

[CrossRef]

M. Piana, “On uniqueness for anisotropic inhomogeneous inverse scattering problems,” Inverse Probl. 14, 1565–1579 (1998).

[CrossRef]

K. Hayata, “Are Bessel beams supportable in graded-index media?” Opt. Rev. 3, 299–300 (1996).

[CrossRef]

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).

[CrossRef]

J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).

[CrossRef]

F. Gori, G. Guattari, and C. Padovani, “Bessel-Gauss beams,” Opt. Commun. 64, 491–495 (1987).

[CrossRef]

A. J. Devaney, “A computer simulation study of diffraction tomography,” IEEE Trans. Biomed. Eng. BME-30, 377–386 (1983).

[CrossRef]

A. J. Devaney, “A filtered backprojection algorithm for diffraction tomography,” Ultrason. Imag. 4, 336–350 (1982).

[CrossRef]

R. M. Lewis, “Physical optics inverse diffraction,” IEEE Trans. Antennas Propag. 17, 308–314 (1969).

[CrossRef]

T. Tsai, E. McLeod, and C. B. Arnold, “Generating Bessel beams with a tunable acoustic gradient index of refraction lens,” Proc. SPIE 6326, 63261F (2006).

[CrossRef]

M. M. Méndez Otero, G. C. Martínez Jimnez, M. L. Arroyo Carrasco, M. D. Iturbe Castillo, and E. A. Mart Panameño, “Generation of Bessel-Gauss beams by means of computed generated holograms for Bessel Beams,” in Frontiers in Optics, Technical Digest (CD) (Optical Society of America, 2006), paper JWD129.

W. Fenga, W. K. Choia, L. K. Beraa, M. Jib, and C. Y. Yangb, “Optical characterization of as-prepared and rapid thermal oxidized partially strain compensated Si1xyGexCy films,” Mater. Sci. Semicond. Process. 4, 655–659 (2001).

[CrossRef]

O. Dorn, H. Bertete-Aguirre, J. G. Berryman, and G. C. Papanicolaou, “A nonlinear inversion method for 3D electromagnetic imaging using adjoint fields,” Inverse Probl. 15, 1523–1558 (1999).

[CrossRef]

O. Dorn, H. Bertete-Aguirre, J. G. Berryman, and G. C. Papanicolaou, “A nonlinear inversion method for 3D electromagnetic imaging using adjoint fields,” Inverse Probl. 15, 1523–1558 (1999).

[CrossRef]

F. Cakoni, “A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media,” Inverse Probl. Imaging 1, 443–456 (2007).

J. Canning, “Diffraction-free mode generation and propagation in optical waveguides,” Opt. Commun. 207, 35–39 (2002).

[CrossRef]

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).

[CrossRef]

Y. Lai, J. Ng, H. Yang, D. Han, J. Xiao, Z. Q. Zhang, and C. T. Chang, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).

[CrossRef]

S. Chavez-Cerda, “A new approach to Bessel beams,” J. Mod. Opt. 46, 923–930 (1999).

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).

[CrossRef]

W. Cong, N. Chen, and B. Gu, “Generation of nondiffracting beams by diffractive phase elements,” J. Opt. Soc. Am. 15, 2362–2364 (1998).

[CrossRef]

W. Fenga, W. K. Choia, L. K. Beraa, M. Jib, and C. Y. Yangb, “Optical characterization of as-prepared and rapid thermal oxidized partially strain compensated Si1xyGexCy films,” Mater. Sci. Semicond. Process. 4, 655–659 (2001).

[CrossRef]

W. Cong, N. Chen, and B. Gu, “Generation of nondiffracting beams by diffractive phase elements,” J. Opt. Soc. Am. 15, 2362–2364 (1998).

[CrossRef]

A. J. Devaney, “A computer simulation study of diffraction tomography,” IEEE Trans. Biomed. Eng. BME-30, 377–386 (1983).

[CrossRef]

A. J. Devaney, “A filtered backprojection algorithm for diffraction tomography,” Ultrason. Imag. 4, 336–350 (1982).

[CrossRef]

O. Dorn, H. Bertete-Aguirre, J. G. Berryman, and G. C. Papanicolaou, “A nonlinear inversion method for 3D electromagnetic imaging using adjoint fields,” Inverse Probl. 15, 1523–1558 (1999).

[CrossRef]

Y. Lin, W. Seka, J. H. Eberly, H. Huang, and D. L. Brown, “Experimental investigation of Bessel beam characteristics,” Appl. Opt. 31, 2708–2713 (1992).

[CrossRef]

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).

[CrossRef]

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photon. 4, 780–785 (2010).

[CrossRef]

W. Fenga, W. K. Choia, L. K. Beraa, M. Jib, and C. Y. Yangb, “Optical characterization of as-prepared and rapid thermal oxidized partially strain compensated Si1xyGexCy films,” Mater. Sci. Semicond. Process. 4, 655–659 (2001).

[CrossRef]

I. A. Litvin, M. G. McLaren, and A. Forbes, “Propagation of obstructed Bessel and Bessel-Gauss beams,” Proc. SPIE 7062, 706218 (2008).

[CrossRef]

B. Gang and L. Peijun, “Inverse medium scattering problems for electromagnetic waves,” SIAM J. Appl. Math. 65, 2049–2066 (2005).

[CrossRef]

F. Gori, G. Guattari, and C. Padovani, “Bessel-Gauss beams,” Opt. Commun. 64, 491–495 (1987).

[CrossRef]

W. Cong, N. Chen, and B. Gu, “Generation of nondiffracting beams by diffractive phase elements,” J. Opt. Soc. Am. 15, 2362–2364 (1998).

[CrossRef]

F. Gori, G. Guattari, and C. Padovani, “Bessel-Gauss beams,” Opt. Commun. 64, 491–495 (1987).

[CrossRef]

H. Hadar, “The interior transmission problem for anisotropic Maxwell’s equations and its applications to the inverse problem,” Math. Methods Appl. Sci. 27, 2111–2129 (2004).

[CrossRef]

H. Hadar and P. Monk, “The linear sampling method for solving the electromagnetic inverse medium problem,” Inverse Probl. 18, 891–906 (2002).

[CrossRef]

Y. Lai, J. Ng, H. Yang, D. Han, J. Xiao, Z. Q. Zhang, and C. T. Chang, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).

[CrossRef]

K. Hayata, “Are Bessel beams supportable in graded-index media?” Opt. Rev. 3, 299–300 (1996).

[CrossRef]

M. M. Méndez Otero, G. C. Martínez Jimnez, M. L. Arroyo Carrasco, M. D. Iturbe Castillo, and E. A. Mart Panameño, “Generation of Bessel-Gauss beams by means of computed generated holograms for Bessel Beams,” in Frontiers in Optics, Technical Digest (CD) (Optical Society of America, 2006), paper JWD129.

W. Fenga, W. K. Choia, L. K. Beraa, M. Jib, and C. Y. Yangb, “Optical characterization of as-prepared and rapid thermal oxidized partially strain compensated Si1xyGexCy films,” Mater. Sci. Semicond. Process. 4, 655–659 (2001).

[CrossRef]

S. B. Kang, “Optical and dielectric properties of chalcogenide glasses at terahertz frequencies,” ETRI J. 31, 667–674(2009).

[CrossRef]

Y. Lai, J. Ng, H. Yang, D. Han, J. Xiao, Z. Q. Zhang, and C. T. Chang, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).

[CrossRef]

M. Lei and B. Yao, “Characteristics of beam profiles of Gaussian beam passing through an axicon,” Opt. Commun. 239, 367–372 (2004).

[CrossRef]

U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt. 53, 69–152 (2008).

[CrossRef]

R. M. Lewis, “Physical optics inverse diffraction,” IEEE Trans. Antennas Propag. 17, 308–314 (1969).

[CrossRef]

I. A. Litvin, M. G. McLaren, and A. Forbes, “Propagation of obstructed Bessel and Bessel-Gauss beams,” Proc. SPIE 7062, 706218 (2008).

[CrossRef]

M. M. Méndez Otero, G. C. Martínez Jimnez, M. L. Arroyo Carrasco, M. D. Iturbe Castillo, and E. A. Mart Panameño, “Generation of Bessel-Gauss beams by means of computed generated holograms for Bessel Beams,” in Frontiers in Optics, Technical Digest (CD) (Optical Society of America, 2006), paper JWD129.

M. M. Méndez Otero, G. C. Martínez Jimnez, M. L. Arroyo Carrasco, M. D. Iturbe Castillo, and E. A. Mart Panameño, “Generation of Bessel-Gauss beams by means of computed generated holograms for Bessel Beams,” in Frontiers in Optics, Technical Digest (CD) (Optical Society of America, 2006), paper JWD129.

I. A. Litvin, M. G. McLaren, and A. Forbes, “Propagation of obstructed Bessel and Bessel-Gauss beams,” Proc. SPIE 7062, 706218 (2008).

[CrossRef]

T. Tsai, E. McLeod, and C. B. Arnold, “Generating Bessel beams with a tunable acoustic gradient index of refraction lens,” Proc. SPIE 6326, 63261F (2006).

[CrossRef]

M. M. Méndez Otero, G. C. Martínez Jimnez, M. L. Arroyo Carrasco, M. D. Iturbe Castillo, and E. A. Mart Panameño, “Generation of Bessel-Gauss beams by means of computed generated holograms for Bessel Beams,” in Frontiers in Optics, Technical Digest (CD) (Optical Society of America, 2006), paper JWD129.

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).

[CrossRef]

H. Hadar and P. Monk, “The linear sampling method for solving the electromagnetic inverse medium problem,” Inverse Probl. 18, 891–906 (2002).

[CrossRef]

Y. Lai, J. Ng, H. Yang, D. Han, J. Xiao, Z. Q. Zhang, and C. T. Chang, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).

[CrossRef]

F. Gori, G. Guattari, and C. Padovani, “Bessel-Gauss beams,” Opt. Commun. 64, 491–495 (1987).

[CrossRef]

O. Dorn, H. Bertete-Aguirre, J. G. Berryman, and G. C. Papanicolaou, “A nonlinear inversion method for 3D electromagnetic imaging using adjoint fields,” Inverse Probl. 15, 1523–1558 (1999).

[CrossRef]

B. Gang and L. Peijun, “Inverse medium scattering problems for electromagnetic waves,” SIAM J. Appl. Math. 65, 2049–2066 (2005).

[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).

[CrossRef]

U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt. 53, 69–152 (2008).

[CrossRef]

M. Piana, “On uniqueness for anisotropic inhomogeneous inverse scattering problems,” Inverse Probl. 14, 1565–1579 (1998).

[CrossRef]

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photon. 4, 780–785 (2010).

[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).

[CrossRef]

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).

[CrossRef]

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photon. 4, 780–785 (2010).

[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).

[CrossRef]

T. Tsai, E. McLeod, and C. B. Arnold, “Generating Bessel beams with a tunable acoustic gradient index of refraction lens,” Proc. SPIE 6326, 63261F (2006).

[CrossRef]

Y. Lai, J. Ng, H. Yang, D. Han, J. Xiao, Z. Q. Zhang, and C. T. Chang, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).

[CrossRef]

Y. Lai, J. Ng, H. Yang, D. Han, J. Xiao, Z. Q. Zhang, and C. T. Chang, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).

[CrossRef]

W. Fenga, W. K. Choia, L. K. Beraa, M. Jib, and C. Y. Yangb, “Optical characterization of as-prepared and rapid thermal oxidized partially strain compensated Si1xyGexCy films,” Mater. Sci. Semicond. Process. 4, 655–659 (2001).

[CrossRef]

M. Lei and B. Yao, “Characteristics of beam profiles of Gaussian beam passing through an axicon,” Opt. Commun. 239, 367–372 (2004).

[CrossRef]

A. Zakery, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).

[CrossRef]

Y. Lai, J. Ng, H. Yang, D. Han, J. Xiao, Z. Q. Zhang, and C. T. Chang, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).

[CrossRef]

Y. Lin, W. Seka, J. H. Eberly, H. Huang, and D. L. Brown, “Experimental investigation of Bessel beam characteristics,” Appl. Opt. 31, 2708–2713 (1992).

[CrossRef]

F. Wu, Y. Chen, and D. Guo, “Nanosecond pulsed Bessel-Gauss beam generated directly from Nd:YAG axicon-based resonator,” Appl. Opt. 46, 4943–4947 (2007).

[CrossRef]

H. J. Lee, C. H. Henry, K. J. Orlowsky, R. F. Kazarinov, and T. Y. Kometani, “Refractive-index dispersion of phospho-silicate glass, thermal oxide, and silicon nitride films on silicon,” Appl. Opt. 27, 4104–4109 (1988).

[CrossRef]

S. B. Kang, “Optical and dielectric properties of chalcogenide glasses at terahertz frequencies,” ETRI J. 31, 667–674(2009).

[CrossRef]

R. M. Lewis, “Physical optics inverse diffraction,” IEEE Trans. Antennas Propag. 17, 308–314 (1969).

[CrossRef]

A. J. Devaney, “A computer simulation study of diffraction tomography,” IEEE Trans. Biomed. Eng. BME-30, 377–386 (1983).

[CrossRef]

H. Hadar and P. Monk, “The linear sampling method for solving the electromagnetic inverse medium problem,” Inverse Probl. 18, 891–906 (2002).

[CrossRef]

M. Piana, “On uniqueness for anisotropic inhomogeneous inverse scattering problems,” Inverse Probl. 14, 1565–1579 (1998).

[CrossRef]

O. Dorn, H. Bertete-Aguirre, J. G. Berryman, and G. C. Papanicolaou, “A nonlinear inversion method for 3D electromagnetic imaging using adjoint fields,” Inverse Probl. 15, 1523–1558 (1999).

[CrossRef]

F. Cakoni, “A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media,” Inverse Probl. Imaging 1, 443–456 (2007).

S. Chavez-Cerda, “A new approach to Bessel beams,” J. Mod. Opt. 46, 923–930 (1999).

A. Zakery, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).

[CrossRef]

W. Cong, N. Chen, and B. Gu, “Generation of nondiffracting beams by diffractive phase elements,” J. Opt. Soc. Am. 15, 2362–2364 (1998).

[CrossRef]

W. Fenga, W. K. Choia, L. K. Beraa, M. Jib, and C. Y. Yangb, “Optical characterization of as-prepared and rapid thermal oxidized partially strain compensated Si1xyGexCy films,” Mater. Sci. Semicond. Process. 4, 655–659 (2001).

[CrossRef]

H. Hadar, “The interior transmission problem for anisotropic Maxwell’s equations and its applications to the inverse problem,” Math. Methods Appl. Sci. 27, 2111–2129 (2004).

[CrossRef]

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).

[CrossRef]

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photon. 4, 780–785 (2010).

[CrossRef]

M. Lei and B. Yao, “Characteristics of beam profiles of Gaussian beam passing through an axicon,” Opt. Commun. 239, 367–372 (2004).

[CrossRef]

J. Canning, “Diffraction-free mode generation and propagation in optical waveguides,” Opt. Commun. 207, 35–39 (2002).

[CrossRef]

F. Gori, G. Guattari, and C. Padovani, “Bessel-Gauss beams,” Opt. Commun. 64, 491–495 (1987).

[CrossRef]

K. Hayata, “Are Bessel beams supportable in graded-index media?” Opt. Rev. 3, 299–300 (1996).

[CrossRef]

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).

[CrossRef]

Y. Lai, J. Ng, H. Yang, D. Han, J. Xiao, Z. Q. Zhang, and C. T. Chang, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).

[CrossRef]

T. Tsai, E. McLeod, and C. B. Arnold, “Generating Bessel beams with a tunable acoustic gradient index of refraction lens,” Proc. SPIE 6326, 63261F (2006).

[CrossRef]

I. A. Litvin, M. G. McLaren, and A. Forbes, “Propagation of obstructed Bessel and Bessel-Gauss beams,” Proc. SPIE 7062, 706218 (2008).

[CrossRef]

U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt. 53, 69–152 (2008).

[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).

[CrossRef]

B. Gang and L. Peijun, “Inverse medium scattering problems for electromagnetic waves,” SIAM J. Appl. Math. 65, 2049–2066 (2005).

[CrossRef]

A. J. Devaney, “A filtered backprojection algorithm for diffraction tomography,” Ultrason. Imag. 4, 336–350 (1982).

[CrossRef]

M. M. Méndez Otero, G. C. Martínez Jimnez, M. L. Arroyo Carrasco, M. D. Iturbe Castillo, and E. A. Mart Panameño, “Generation of Bessel-Gauss beams by means of computed generated holograms for Bessel Beams,” in Frontiers in Optics, Technical Digest (CD) (Optical Society of America, 2006), paper JWD129.