Abstract

In this paper, the theoretical sensitivity limit of the localized surface plasmon resonance (LSPR) to the surrounding dielectric environment is discussed. The presented theoretical analysis of the LSPR phenomenon is based on perturbation theory. Derived results can be further simplified assuming quasistatic limit. The developed theory shows that LSPR has a detection capability limit independent of the particle shape or arrangement. For a given structure, sensitivity is directly proportional to the resonance wavelength and depends on the fraction of the electromagnetic energy confined within the sensing volume. This fraction is always less than unity; therefore, one should not expect to find an optimized nanofeature geometry with a dramatic increase in sensitivity at a given wavelength. All theoretical results are supported by finite-difference time-domain calculations for gold nanoparticles of different geometries (rings, split rings, paired rings, and ring sandwiches). Numerical sensitivity calculations based on the shift of the extinction peak are in good agreement with values estimated by perturbation theory. Numerical analysis shows that, for thin (10nm) analyte layers, sensitivity of the LSPR is comparable with a traditional surface plasmon resonance sensor and LSPR has the potential to be significantly less sensitive to temperature fluctuations.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
    [CrossRef]
  2. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Ann. Rev. Phys. Chem. 58, 267–297 (2007).
    [CrossRef]
  3. J. Homola, S. S. Yeea, and Gunter Gauglitz, ”Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3–15(1999).
    [CrossRef]
  4. R. B. M. Schasfoort and A. J. Tudos, Handbook of Surface Plasmon Resonance (Royal Society of Chemistry, 2008).
  5. G. J. Nusz, S. M. Marinakos, A. C. Curry, A. Dahlin, F. Hook, A. Wax, and A. Chilkoti, “Label-free plasmonic detection of biomolecular binding by a single gold nanorod,” Anal. Chem. 80, 984–989 (2008).
    [CrossRef]
  6. G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806 (2009).
    [CrossRef]
  7. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
    [CrossRef]
  8. K. Imura, H Okamoto, and T. Nagahra, “Plasmon mode imaging of single gold nanorods,” J. Am. Chem. Soc. 126, 12730–12731 (2004).
    [CrossRef]
  9. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [CrossRef]
  10. N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem. 74, 504–509 (2002).
    [CrossRef]
  11. N. Nath and A. Chilkoti, “Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size,” Anal. Chem. 76, 5370–5378 (2004).
    [CrossRef]
  12. A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 6961–6968 (2004).
    [CrossRef]
  13. A. L. Schmucker, N. Harris, M. J. Banholzer, M. G. Blaber, K. D. Osberg, G. C. Schatz, and C. A. Mirkin, “Correlating nanorod structure with experimentally measured and theoretically predicted surface plasmon resonance,” ACS Nano 4, 5453–5463 (2010).
    [CrossRef]
  14. G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806 (2009).
    [CrossRef]
  15. K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2, 687–692 (2008).
    [CrossRef]
  16. D. P. Lyvers, J.-M. Moon, A. V. Kildishev, V. M. Shalaev, and A. Wei, “Gold nanorod arrays as plasmonic cavity resonators,” ACS Nano 2, 2569–2576 (2008).
    [CrossRef]
  17. H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008).
    [CrossRef]
  18. C. Yu and J. Irudayaraj, “Quantitative evaluation of sensitivity and selectivity of multiplex nanoSPR biosensor assays”, Biophys. J., 93, 3684–3692 (2007).
    [CrossRef]
  19. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
    [CrossRef]
  20. H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40, 53–62 (2007).
    [CrossRef]
  21. E. Prodan, A. Lee, and P. Nordlander, “The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells,” Chem. Phys. Lett. 360, 325–332 (2002).
    [CrossRef]
  22. E. Prodan and P. Nordlander, “Structural tunability of the plasmon resonances in metallic nanoshells,” Nano Lett. 3, 543–547 (2003).
    [CrossRef]
  23. M. Cao, M. Wang, and N. Gu, “Optimized surface plasmon resonance sensitivity of gold nanoboxes for sensing applications,” J. Phys. Chem. C 113, 1217–1221 (2009).
    [CrossRef]
  24. L. J. Sherry, S.-H. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
    [CrossRef]
  25. Y. Sun and Y. Xia, “Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes,” Anal. Chem. 74, 5297–5305 (2002).
    [CrossRef]
  26. S. R. Beeram and F. P. Zamborini, “Purification of gold nanoplates grown directly on surfaces for enhanced localized surface plasmon resonance biosensing,” ACS Nano 4, 3633–3646(2010).
    [CrossRef]
  27. A. Dmitriev, C. Hagglund, Si Chen, H. Fredriksson, T. Pakizeh, M. Kall, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8, 3893–3898 (2008).
    [CrossRef]
  28. Y. Sonnefraud, N. Verellen, H. Sobhani, G. Vandenbosch, V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4, 1664–1670 (2010).
    [CrossRef]
  29. E. M. Larsson, J. Alegret, M. Kall, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7, 1256–1263 (2007).
    [CrossRef]
  30. F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3, 643–652 (2009).
    [CrossRef]
  31. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
    [CrossRef]
  32. C. M. Dutta, T. A. Ali, D. W. Brandl, T.-H. Park, and P. Nordlander, “Plasmonic properties of a metallic torus,” J. Chem. Phys. 129, 084706 (2008).
    [CrossRef]
  33. A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90, 143105 (2007).
    [CrossRef]
  34. F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).
    [CrossRef]
  35. R. Bukasov and J. S. Shumaker-Parry, “Highly tunable infrared extinction properties of gold nanocrescents,” Nano Lett. 7, 1113–1118 (2007).
    [CrossRef]
  36. M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B 109, 21556–21565 (2005).
    [CrossRef]
  37. M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering,” J. Opt. A 8, S239–S249 (2006).
    [CrossRef]
  38. A. Unger and M. Kreiter, “Detecting molecules with plasmonic resonators—analytic expressions and bounds for the sensitivity and figure of merit,” preprint, http://arxiv.org/abs/1007.0837.
  39. H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A, 415187–5198 (2009).
    [CrossRef]
  40. A. Unger and M. Kreiter, “Analyzing the performance of plasmonic resonators for dielectric sensing,” J. Phys. Chem. C 113, 12243–12251 (2009).
    [CrossRef]
  41. A. Taflove and S. H. Hagness, Computational Electrodynamics: The Finite Difference Time-Domain Method (Artech, 2005).
  42. F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).
    [CrossRef]
  43. Electromagnetic Template Library, http://fdtd.kintechlab.com .
  44. J. M. McMahon, J. Henzie, T. W. Odom, G. C. Schatz, and S. K. Gray, “Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons,” Opt. Express 15, 18119–18129 (2007).
    [CrossRef]
  45. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
    [CrossRef]
  46. http://fdtd.kintechlab.com/en/fitting .
  47. A. Deinega and S. John, “Effective optical response of silicon to sunlight in the finite-difference time-domain method,” Opt. Lett. 37, 112–114 (2012).
    [CrossRef]
  48. A. Vial, “Implementation of the critical points model in the recursive convolution method for dispersive media modeling with the FDTD methods,” J. Opt. A 9, 745–748 (2007).
    [CrossRef]
  49. A. Deinega and I. Valuev, “Long-time behavior of PML absorbing boundaries for layered periodic structures,” Comput. Phys. Commun. 182, 149–151 (2011).
    [CrossRef]
  50. A. Deinega and I. Valuev, “Subpixel smoothing for conductive and dispersive media in the FDTD method,” Opt. Lett. 32, 3429–3431 (2007).
    [CrossRef]
  51. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
    [CrossRef]
  52. Y. Khalavka, J. Becker, and C. Solonnichsen, “Synthesis of rod-shaped gold nanorattles with improved plasmon sensitivity and catalytic activity,” J. Am. Chem. Soc. 131, 1871–1875 (2009).
    [CrossRef]
  53. E. A. Coronado and G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
    [CrossRef]
  54. C. Nehl, H. Liao, and J. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6, 683–688 (2006).
    [CrossRef]
  55. J. McPhillips, A. Murphy, M. Jonsson, W. Hendren, R. Atkinson, H. Fredrik, A. Zayats, and R. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4, 2210–2216 (2010).
    [CrossRef]
  56. L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636–5648 (1998).
    [CrossRef]
  57. M. Svedendahl, S. Chen, A. Dmitriev, and M. Kall, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett. 9, 4428–4433 (2009).
    [CrossRef]
  58. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).
  59. I. Valuev, A. Deinega, and S. Belousov, “Iterative technique for analysis of periodic structures at oblique incidence in the finite-difference time-domain method,” Opt. Lett. 33, 1491–1493 (2008).
    [CrossRef]
  60. D. R. Lide, ed., Handbook of Chemistry Physics, 71st ed. (CRC Press, 1990).
  61. C. R. Yonzon, E. Jeoung, S. Zou, G. C. Schatz, M. Mrksich, and R. P. Van Duyne, “A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of Concanavalin A to a monosaccharide functionalized self-assembled monolayer,” J. Am. Chem. Soc. 126, 12669–12676 (2004).
    [CrossRef]

2012

2011

A. Deinega and I. Valuev, “Long-time behavior of PML absorbing boundaries for layered periodic structures,” Comput. Phys. Commun. 182, 149–151 (2011).
[CrossRef]

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[CrossRef]

2010

A. L. Schmucker, N. Harris, M. J. Banholzer, M. G. Blaber, K. D. Osberg, G. C. Schatz, and C. A. Mirkin, “Correlating nanorod structure with experimentally measured and theoretically predicted surface plasmon resonance,” ACS Nano 4, 5453–5463 (2010).
[CrossRef]

S. R. Beeram and F. P. Zamborini, “Purification of gold nanoplates grown directly on surfaces for enhanced localized surface plasmon resonance biosensing,” ACS Nano 4, 3633–3646(2010).
[CrossRef]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. Vandenbosch, V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4, 1664–1670 (2010).
[CrossRef]

J. McPhillips, A. Murphy, M. Jonsson, W. Hendren, R. Atkinson, H. Fredrik, A. Zayats, and R. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4, 2210–2216 (2010).
[CrossRef]

2009

M. Svedendahl, S. Chen, A. Dmitriev, and M. Kall, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett. 9, 4428–4433 (2009).
[CrossRef]

Y. Khalavka, J. Becker, and C. Solonnichsen, “Synthesis of rod-shaped gold nanorattles with improved plasmon sensitivity and catalytic activity,” J. Am. Chem. Soc. 131, 1871–1875 (2009).
[CrossRef]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3, 643–652 (2009).
[CrossRef]

M. Cao, M. Wang, and N. Gu, “Optimized surface plasmon resonance sensitivity of gold nanoboxes for sensing applications,” J. Phys. Chem. C 113, 1217–1221 (2009).
[CrossRef]

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A, 415187–5198 (2009).
[CrossRef]

A. Unger and M. Kreiter, “Analyzing the performance of plasmonic resonators for dielectric sensing,” J. Phys. Chem. C 113, 12243–12251 (2009).
[CrossRef]

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806 (2009).
[CrossRef]

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806 (2009).
[CrossRef]

2008

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2, 687–692 (2008).
[CrossRef]

D. P. Lyvers, J.-M. Moon, A. V. Kildishev, V. M. Shalaev, and A. Wei, “Gold nanorod arrays as plasmonic cavity resonators,” ACS Nano 2, 2569–2576 (2008).
[CrossRef]

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008).
[CrossRef]

G. J. Nusz, S. M. Marinakos, A. C. Curry, A. Dahlin, F. Hook, A. Wax, and A. Chilkoti, “Label-free plasmonic detection of biomolecular binding by a single gold nanorod,” Anal. Chem. 80, 984–989 (2008).
[CrossRef]

C. M. Dutta, T. A. Ali, D. W. Brandl, T.-H. Park, and P. Nordlander, “Plasmonic properties of a metallic torus,” J. Chem. Phys. 129, 084706 (2008).
[CrossRef]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).
[CrossRef]

A. Dmitriev, C. Hagglund, Si Chen, H. Fredriksson, T. Pakizeh, M. Kall, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8, 3893–3898 (2008).
[CrossRef]

I. Valuev, A. Deinega, and S. Belousov, “Iterative technique for analysis of periodic structures at oblique incidence in the finite-difference time-domain method,” Opt. Lett. 33, 1491–1493 (2008).
[CrossRef]

2007

A. Deinega and I. Valuev, “Subpixel smoothing for conductive and dispersive media in the FDTD method,” Opt. Lett. 32, 3429–3431 (2007).
[CrossRef]

A. Vial, “Implementation of the critical points model in the recursive convolution method for dispersive media modeling with the FDTD methods,” J. Opt. A 9, 745–748 (2007).
[CrossRef]

E. M. Larsson, J. Alegret, M. Kall, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7, 1256–1263 (2007).
[CrossRef]

R. Bukasov and J. S. Shumaker-Parry, “Highly tunable infrared extinction properties of gold nanocrescents,” Nano Lett. 7, 1113–1118 (2007).
[CrossRef]

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90, 143105 (2007).
[CrossRef]

J. M. McMahon, J. Henzie, T. W. Odom, G. C. Schatz, and S. K. Gray, “Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons,” Opt. Express 15, 18119–18129 (2007).
[CrossRef]

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40, 53–62 (2007).
[CrossRef]

C. Yu and J. Irudayaraj, “Quantitative evaluation of sensitivity and selectivity of multiplex nanoSPR biosensor assays”, Biophys. J., 93, 3684–3692 (2007).
[CrossRef]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Ann. Rev. Phys. Chem. 58, 267–297 (2007).
[CrossRef]

2006

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[CrossRef]

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[CrossRef]

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).
[CrossRef]

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[CrossRef]

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering,” J. Opt. A 8, S239–S249 (2006).
[CrossRef]

C. Nehl, H. Liao, and J. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6, 683–688 (2006).
[CrossRef]

2005

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B 109, 21556–21565 (2005).
[CrossRef]

L. J. Sherry, S.-H. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[CrossRef]

2004

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
[CrossRef]

K. Imura, H Okamoto, and T. Nagahra, “Plasmon mode imaging of single gold nanorods,” J. Am. Chem. Soc. 126, 12730–12731 (2004).
[CrossRef]

N. Nath and A. Chilkoti, “Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size,” Anal. Chem. 76, 5370–5378 (2004).
[CrossRef]

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 6961–6968 (2004).
[CrossRef]

C. R. Yonzon, E. Jeoung, S. Zou, G. C. Schatz, M. Mrksich, and R. P. Van Duyne, “A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of Concanavalin A to a monosaccharide functionalized self-assembled monolayer,” J. Am. Chem. Soc. 126, 12669–12676 (2004).
[CrossRef]

2003

E. A. Coronado and G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
[CrossRef]

E. Prodan and P. Nordlander, “Structural tunability of the plasmon resonances in metallic nanoshells,” Nano Lett. 3, 543–547 (2003).
[CrossRef]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

2002

Y. Sun and Y. Xia, “Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes,” Anal. Chem. 74, 5297–5305 (2002).
[CrossRef]

E. Prodan, A. Lee, and P. Nordlander, “The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells,” Chem. Phys. Lett. 360, 325–332 (2002).
[CrossRef]

N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem. 74, 504–509 (2002).
[CrossRef]

1999

J. Homola, S. S. Yeea, and Gunter Gauglitz, ”Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3–15(1999).
[CrossRef]

1998

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636–5648 (1998).
[CrossRef]

Aizpurua, J.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Alegret, J.

E. M. Larsson, J. Alegret, M. Kall, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7, 1256–1263 (2007).
[CrossRef]

Ali, T. A.

C. M. Dutta, T. A. Ali, D. W. Brandl, T.-H. Park, and P. Nordlander, “Plasmonic properties of a metallic torus,” J. Chem. Phys. 129, 084706 (2008).
[CrossRef]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Atkinson, R.

J. McPhillips, A. Murphy, M. Jonsson, W. Hendren, R. Atkinson, H. Fredrik, A. Zayats, and R. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4, 2210–2216 (2010).
[CrossRef]

Banholzer, M. J.

A. L. Schmucker, N. Harris, M. J. Banholzer, M. G. Blaber, K. D. Osberg, G. C. Schatz, and C. A. Mirkin, “Correlating nanorod structure with experimentally measured and theoretically predicted surface plasmon resonance,” ACS Nano 4, 5453–5463 (2010).
[CrossRef]

Barber, P. W.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A, 415187–5198 (2009).
[CrossRef]

Becker, J.

Y. Khalavka, J. Becker, and C. Solonnichsen, “Synthesis of rod-shaped gold nanorattles with improved plasmon sensitivity and catalytic activity,” J. Am. Chem. Soc. 131, 1871–1875 (2009).
[CrossRef]

Beeram, S. R.

S. R. Beeram and F. P. Zamborini, “Purification of gold nanoplates grown directly on surfaces for enhanced localized surface plasmon resonance biosensing,” ACS Nano 4, 3633–3646(2010).
[CrossRef]

Blaber, M. G.

A. L. Schmucker, N. Harris, M. J. Banholzer, M. G. Blaber, K. D. Osberg, G. C. Schatz, and C. A. Mirkin, “Correlating nanorod structure with experimentally measured and theoretically predicted surface plasmon resonance,” ACS Nano 4, 5453–5463 (2010).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).

Brandl, D. W.

C. M. Dutta, T. A. Ali, D. W. Brandl, T.-H. Park, and P. Nordlander, “Plasmonic properties of a metallic torus,” J. Chem. Phys. 129, 084706 (2008).
[CrossRef]

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40, 53–62 (2007).
[CrossRef]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[CrossRef]

Bryant, G. W.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Bukasov, R.

R. Bukasov and J. S. Shumaker-Parry, “Highly tunable infrared extinction properties of gold nanocrescents,” Nano Lett. 7, 1113–1118 (2007).
[CrossRef]

Campbell, C. T.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636–5648 (1998).
[CrossRef]

Cao, M.

M. Cao, M. Wang, and N. Gu, “Optimized surface plasmon resonance sensitivity of gold nanoboxes for sensing applications,” J. Phys. Chem. C 113, 1217–1221 (2009).
[CrossRef]

Chang, S.-H.

L. J. Sherry, S.-H. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[CrossRef]

Chen, H.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008).
[CrossRef]

Chen, S.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Kall, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett. 9, 4428–4433 (2009).
[CrossRef]

Chen, Si

A. Dmitriev, C. Hagglund, Si Chen, H. Fredriksson, T. Pakizeh, M. Kall, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8, 3893–3898 (2008).
[CrossRef]

Chilkoti, A.

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806 (2009).
[CrossRef]

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806 (2009).
[CrossRef]

G. J. Nusz, S. M. Marinakos, A. C. Curry, A. Dahlin, F. Hook, A. Wax, and A. Chilkoti, “Label-free plasmonic detection of biomolecular binding by a single gold nanorod,” Anal. Chem. 80, 984–989 (2008).
[CrossRef]

N. Nath and A. Chilkoti, “Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size,” Anal. Chem. 76, 5370–5378 (2004).
[CrossRef]

N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem. 74, 504–509 (2002).
[CrossRef]

Chinowsky, T. M.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636–5648 (1998).
[CrossRef]

Clark, A. W.

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90, 143105 (2007).
[CrossRef]

Cooper, J. M.

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90, 143105 (2007).
[CrossRef]

Coronado, E. A.

E. A. Coronado and G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
[CrossRef]

Cumming, D. R. S.

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90, 143105 (2007).
[CrossRef]

Curry, A. C.

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806 (2009).
[CrossRef]

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806 (2009).
[CrossRef]

G. J. Nusz, S. M. Marinakos, A. C. Curry, A. Dahlin, F. Hook, A. Wax, and A. Chilkoti, “Label-free plasmonic detection of biomolecular binding by a single gold nanorod,” Anal. Chem. 80, 984–989 (2008).
[CrossRef]

Dahlin, A.

G. J. Nusz, S. M. Marinakos, A. C. Curry, A. Dahlin, F. Hook, A. Wax, and A. Chilkoti, “Label-free plasmonic detection of biomolecular binding by a single gold nanorod,” Anal. Chem. 80, 984–989 (2008).
[CrossRef]

Deinega, A.

Dmitriev, A.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Kall, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett. 9, 4428–4433 (2009).
[CrossRef]

A. Dmitriev, C. Hagglund, Si Chen, H. Fredriksson, T. Pakizeh, M. Kall, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8, 3893–3898 (2008).
[CrossRef]

Dutta, C. M.

C. M. Dutta, T. A. Ali, D. W. Brandl, T.-H. Park, and P. Nordlander, “Plasmonic properties of a metallic torus,” J. Chem. Phys. 129, 084706 (2008).
[CrossRef]

Etchegoin, P. G.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[CrossRef]

Fredrik, H.

J. McPhillips, A. Murphy, M. Jonsson, W. Hendren, R. Atkinson, H. Fredrik, A. Zayats, and R. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4, 2210–2216 (2010).
[CrossRef]

Fredriksson, H.

A. Dmitriev, C. Hagglund, Si Chen, H. Fredriksson, T. Pakizeh, M. Kall, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8, 3893–3898 (2008).
[CrossRef]

Fuentes, A.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2, 687–692 (2008).
[CrossRef]

García de Abajo, F. J.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Gauglitz, Gunter

J. Homola, S. S. Yeea, and Gunter Gauglitz, ”Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3–15(1999).
[CrossRef]

Glidle, A.

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90, 143105 (2007).
[CrossRef]

Gray, S. K.

Gu, N.

M. Cao, M. Wang, and N. Gu, “Optimized surface plasmon resonance sensitivity of gold nanoboxes for sensing applications,” J. Phys. Chem. C 113, 1217–1221 (2009).
[CrossRef]

Haes, A. J.

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 6961–6968 (2004).
[CrossRef]

Hafner, J.

C. Nehl, H. Liao, and J. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6, 683–688 (2006).
[CrossRef]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[CrossRef]

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2, 687–692 (2008).
[CrossRef]

Hagglund, C.

A. Dmitriev, C. Hagglund, Si Chen, H. Fredriksson, T. Pakizeh, M. Kall, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8, 3893–3898 (2008).
[CrossRef]

Hagness, S. H.

A. Taflove and S. H. Hagness, Computational Electrodynamics: The Finite Difference Time-Domain Method (Artech, 2005).

Halas, N. J.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).
[CrossRef]

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40, 53–62 (2007).
[CrossRef]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[CrossRef]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Hanarp, P.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Hao, E.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
[CrossRef]

Hao, F.

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3, 643–652 (2009).
[CrossRef]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).
[CrossRef]

Harris, N.

A. L. Schmucker, N. Harris, M. J. Banholzer, M. G. Blaber, K. D. Osberg, G. C. Schatz, and C. A. Mirkin, “Correlating nanorod structure with experimentally measured and theoretically predicted surface plasmon resonance,” ACS Nano 4, 5453–5463 (2010).
[CrossRef]

Hendren, W.

J. McPhillips, A. Murphy, M. Jonsson, W. Hendren, R. Atkinson, H. Fredrik, A. Zayats, and R. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4, 2210–2216 (2010).
[CrossRef]

Henzie, J.

Hill, S. C.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A, 415187–5198 (2009).
[CrossRef]

Homola, J.

J. Homola, S. S. Yeea, and Gunter Gauglitz, ”Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3–15(1999).
[CrossRef]

Hook, F.

G. J. Nusz, S. M. Marinakos, A. C. Curry, A. Dahlin, F. Hook, A. Wax, and A. Chilkoti, “Label-free plasmonic detection of biomolecular binding by a single gold nanorod,” Anal. Chem. 80, 984–989 (2008).
[CrossRef]

Imura, K.

K. Imura, H Okamoto, and T. Nagahra, “Plasmon mode imaging of single gold nanorods,” J. Am. Chem. Soc. 126, 12730–12731 (2004).
[CrossRef]

Irudayaraj, J.

C. Yu and J. Irudayaraj, “Quantitative evaluation of sensitivity and selectivity of multiplex nanoSPR biosensor assays”, Biophys. J., 93, 3684–3692 (2007).
[CrossRef]

Jeoung, E.

C. R. Yonzon, E. Jeoung, S. Zou, G. C. Schatz, M. Mrksich, and R. P. Van Duyne, “A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of Concanavalin A to a monosaccharide functionalized self-assembled monolayer,” J. Am. Chem. Soc. 126, 12669–12676 (2004).
[CrossRef]

Jin, R.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[CrossRef]

John, S.

Jonsson, M.

J. McPhillips, A. Murphy, M. Jonsson, W. Hendren, R. Atkinson, H. Fredrik, A. Zayats, and R. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4, 2210–2216 (2010).
[CrossRef]

Jung, L. S.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636–5648 (1998).
[CrossRef]

Kall, M.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Kall, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett. 9, 4428–4433 (2009).
[CrossRef]

A. Dmitriev, C. Hagglund, Si Chen, H. Fredriksson, T. Pakizeh, M. Kall, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8, 3893–3898 (2008).
[CrossRef]

E. M. Larsson, J. Alegret, M. Kall, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7, 1256–1263 (2007).
[CrossRef]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Khalavka, Y.

Y. Khalavka, J. Becker, and C. Solonnichsen, “Synthesis of rod-shaped gold nanorattles with improved plasmon sensitivity and catalytic activity,” J. Am. Chem. Soc. 131, 1871–1875 (2009).
[CrossRef]

Kildishev, A. V.

D. P. Lyvers, J.-M. Moon, A. V. Kildishev, V. M. Shalaev, and A. Wei, “Gold nanorod arrays as plasmonic cavity resonators,” ACS Nano 2, 2569–2576 (2008).
[CrossRef]

Kou, X.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008).
[CrossRef]

Kreiter, M.

A. Unger and M. Kreiter, “Analyzing the performance of plasmonic resonators for dielectric sensing,” J. Phys. Chem. C 113, 12243–12251 (2009).
[CrossRef]

Lai, H. M.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A, 415187–5198 (2009).
[CrossRef]

Larsson, E. M.

E. M. Larsson, J. Alegret, M. Kall, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7, 1256–1263 (2007).
[CrossRef]

Lazarides, A. A.

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering,” J. Opt. A 8, S239–S249 (2006).
[CrossRef]

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B 109, 21556–21565 (2005).
[CrossRef]

Le, F.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[CrossRef]

Le Ru, E. C.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[CrossRef]

Lee, A.

E. Prodan, A. Lee, and P. Nordlander, “The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells,” Chem. Phys. Lett. 360, 325–332 (2002).
[CrossRef]

Lee, S.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2, 687–692 (2008).
[CrossRef]

Leung, P. T.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A, 415187–5198 (2009).
[CrossRef]

Liao, H.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2, 687–692 (2008).
[CrossRef]

C. Nehl, H. Liao, and J. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6, 683–688 (2006).
[CrossRef]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Lyvers, D. P.

D. P. Lyvers, J.-M. Moon, A. V. Kildishev, V. M. Shalaev, and A. Wei, “Gold nanorod arrays as plasmonic cavity resonators,” ACS Nano 2, 2569–2576 (2008).
[CrossRef]

Maier, S.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. Vandenbosch, V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4, 1664–1670 (2010).
[CrossRef]

Maier, S. A.

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3, 643–652 (2009).
[CrossRef]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).
[CrossRef]

Mar, M. N.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636–5648 (1998).
[CrossRef]

Marinakos, S. M.

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806 (2009).
[CrossRef]

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806 (2009).
[CrossRef]

G. J. Nusz, S. M. Marinakos, A. C. Curry, A. Dahlin, F. Hook, A. Wax, and A. Chilkoti, “Label-free plasmonic detection of biomolecular binding by a single gold nanorod,” Anal. Chem. 80, 984–989 (2008).
[CrossRef]

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[CrossRef]

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2, 687–692 (2008).
[CrossRef]

McMahon, J. M.

McPhillips, J.

J. McPhillips, A. Murphy, M. Jonsson, W. Hendren, R. Atkinson, H. Fredrik, A. Zayats, and R. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4, 2210–2216 (2010).
[CrossRef]

Meyer, M.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[CrossRef]

Miller, M. M.

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering,” J. Opt. A 8, S239–S249 (2006).
[CrossRef]

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B 109, 21556–21565 (2005).
[CrossRef]

Mirkin, C. A.

A. L. Schmucker, N. Harris, M. J. Banholzer, M. G. Blaber, K. D. Osberg, G. C. Schatz, and C. A. Mirkin, “Correlating nanorod structure with experimentally measured and theoretically predicted surface plasmon resonance,” ACS Nano 4, 5453–5463 (2010).
[CrossRef]

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[CrossRef]

Moon, J.-M.

D. P. Lyvers, J.-M. Moon, A. V. Kildishev, V. M. Shalaev, and A. Wei, “Gold nanorod arrays as plasmonic cavity resonators,” ACS Nano 2, 2569–2576 (2008).
[CrossRef]

Moshchalkov, V.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. Vandenbosch, V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4, 1664–1670 (2010).
[CrossRef]

Mrksich, M.

C. R. Yonzon, E. Jeoung, S. Zou, G. C. Schatz, M. Mrksich, and R. P. Van Duyne, “A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of Concanavalin A to a monosaccharide functionalized self-assembled monolayer,” J. Am. Chem. Soc. 126, 12669–12676 (2004).
[CrossRef]

Murphy, A.

J. McPhillips, A. Murphy, M. Jonsson, W. Hendren, R. Atkinson, H. Fredrik, A. Zayats, and R. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4, 2210–2216 (2010).
[CrossRef]

Nagahra, T.

K. Imura, H Okamoto, and T. Nagahra, “Plasmon mode imaging of single gold nanorods,” J. Am. Chem. Soc. 126, 12730–12731 (2004).
[CrossRef]

Nath, N.

N. Nath and A. Chilkoti, “Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size,” Anal. Chem. 76, 5370–5378 (2004).
[CrossRef]

N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem. 74, 504–509 (2002).
[CrossRef]

Nehl, C.

C. Nehl, H. Liao, and J. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6, 683–688 (2006).
[CrossRef]

Nehl, C. L.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2, 687–692 (2008).
[CrossRef]

Ni, W.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008).
[CrossRef]

Nordlander, P.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. Vandenbosch, V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4, 1664–1670 (2010).
[CrossRef]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3, 643–652 (2009).
[CrossRef]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).
[CrossRef]

C. M. Dutta, T. A. Ali, D. W. Brandl, T.-H. Park, and P. Nordlander, “Plasmonic properties of a metallic torus,” J. Chem. Phys. 129, 084706 (2008).
[CrossRef]

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40, 53–62 (2007).
[CrossRef]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[CrossRef]

E. Prodan and P. Nordlander, “Structural tunability of the plasmon resonances in metallic nanoshells,” Nano Lett. 3, 543–547 (2003).
[CrossRef]

E. Prodan, A. Lee, and P. Nordlander, “The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells,” Chem. Phys. Lett. 360, 325–332 (2002).
[CrossRef]

Nusz, G. J.

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806 (2009).
[CrossRef]

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806 (2009).
[CrossRef]

G. J. Nusz, S. M. Marinakos, A. C. Curry, A. Dahlin, F. Hook, A. Wax, and A. Chilkoti, “Label-free plasmonic detection of biomolecular binding by a single gold nanorod,” Anal. Chem. 80, 984–989 (2008).
[CrossRef]

Odom, T. W.

Okamoto, H

K. Imura, H Okamoto, and T. Nagahra, “Plasmon mode imaging of single gold nanorods,” J. Am. Chem. Soc. 126, 12730–12731 (2004).
[CrossRef]

Osberg, K. D.

A. L. Schmucker, N. Harris, M. J. Banholzer, M. G. Blaber, K. D. Osberg, G. C. Schatz, and C. A. Mirkin, “Correlating nanorod structure with experimentally measured and theoretically predicted surface plasmon resonance,” ACS Nano 4, 5453–5463 (2010).
[CrossRef]

Pakizeh, T.

A. Dmitriev, C. Hagglund, Si Chen, H. Fredriksson, T. Pakizeh, M. Kall, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8, 3893–3898 (2008).
[CrossRef]

Park, T.-H.

C. M. Dutta, T. A. Ali, D. W. Brandl, T.-H. Park, and P. Nordlander, “Plasmonic properties of a metallic torus,” J. Chem. Phys. 129, 084706 (2008).
[CrossRef]

Pollard, R.

J. McPhillips, A. Murphy, M. Jonsson, W. Hendren, R. Atkinson, H. Fredrik, A. Zayats, and R. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4, 2210–2216 (2010).
[CrossRef]

Prodan, E.

E. Prodan and P. Nordlander, “Structural tunability of the plasmon resonances in metallic nanoshells,” Nano Lett. 3, 543–547 (2003).
[CrossRef]

E. Prodan, A. Lee, and P. Nordlander, “The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells,” Chem. Phys. Lett. 360, 325–332 (2002).
[CrossRef]

Rostro, B. C.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2, 687–692 (2008).
[CrossRef]

Schasfoort, R. B. M.

R. B. M. Schasfoort and A. J. Tudos, Handbook of Surface Plasmon Resonance (Royal Society of Chemistry, 2008).

Schatz, G. C.

A. L. Schmucker, N. Harris, M. J. Banholzer, M. G. Blaber, K. D. Osberg, G. C. Schatz, and C. A. Mirkin, “Correlating nanorod structure with experimentally measured and theoretically predicted surface plasmon resonance,” ACS Nano 4, 5453–5463 (2010).
[CrossRef]

J. M. McMahon, J. Henzie, T. W. Odom, G. C. Schatz, and S. K. Gray, “Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons,” Opt. Express 15, 18119–18129 (2007).
[CrossRef]

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[CrossRef]

L. J. Sherry, S.-H. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[CrossRef]

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 6961–6968 (2004).
[CrossRef]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
[CrossRef]

C. R. Yonzon, E. Jeoung, S. Zou, G. C. Schatz, M. Mrksich, and R. P. Van Duyne, “A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of Concanavalin A to a monosaccharide functionalized self-assembled monolayer,” J. Am. Chem. Soc. 126, 12669–12676 (2004).
[CrossRef]

E. A. Coronado and G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
[CrossRef]

Schmucker, A. L.

A. L. Schmucker, N. Harris, M. J. Banholzer, M. G. Blaber, K. D. Osberg, G. C. Schatz, and C. A. Mirkin, “Correlating nanorod structure with experimentally measured and theoretically predicted surface plasmon resonance,” ACS Nano 4, 5453–5463 (2010).
[CrossRef]

Scully, P. T.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2, 687–692 (2008).
[CrossRef]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Shalaev, V. M.

D. P. Lyvers, J.-M. Moon, A. V. Kildishev, V. M. Shalaev, and A. Wei, “Gold nanorod arrays as plasmonic cavity resonators,” ACS Nano 2, 2569–2576 (2008).
[CrossRef]

Shen, Y. R.

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).
[CrossRef]

Sheridan, A. K.

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90, 143105 (2007).
[CrossRef]

Sherry, L. J.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[CrossRef]

L. J. Sherry, S.-H. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[CrossRef]

Shumaker-Parry, J. S.

R. Bukasov and J. S. Shumaker-Parry, “Highly tunable infrared extinction properties of gold nanocrescents,” Nano Lett. 7, 1113–1118 (2007).
[CrossRef]

Sobhani, H.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. Vandenbosch, V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4, 1664–1670 (2010).
[CrossRef]

Solonnichsen, C.

Y. Khalavka, J. Becker, and C. Solonnichsen, “Synthesis of rod-shaped gold nanorattles with improved plasmon sensitivity and catalytic activity,” J. Am. Chem. Soc. 131, 1871–1875 (2009).
[CrossRef]

Sonnefraud, Y.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. Vandenbosch, V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4, 1664–1670 (2010).
[CrossRef]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3, 643–652 (2009).
[CrossRef]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).
[CrossRef]

Sun, Y.

Y. Sun and Y. Xia, “Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes,” Anal. Chem. 74, 5297–5305 (2002).
[CrossRef]

Sutherland, D. S.

A. Dmitriev, C. Hagglund, Si Chen, H. Fredriksson, T. Pakizeh, M. Kall, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8, 3893–3898 (2008).
[CrossRef]

E. M. Larsson, J. Alegret, M. Kall, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7, 1256–1263 (2007).
[CrossRef]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Svedendahl, M.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Kall, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett. 9, 4428–4433 (2009).
[CrossRef]

Taflove, A.

A. Taflove and S. H. Hagness, Computational Electrodynamics: The Finite Difference Time-Domain Method (Artech, 2005).

Tudos, A. J.

R. B. M. Schasfoort and A. J. Tudos, Handbook of Surface Plasmon Resonance (Royal Society of Chemistry, 2008).

Unger, A.

A. Unger and M. Kreiter, “Analyzing the performance of plasmonic resonators for dielectric sensing,” J. Phys. Chem. C 113, 12243–12251 (2009).
[CrossRef]

Valuev, I.

A. Deinega and I. Valuev, “Long-time behavior of PML absorbing boundaries for layered periodic structures,” Comput. Phys. Commun. 182, 149–151 (2011).
[CrossRef]

A. Deinega and I. Valuev, “Subpixel smoothing for conductive and dispersive media in the FDTD method,” Opt. Lett. 32, 3429–3431 (2007).
[CrossRef]

Van Dorpe, P.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. Vandenbosch, V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4, 1664–1670 (2010).
[CrossRef]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3, 643–652 (2009).
[CrossRef]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).
[CrossRef]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Ann. Rev. Phys. Chem. 58, 267–297 (2007).
[CrossRef]

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[CrossRef]

L. J. Sherry, S.-H. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[CrossRef]

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 6961–6968 (2004).
[CrossRef]

C. R. Yonzon, E. Jeoung, S. Zou, G. C. Schatz, M. Mrksich, and R. P. Van Duyne, “A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of Concanavalin A to a monosaccharide functionalized self-assembled monolayer,” J. Am. Chem. Soc. 126, 12669–12676 (2004).
[CrossRef]

Vandenbosch, G.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. Vandenbosch, V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4, 1664–1670 (2010).
[CrossRef]

Verellen, N.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. Vandenbosch, V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4, 1664–1670 (2010).
[CrossRef]

Vial, A.

A. Vial, “Implementation of the critical points model in the recursive convolution method for dispersive media modeling with the FDTD methods,” J. Opt. A 9, 745–748 (2007).
[CrossRef]

Wang, F.

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).
[CrossRef]

Wang, H.

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40, 53–62 (2007).
[CrossRef]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[CrossRef]

Wang, J.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008).
[CrossRef]

Wang, M.

M. Cao, M. Wang, and N. Gu, “Optimized surface plasmon resonance sensitivity of gold nanoboxes for sensing applications,” J. Phys. Chem. C 113, 1217–1221 (2009).
[CrossRef]

Wax, A.

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806 (2009).
[CrossRef]

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806 (2009).
[CrossRef]

G. J. Nusz, S. M. Marinakos, A. C. Curry, A. Dahlin, F. Hook, A. Wax, and A. Chilkoti, “Label-free plasmonic detection of biomolecular binding by a single gold nanorod,” Anal. Chem. 80, 984–989 (2008).
[CrossRef]

Wei, A.

D. P. Lyvers, J.-M. Moon, A. V. Kildishev, V. M. Shalaev, and A. Wei, “Gold nanorod arrays as plasmonic cavity resonators,” ACS Nano 2, 2569–2576 (2008).
[CrossRef]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Ann. Rev. Phys. Chem. 58, 267–297 (2007).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).

Xia, Y.

Y. Sun and Y. Xia, “Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes,” Anal. Chem. 74, 5297–5305 (2002).
[CrossRef]

Yang, Z.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008).
[CrossRef]

Yee, S. S.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636–5648 (1998).
[CrossRef]

Yeea, S. S.

J. Homola, S. S. Yeea, and Gunter Gauglitz, ”Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3–15(1999).
[CrossRef]

Yonzon, C. R.

C. R. Yonzon, E. Jeoung, S. Zou, G. C. Schatz, M. Mrksich, and R. P. Van Duyne, “A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of Concanavalin A to a monosaccharide functionalized self-assembled monolayer,” J. Am. Chem. Soc. 126, 12669–12676 (2004).
[CrossRef]

Young, K.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A, 415187–5198 (2009).
[CrossRef]

Yu, C.

C. Yu and J. Irudayaraj, “Quantitative evaluation of sensitivity and selectivity of multiplex nanoSPR biosensor assays”, Biophys. J., 93, 3684–3692 (2007).
[CrossRef]

Zamborini, F. P.

S. R. Beeram and F. P. Zamborini, “Purification of gold nanoplates grown directly on surfaces for enhanced localized surface plasmon resonance biosensing,” ACS Nano 4, 3633–3646(2010).
[CrossRef]

Zayats, A.

J. McPhillips, A. Murphy, M. Jonsson, W. Hendren, R. Atkinson, H. Fredrik, A. Zayats, and R. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4, 2210–2216 (2010).
[CrossRef]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Zou, S.

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 6961–6968 (2004).
[CrossRef]

C. R. Yonzon, E. Jeoung, S. Zou, G. C. Schatz, M. Mrksich, and R. P. Van Duyne, “A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of Concanavalin A to a monosaccharide functionalized self-assembled monolayer,” J. Am. Chem. Soc. 126, 12669–12676 (2004).
[CrossRef]

Acc. Chem. Res.

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40, 53–62 (2007).
[CrossRef]

ACS Nano

S. R. Beeram and F. P. Zamborini, “Purification of gold nanoplates grown directly on surfaces for enhanced localized surface plasmon resonance biosensing,” ACS Nano 4, 3633–3646(2010).
[CrossRef]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. Vandenbosch, V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. Maier, “Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4, 1664–1670 (2010).
[CrossRef]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3, 643–652 (2009).
[CrossRef]

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806 (2009).
[CrossRef]

A. L. Schmucker, N. Harris, M. J. Banholzer, M. G. Blaber, K. D. Osberg, G. C. Schatz, and C. A. Mirkin, “Correlating nanorod structure with experimentally measured and theoretically predicted surface plasmon resonance,” ACS Nano 4, 5453–5463 (2010).
[CrossRef]

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806 (2009).
[CrossRef]

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2, 687–692 (2008).
[CrossRef]

D. P. Lyvers, J.-M. Moon, A. V. Kildishev, V. M. Shalaev, and A. Wei, “Gold nanorod arrays as plasmonic cavity resonators,” ACS Nano 2, 2569–2576 (2008).
[CrossRef]

J. McPhillips, A. Murphy, M. Jonsson, W. Hendren, R. Atkinson, H. Fredrik, A. Zayats, and R. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4, 2210–2216 (2010).
[CrossRef]

Anal. Chem.

N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem. 74, 504–509 (2002).
[CrossRef]

N. Nath and A. Chilkoti, “Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size,” Anal. Chem. 76, 5370–5378 (2004).
[CrossRef]

G. J. Nusz, S. M. Marinakos, A. C. Curry, A. Dahlin, F. Hook, A. Wax, and A. Chilkoti, “Label-free plasmonic detection of biomolecular binding by a single gold nanorod,” Anal. Chem. 80, 984–989 (2008).
[CrossRef]

Y. Sun and Y. Xia, “Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes,” Anal. Chem. 74, 5297–5305 (2002).
[CrossRef]

Ann. Rev. Phys. Chem.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Ann. Rev. Phys. Chem. 58, 267–297 (2007).
[CrossRef]

Appl. Phys. Lett.

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90, 143105 (2007).
[CrossRef]

Biophys. J.

C. Yu and J. Irudayaraj, “Quantitative evaluation of sensitivity and selectivity of multiplex nanoSPR biosensor assays”, Biophys. J., 93, 3684–3692 (2007).
[CrossRef]

Chem. Phys. Lett.

E. Prodan, A. Lee, and P. Nordlander, “The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells,” Chem. Phys. Lett. 360, 325–332 (2002).
[CrossRef]

Chem. Rev.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[CrossRef]

Comput. Phys. Commun.

A. Deinega and I. Valuev, “Long-time behavior of PML absorbing boundaries for layered periodic structures,” Comput. Phys. Commun. 182, 149–151 (2011).
[CrossRef]

J. Am. Chem. Soc.

Y. Khalavka, J. Becker, and C. Solonnichsen, “Synthesis of rod-shaped gold nanorattles with improved plasmon sensitivity and catalytic activity,” J. Am. Chem. Soc. 131, 1871–1875 (2009).
[CrossRef]

C. R. Yonzon, E. Jeoung, S. Zou, G. C. Schatz, M. Mrksich, and R. P. Van Duyne, “A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of Concanavalin A to a monosaccharide functionalized self-assembled monolayer,” J. Am. Chem. Soc. 126, 12669–12676 (2004).
[CrossRef]

K. Imura, H Okamoto, and T. Nagahra, “Plasmon mode imaging of single gold nanorods,” J. Am. Chem. Soc. 126, 12730–12731 (2004).
[CrossRef]

J. Chem. Phys.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
[CrossRef]

C. M. Dutta, T. A. Ali, D. W. Brandl, T.-H. Park, and P. Nordlander, “Plasmonic properties of a metallic torus,” J. Chem. Phys. 129, 084706 (2008).
[CrossRef]

E. A. Coronado and G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
[CrossRef]

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[CrossRef]

J. Opt. A

A. Vial, “Implementation of the critical points model in the recursive convolution method for dispersive media modeling with the FDTD methods,” J. Opt. A 9, 745–748 (2007).
[CrossRef]

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering,” J. Opt. A 8, S239–S249 (2006).
[CrossRef]

J. Phys. Chem. B

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 6961–6968 (2004).
[CrossRef]

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B 109, 21556–21565 (2005).
[CrossRef]

J. Phys. Chem. C

A. Unger and M. Kreiter, “Analyzing the performance of plasmonic resonators for dielectric sensing,” J. Phys. Chem. C 113, 12243–12251 (2009).
[CrossRef]

M. Cao, M. Wang, and N. Gu, “Optimized surface plasmon resonance sensitivity of gold nanoboxes for sensing applications,” J. Phys. Chem. C 113, 1217–1221 (2009).
[CrossRef]

Langmuir

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008).
[CrossRef]

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636–5648 (1998).
[CrossRef]

Nano Lett.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Kall, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett. 9, 4428–4433 (2009).
[CrossRef]

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[CrossRef]

C. Nehl, H. Liao, and J. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6, 683–688 (2006).
[CrossRef]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6, 827–832 (2006).
[CrossRef]

L. J. Sherry, S.-H. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[CrossRef]

E. Prodan and P. Nordlander, “Structural tunability of the plasmon resonances in metallic nanoshells,” Nano Lett. 3, 543–547 (2003).
[CrossRef]

E. M. Larsson, J. Alegret, M. Kall, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7, 1256–1263 (2007).
[CrossRef]

A. Dmitriev, C. Hagglund, Si Chen, H. Fredriksson, T. Pakizeh, M. Kall, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8, 3893–3898 (2008).
[CrossRef]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).
[CrossRef]

R. Bukasov and J. S. Shumaker-Parry, “Highly tunable infrared extinction properties of gold nanocrescents,” Nano Lett. 7, 1113–1118 (2007).
[CrossRef]

Nat. Mater.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A, 415187–5198 (2009).
[CrossRef]

Phys. Rev. Lett.

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).
[CrossRef]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Sens. Actuators B Chem.

J. Homola, S. S. Yeea, and Gunter Gauglitz, ”Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3–15(1999).
[CrossRef]

Other

R. B. M. Schasfoort and A. J. Tudos, Handbook of Surface Plasmon Resonance (Royal Society of Chemistry, 2008).

A. Unger and M. Kreiter, “Detecting molecules with plasmonic resonators—analytic expressions and bounds for the sensitivity and figure of merit,” preprint, http://arxiv.org/abs/1007.0837.

Electromagnetic Template Library, http://fdtd.kintechlab.com .

http://fdtd.kintechlab.com/en/fitting .

A. Taflove and S. H. Hagness, Computational Electrodynamics: The Finite Difference Time-Domain Method (Artech, 2005).

D. R. Lide, ed., Handbook of Chemistry Physics, 71st ed. (CRC Press, 1990).

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

FDTD simulation three-dimensional cell (cross-sectional view). Scale is not preserved.

Fig. 2.
Fig. 2.

Geometries under consideration.

Fig. 3.
Fig. 3.

Extinction cross-section spectra and near-field distributions |E|/|Einc| (far from a nanoparticle |E|/|Einc|=1) at the resonance wavelength for ring and split rings of two cut orientations (outer diameter d=75nm, width w=10nm, height h=20nm).

Fig. 4.
Fig. 4.

Calculated LSPR sensitivities for gold nanoparticles in water as a function of the resonance wavelength λ0. Analyte layer 20nm. Solid line, Eq. (22). Dots of the same shape represent same geometry with different dimensions.

Fig. 5.
Fig. 5.

Experimental bulk sensitivities for various geometries as a function of the resonance wavelength. Table 1 provides numerical values, geometrical details, and corresponding references. Solid line, Eq. (22).

Fig. 6.
Fig. 6.

Sensitivities of the nanostructures with and without normalization by filling factor. Geometries and numerical values for λ0, S,f˜, and Spt/f˜ are provided in Table 2.

Fig. 7.
Fig. 7.

Sensitivity of the LSPR and SPR. Analyte thickness 20 nm (upper) and 10 nm (lower).

Fig. 8.
Fig. 8.

Sensitivity of the LSPR ring sandwich (individual ring geometry, outer diameter d=125nm, width w=100nm, height h=50nm) and SPR as a function of the analyte thickness. Resonance wavelength for both sensors is 770 nm.

Fig. 9.
Fig. 9.

S/N ratio for the LSPR- and SPR-based sensors probing 20 nm analyte layer in water. ΔT is 10 mK, and Δn in the analyte layer is 105.

Tables (2)

Tables Icon

Table 1. Experimentally Measured Resonance Wavelengths λ0 (in nm) and Sensitivities S (in nm/RIU)

Tables Icon

Table 2. Sensitivities S (Shifts in Spectra) and Spt [Field Integration according to Eq. (12)], Fill Factors f˜ [according to Eq. (13)], and Normalized Sensitivities Spt/f˜ for the Subset of Investigated Geometriesa

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

S=ΔωΔn.
×(×E0)ω02ε(ω0)E0=0.
×(×(E0+E1))-(ω02+2ω0Δω+Δω2)×(ε(ω0)+Δε+εω|ω0Δω)(E0+E1)=0.
×(×E1)ω02ε(ω0)E12Δωω0ε(ω0)(E0+E1)ω02(Δε+Δωεω|ω0)(E0+E1)=0.
VE0(×(×E1)ω02ε(ω0)E1)dV=2Δωω0VE0ε(ω0)(E0+E1)dV+ω02VE0(Δε+Δωεω|ω0)(E0+E1)dV.
dS(E0iE1irE0irE1i)=2Δωω0VE0ε(ω0)(E0+E1)dV+ω02VE0(Δε+Δωεω|ω0)×(E0+E1)dV,
Eir(eiωr/r)r=iω(eiωr/r)iωEi,
E1ir=(E0i+E1i)rE0iriω0E1i+iΔωE0i,
dS(E0iE1irE0irE1i)=iΔωE0iE0idS.
iΔωE02dS=2Δωω0VE0ε(ω0)(E0+E1)dV+ω02VE0(Δε+Δωεω|ω0)(E0+E1)dV.
ω02VE0ΔεE0dV=Δω(ω0VE0ε(ω0)E0dVω0VE0(ωε)ω|ω0E0dViE02dS).
Δωω0=VΔεE02dVV(ε(ω0)+(ωε)ω|ω0)E02dV+iω0E02dS.
S=2ω0nVaεE02dVV(ε(ω0)+(ωε)ω|ω0)E02dV+iω0E02dS,
S=2ω0nf˜VdεE02dVV(ε(ω0)+(ωε)ω|ω0)E02dV+iω0E02dS,
f˜=VaεE02dVVdεE02dV.
S=2ω0nf˜VdεE02dV2Vε(ω0)E02dV+iω0E02dS.
S=2ω0nfVdε|E0|2dVV(ε(ω0)+(ωε)ω|ω0)|E0|2dV,
f=Vaε|E0|2dVVdε|E0|2dV,
Vε(ω0)|E0|2dV=0
Vdε(ω0)|E0|2dV=Vmε(ω0)|E0|2dV.
SQS=ω0nf2Vdε|E0|2dVVdε|E0|2dV+Vm(ωε)ω|ω0|E0|2dV.
q=Vm(ωεω)|E0|2dVVdε|E0|2dV=Vm(ωεω)|E0|2dVVmε|E0|2dV=(ωεm)ωεm.
SQS=ω0nf21+q,
SQSλ=Δλ0Δn=λ0nf21+q.
SQSλλ0n21+q.
q=ωp2+ε0ω2ωp2ε0ω21+2ε0ω2ωp2>1.
SQSλ<λ0n.
GLSPR,SPR=SN=ΔλSΔλN=Slayer20nm·ΔnASbulk·ΔnT,
GLSPRGSPR=SlayerLSPRSbulkLSPR·SbulkSPRSlayerSPRSbulkSPRSlayerSPR8at750nm.

Metrics