Abstract

We report three-dimensional tomographic reconstruction of optical parameters for the mesoscopic light scattering regime from experimentally obtained datasets by using polarized light. We present a numerically inexpensive approximation to the radiative transfer equation governing the polarized light transport. This approximation is employed in the reconstruction algorithm, which computes two optical parameters by using parallel and perpendicular polarizations of transmitted light. Datasets were obtained by imaging a scattering phantom embedding highly absorbing inclusions. Reconstruction results are presented and discussed.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Shaw, D. A. Agard, Y. Hiraoko, and J. W. Sedat, “Tilted view reconstruction in optical microscopy, three-dimensional reconstruction of Drosophila melanogaster embryo nuclei,” Biophys. J. 55, 101–110 (1989).
    [CrossRef]
  2. C. S. Brown, D. H. Burns, F. A. Spelman, and A. C. Nelson, “Computed tomography from optical projections for three-dimensional reconstruction of thick objects,” Appl. Opt. 31, 6247–6254 (1992).
    [CrossRef]
  3. J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
    [CrossRef]
  4. J. Sharpe, “Optical projection tomography as a new tool for studying embryo anatomy,” J. Anatomy 202, 175–181 (2003).
    [CrossRef]
  5. M. Fauver, E. J. Seibel, J. R. Rahn, M. G. Meyer, F. W. Patten, T. Neumann, and A. C. Nelson, “Three-dimensional imaging of single isolated cell nuclei using optical projection tomography,” Opt. Express 13, 4210–4223 (2005).
    [CrossRef]
  6. C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “Live imaging of drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5, 45–47 (2007).
    [CrossRef]
  7. H. Meyer, A. Darrell, A. Metaxakis, C. Savakis, and J. Ripoll, “Optical projection tomography for in-vivo imaging of drosophila melanogaster,” Microsc. Anal. 22, 19–21 (2008).
  8. J. McGinty, H. B. Taylor, L. Chen, L. Bugeon, J. R. Lamb, M. J. Dallman, and P. M. W. French, “In vivo fluorescence lifetime optical projection tomography,” Biomed. Opt. Express 2, 1340–1350 (2011).
    [CrossRef]
  9. U. J. Birk, A. Darrell, N. Konstantinides, A. Sarasa-Renedo, and J. Ripoll, “Improved reconstructions and generalized filtered back projection for optical projection tomography,” Appl. Opt. 50, 392–398 (2011).
    [CrossRef]
  10. M. Rieckher, U. J. Birk, H. Meyer, J. Ripoll, and N. Tavernarakis, “Microscopic optical projection tomography in vivo,” PLoS ONE 6, e18963 (2011).
  11. M. Oldham, H. Sakhalkar, T. Oliver, Y. M. Wang, J. P. Kirpatrick, Y. Cao, C. Badea, G. A. Johnson, and M. Dewhirst, “Three-dimensional imaging of xenograft tumors using optical computed and emission tomography,” Med. Phys. 33, 3193–3202 (2006).
    [CrossRef]
  12. A. E. Papadakis, G. Zacharakis, T. G. Maris, J. Ripoll, and John Damilakis, “A new optical-CT apparatus for 3-D radiotherapy dosimetry: is free space scanning feasible?” IEEE Trans. Med. Imaging 29, 1204–1212 (2010).
    [CrossRef]
  13. A. E. Papadakis, T. G. Maris, G. Zacharakis, V. Papoutsaki, C. Varveris, J. Ripoll, and J. Damilakis, “Technical note: afast laser-based optical-CT scanner for three-dimensional radiation dosimetry,” Med. Phys. 38, 830–835 (2011).
    [CrossRef]
  14. X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7, 279–290 (2002).
    [CrossRef]
  15. S. Chandrasekhar, Radiative Transfer (Dover, 1960).
  16. V. V. Sobolev, A Treatise on Radiative Transfer (D. Van Nostrand, 1963).
  17. V. Y. Soloviev and S. R. Arridge, “Optical tomography in weakly scattering media in the presence of highly scattering inclusions,” Biomed. Opt. Express 2, 440–451 (2011).
    [CrossRef]
  18. V. Y. Soloviev and S. R. Arridge, “Fluorescence lifetime optical tomography in weakly scattering media in the presence of highly scattering inclusions,” J. Opt. Soc. Am. A 28, 1513–1523(2011).
    [CrossRef]
  19. V. Y. Soloviev, A. Bassi, L. Fieramonti, G. Valentini, C. D’ Andrea, and S. R. Arridge, “Angularly selective mesoscopic tomography,” Phys. Rev. E 84, 051915 (2011).
    [CrossRef]
  20. R. L. Siddon, “Fast calculation of the exact radiological path for a three-dimensional CT array,” Med. Phys. 12, 252–255 (1985).
    [CrossRef]
  21. N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13, 044036 (2008).
    [CrossRef]
  22. M. Ahmad, S. Alali, A. Kim, M. F. G. Wood, M. Ikram, and I. Alex Vitkin, “Do different turbid media with matched bulk optical properties also exhibit similar polarization properties?,” Biomed. Opt. Express 2, 3248–3258 (2011).
    [CrossRef]
  23. S. R. Deans, The Radon Transform and Some of Its Applications (Dover, 2007).
  24. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  25. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
    [CrossRef]
  26. S. R. Arridge and J. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25, 123010 (2009).
    [CrossRef]
  27. V. Y. Soloviev, C. D’Andrea, P. S. Mohan, G. Valentini, R. Cubeddu, and S. R. Arridge, “Fluorescence lifetime optical tomography with discontinuous Galerkin discretisation scheme,” Biomed. Opt. Express 1, 998–1013 (2010).
    [CrossRef]

2011

M. Rieckher, U. J. Birk, H. Meyer, J. Ripoll, and N. Tavernarakis, “Microscopic optical projection tomography in vivo,” PLoS ONE 6, e18963 (2011).

A. E. Papadakis, T. G. Maris, G. Zacharakis, V. Papoutsaki, C. Varveris, J. Ripoll, and J. Damilakis, “Technical note: afast laser-based optical-CT scanner for three-dimensional radiation dosimetry,” Med. Phys. 38, 830–835 (2011).
[CrossRef]

V. Y. Soloviev, A. Bassi, L. Fieramonti, G. Valentini, C. D’ Andrea, and S. R. Arridge, “Angularly selective mesoscopic tomography,” Phys. Rev. E 84, 051915 (2011).
[CrossRef]

U. J. Birk, A. Darrell, N. Konstantinides, A. Sarasa-Renedo, and J. Ripoll, “Improved reconstructions and generalized filtered back projection for optical projection tomography,” Appl. Opt. 50, 392–398 (2011).
[CrossRef]

V. Y. Soloviev and S. R. Arridge, “Optical tomography in weakly scattering media in the presence of highly scattering inclusions,” Biomed. Opt. Express 2, 440–451 (2011).
[CrossRef]

J. McGinty, H. B. Taylor, L. Chen, L. Bugeon, J. R. Lamb, M. J. Dallman, and P. M. W. French, “In vivo fluorescence lifetime optical projection tomography,” Biomed. Opt. Express 2, 1340–1350 (2011).
[CrossRef]

V. Y. Soloviev and S. R. Arridge, “Fluorescence lifetime optical tomography in weakly scattering media in the presence of highly scattering inclusions,” J. Opt. Soc. Am. A 28, 1513–1523(2011).
[CrossRef]

M. Ahmad, S. Alali, A. Kim, M. F. G. Wood, M. Ikram, and I. Alex Vitkin, “Do different turbid media with matched bulk optical properties also exhibit similar polarization properties?,” Biomed. Opt. Express 2, 3248–3258 (2011).
[CrossRef]

2010

V. Y. Soloviev, C. D’Andrea, P. S. Mohan, G. Valentini, R. Cubeddu, and S. R. Arridge, “Fluorescence lifetime optical tomography with discontinuous Galerkin discretisation scheme,” Biomed. Opt. Express 1, 998–1013 (2010).
[CrossRef]

A. E. Papadakis, G. Zacharakis, T. G. Maris, J. Ripoll, and John Damilakis, “A new optical-CT apparatus for 3-D radiotherapy dosimetry: is free space scanning feasible?” IEEE Trans. Med. Imaging 29, 1204–1212 (2010).
[CrossRef]

2009

S. R. Arridge and J. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25, 123010 (2009).
[CrossRef]

2008

H. Meyer, A. Darrell, A. Metaxakis, C. Savakis, and J. Ripoll, “Optical projection tomography for in-vivo imaging of drosophila melanogaster,” Microsc. Anal. 22, 19–21 (2008).

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13, 044036 (2008).
[CrossRef]

2007

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “Live imaging of drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5, 45–47 (2007).
[CrossRef]

2006

M. Oldham, H. Sakhalkar, T. Oliver, Y. M. Wang, J. P. Kirpatrick, Y. Cao, C. Badea, G. A. Johnson, and M. Dewhirst, “Three-dimensional imaging of xenograft tumors using optical computed and emission tomography,” Med. Phys. 33, 3193–3202 (2006).
[CrossRef]

2005

2003

J. Sharpe, “Optical projection tomography as a new tool for studying embryo anatomy,” J. Anatomy 202, 175–181 (2003).
[CrossRef]

2002

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7, 279–290 (2002).
[CrossRef]

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef]

1999

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

1992

1989

P. J. Shaw, D. A. Agard, Y. Hiraoko, and J. W. Sedat, “Tilted view reconstruction in optical microscopy, three-dimensional reconstruction of Drosophila melanogaster embryo nuclei,” Biophys. J. 55, 101–110 (1989).
[CrossRef]

1985

R. L. Siddon, “Fast calculation of the exact radiological path for a three-dimensional CT array,” Med. Phys. 12, 252–255 (1985).
[CrossRef]

Agard, D. A.

P. J. Shaw, D. A. Agard, Y. Hiraoko, and J. W. Sedat, “Tilted view reconstruction in optical microscopy, three-dimensional reconstruction of Drosophila melanogaster embryo nuclei,” Biophys. J. 55, 101–110 (1989).
[CrossRef]

Ahlgren, U.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef]

Ahmad, M.

Alali, S.

Alex Vitkin, I.

Arridge, S. R.

Badea, C.

M. Oldham, H. Sakhalkar, T. Oliver, Y. M. Wang, J. P. Kirpatrick, Y. Cao, C. Badea, G. A. Johnson, and M. Dewhirst, “Three-dimensional imaging of xenograft tumors using optical computed and emission tomography,” Med. Phys. 33, 3193–3202 (2006).
[CrossRef]

Baldock, R.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef]

Bassi, A.

V. Y. Soloviev, A. Bassi, L. Fieramonti, G. Valentini, C. D’ Andrea, and S. R. Arridge, “Angularly selective mesoscopic tomography,” Phys. Rev. E 84, 051915 (2011).
[CrossRef]

Birk, U. J.

M. Rieckher, U. J. Birk, H. Meyer, J. Ripoll, and N. Tavernarakis, “Microscopic optical projection tomography in vivo,” PLoS ONE 6, e18963 (2011).

U. J. Birk, A. Darrell, N. Konstantinides, A. Sarasa-Renedo, and J. Ripoll, “Improved reconstructions and generalized filtered back projection for optical projection tomography,” Appl. Opt. 50, 392–398 (2011).
[CrossRef]

Brown, C. S.

Bugeon, L.

Burns, D. H.

Cao, Y.

M. Oldham, H. Sakhalkar, T. Oliver, Y. M. Wang, J. P. Kirpatrick, Y. Cao, C. Badea, G. A. Johnson, and M. Dewhirst, “Three-dimensional imaging of xenograft tumors using optical computed and emission tomography,” Med. Phys. 33, 3193–3202 (2006).
[CrossRef]

Chandrasekhar, S.

S. Chandrasekhar, Radiative Transfer (Dover, 1960).

Chen, L.

Cubeddu, R.

D’ Andrea, C.

V. Y. Soloviev, A. Bassi, L. Fieramonti, G. Valentini, C. D’ Andrea, and S. R. Arridge, “Angularly selective mesoscopic tomography,” Phys. Rev. E 84, 051915 (2011).
[CrossRef]

D’Andrea, C.

Dallman, M. J.

Damilakis, J.

A. E. Papadakis, T. G. Maris, G. Zacharakis, V. Papoutsaki, C. Varveris, J. Ripoll, and J. Damilakis, “Technical note: afast laser-based optical-CT scanner for three-dimensional radiation dosimetry,” Med. Phys. 38, 830–835 (2011).
[CrossRef]

Damilakis, John

A. E. Papadakis, G. Zacharakis, T. G. Maris, J. Ripoll, and John Damilakis, “A new optical-CT apparatus for 3-D radiotherapy dosimetry: is free space scanning feasible?” IEEE Trans. Med. Imaging 29, 1204–1212 (2010).
[CrossRef]

Darrell, A.

U. J. Birk, A. Darrell, N. Konstantinides, A. Sarasa-Renedo, and J. Ripoll, “Improved reconstructions and generalized filtered back projection for optical projection tomography,” Appl. Opt. 50, 392–398 (2011).
[CrossRef]

H. Meyer, A. Darrell, A. Metaxakis, C. Savakis, and J. Ripoll, “Optical projection tomography for in-vivo imaging of drosophila melanogaster,” Microsc. Anal. 22, 19–21 (2008).

Davidson, D.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef]

Deans, S. R.

S. R. Deans, The Radon Transform and Some of Its Applications (Dover, 2007).

Dewhirst, M.

M. Oldham, H. Sakhalkar, T. Oliver, Y. M. Wang, J. P. Kirpatrick, Y. Cao, C. Badea, G. A. Johnson, and M. Dewhirst, “Three-dimensional imaging of xenograft tumors using optical computed and emission tomography,” Med. Phys. 33, 3193–3202 (2006).
[CrossRef]

Fauver, M.

Fieramonti, L.

V. Y. Soloviev, A. Bassi, L. Fieramonti, G. Valentini, C. D’ Andrea, and S. R. Arridge, “Angularly selective mesoscopic tomography,” Phys. Rev. E 84, 051915 (2011).
[CrossRef]

French, P. M. W.

Ghosh, N.

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13, 044036 (2008).
[CrossRef]

Hecksher-Sorensen, J.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef]

Hill, B.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef]

Hiraoko, Y.

P. J. Shaw, D. A. Agard, Y. Hiraoko, and J. W. Sedat, “Tilted view reconstruction in optical microscopy, three-dimensional reconstruction of Drosophila melanogaster embryo nuclei,” Biophys. J. 55, 101–110 (1989).
[CrossRef]

Ikram, M.

Johnson, G. A.

M. Oldham, H. Sakhalkar, T. Oliver, Y. M. Wang, J. P. Kirpatrick, Y. Cao, C. Badea, G. A. Johnson, and M. Dewhirst, “Three-dimensional imaging of xenograft tumors using optical computed and emission tomography,” Med. Phys. 33, 3193–3202 (2006).
[CrossRef]

Kim, A.

Kirpatrick, J. P.

M. Oldham, H. Sakhalkar, T. Oliver, Y. M. Wang, J. P. Kirpatrick, Y. Cao, C. Badea, G. A. Johnson, and M. Dewhirst, “Three-dimensional imaging of xenograft tumors using optical computed and emission tomography,” Med. Phys. 33, 3193–3202 (2006).
[CrossRef]

Konstantinides, N.

Lamb, J. R.

Maris, T. G.

A. E. Papadakis, T. G. Maris, G. Zacharakis, V. Papoutsaki, C. Varveris, J. Ripoll, and J. Damilakis, “Technical note: afast laser-based optical-CT scanner for three-dimensional radiation dosimetry,” Med. Phys. 38, 830–835 (2011).
[CrossRef]

A. E. Papadakis, G. Zacharakis, T. G. Maris, J. Ripoll, and John Damilakis, “A new optical-CT apparatus for 3-D radiotherapy dosimetry: is free space scanning feasible?” IEEE Trans. Med. Imaging 29, 1204–1212 (2010).
[CrossRef]

McGinty, J.

Metaxakis, A.

H. Meyer, A. Darrell, A. Metaxakis, C. Savakis, and J. Ripoll, “Optical projection tomography for in-vivo imaging of drosophila melanogaster,” Microsc. Anal. 22, 19–21 (2008).

Meyer, H.

M. Rieckher, U. J. Birk, H. Meyer, J. Ripoll, and N. Tavernarakis, “Microscopic optical projection tomography in vivo,” PLoS ONE 6, e18963 (2011).

H. Meyer, A. Darrell, A. Metaxakis, C. Savakis, and J. Ripoll, “Optical projection tomography for in-vivo imaging of drosophila melanogaster,” Microsc. Anal. 22, 19–21 (2008).

Meyer, M. G.

Mohan, P. S.

Nelson, A. C.

Neumann, T.

Ntziachristos, V.

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “Live imaging of drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5, 45–47 (2007).
[CrossRef]

Oldham, M.

M. Oldham, H. Sakhalkar, T. Oliver, Y. M. Wang, J. P. Kirpatrick, Y. Cao, C. Badea, G. A. Johnson, and M. Dewhirst, “Three-dimensional imaging of xenograft tumors using optical computed and emission tomography,” Med. Phys. 33, 3193–3202 (2006).
[CrossRef]

Oliver, T.

M. Oldham, H. Sakhalkar, T. Oliver, Y. M. Wang, J. P. Kirpatrick, Y. Cao, C. Badea, G. A. Johnson, and M. Dewhirst, “Three-dimensional imaging of xenograft tumors using optical computed and emission tomography,” Med. Phys. 33, 3193–3202 (2006).
[CrossRef]

Papadakis, A. E.

A. E. Papadakis, T. G. Maris, G. Zacharakis, V. Papoutsaki, C. Varveris, J. Ripoll, and J. Damilakis, “Technical note: afast laser-based optical-CT scanner for three-dimensional radiation dosimetry,” Med. Phys. 38, 830–835 (2011).
[CrossRef]

A. E. Papadakis, G. Zacharakis, T. G. Maris, J. Ripoll, and John Damilakis, “A new optical-CT apparatus for 3-D radiotherapy dosimetry: is free space scanning feasible?” IEEE Trans. Med. Imaging 29, 1204–1212 (2010).
[CrossRef]

Papoutsaki, V.

A. E. Papadakis, T. G. Maris, G. Zacharakis, V. Papoutsaki, C. Varveris, J. Ripoll, and J. Damilakis, “Technical note: afast laser-based optical-CT scanner for three-dimensional radiation dosimetry,” Med. Phys. 38, 830–835 (2011).
[CrossRef]

Patten, F. W.

Perrimon, N.

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “Live imaging of drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5, 45–47 (2007).
[CrossRef]

Perry, P.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef]

Pitsouli, C.

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “Live imaging of drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5, 45–47 (2007).
[CrossRef]

Rahn, J. R.

Razansky, D.

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “Live imaging of drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5, 45–47 (2007).
[CrossRef]

Rieckher, M.

M. Rieckher, U. J. Birk, H. Meyer, J. Ripoll, and N. Tavernarakis, “Microscopic optical projection tomography in vivo,” PLoS ONE 6, e18963 (2011).

Ripoll, J.

M. Rieckher, U. J. Birk, H. Meyer, J. Ripoll, and N. Tavernarakis, “Microscopic optical projection tomography in vivo,” PLoS ONE 6, e18963 (2011).

U. J. Birk, A. Darrell, N. Konstantinides, A. Sarasa-Renedo, and J. Ripoll, “Improved reconstructions and generalized filtered back projection for optical projection tomography,” Appl. Opt. 50, 392–398 (2011).
[CrossRef]

A. E. Papadakis, T. G. Maris, G. Zacharakis, V. Papoutsaki, C. Varveris, J. Ripoll, and J. Damilakis, “Technical note: afast laser-based optical-CT scanner for three-dimensional radiation dosimetry,” Med. Phys. 38, 830–835 (2011).
[CrossRef]

A. E. Papadakis, G. Zacharakis, T. G. Maris, J. Ripoll, and John Damilakis, “A new optical-CT apparatus for 3-D radiotherapy dosimetry: is free space scanning feasible?” IEEE Trans. Med. Imaging 29, 1204–1212 (2010).
[CrossRef]

H. Meyer, A. Darrell, A. Metaxakis, C. Savakis, and J. Ripoll, “Optical projection tomography for in-vivo imaging of drosophila melanogaster,” Microsc. Anal. 22, 19–21 (2008).

Ross, A.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef]

Sakhalkar, H.

M. Oldham, H. Sakhalkar, T. Oliver, Y. M. Wang, J. P. Kirpatrick, Y. Cao, C. Badea, G. A. Johnson, and M. Dewhirst, “Three-dimensional imaging of xenograft tumors using optical computed and emission tomography,” Med. Phys. 33, 3193–3202 (2006).
[CrossRef]

Sarasa-Renedo, A.

Savakis, C.

H. Meyer, A. Darrell, A. Metaxakis, C. Savakis, and J. Ripoll, “Optical projection tomography for in-vivo imaging of drosophila melanogaster,” Microsc. Anal. 22, 19–21 (2008).

Schotland, J.

S. R. Arridge and J. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25, 123010 (2009).
[CrossRef]

Sedat, J. W.

P. J. Shaw, D. A. Agard, Y. Hiraoko, and J. W. Sedat, “Tilted view reconstruction in optical microscopy, three-dimensional reconstruction of Drosophila melanogaster embryo nuclei,” Biophys. J. 55, 101–110 (1989).
[CrossRef]

Seibel, E. J.

Sharpe, J.

J. Sharpe, “Optical projection tomography as a new tool for studying embryo anatomy,” J. Anatomy 202, 175–181 (2003).
[CrossRef]

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef]

Shaw, P. J.

P. J. Shaw, D. A. Agard, Y. Hiraoko, and J. W. Sedat, “Tilted view reconstruction in optical microscopy, three-dimensional reconstruction of Drosophila melanogaster embryo nuclei,” Biophys. J. 55, 101–110 (1989).
[CrossRef]

Siddon, R. L.

R. L. Siddon, “Fast calculation of the exact radiological path for a three-dimensional CT array,” Med. Phys. 12, 252–255 (1985).
[CrossRef]

Sobolev, V. V.

V. V. Sobolev, A Treatise on Radiative Transfer (D. Van Nostrand, 1963).

Soloviev, V. Y.

Spelman, F. A.

Tavernarakis, N.

M. Rieckher, U. J. Birk, H. Meyer, J. Ripoll, and N. Tavernarakis, “Microscopic optical projection tomography in vivo,” PLoS ONE 6, e18963 (2011).

Taylor, H. B.

Valentini, G.

V. Y. Soloviev, A. Bassi, L. Fieramonti, G. Valentini, C. D’ Andrea, and S. R. Arridge, “Angularly selective mesoscopic tomography,” Phys. Rev. E 84, 051915 (2011).
[CrossRef]

V. Y. Soloviev, C. D’Andrea, P. S. Mohan, G. Valentini, R. Cubeddu, and S. R. Arridge, “Fluorescence lifetime optical tomography with discontinuous Galerkin discretisation scheme,” Biomed. Opt. Express 1, 998–1013 (2010).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).

Varveris, C.

A. E. Papadakis, T. G. Maris, G. Zacharakis, V. Papoutsaki, C. Varveris, J. Ripoll, and J. Damilakis, “Technical note: afast laser-based optical-CT scanner for three-dimensional radiation dosimetry,” Med. Phys. 38, 830–835 (2011).
[CrossRef]

Vinegoni, C.

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “Live imaging of drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5, 45–47 (2007).
[CrossRef]

Vitkin, I. A.

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13, 044036 (2008).
[CrossRef]

Wang, L. V.

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7, 279–290 (2002).
[CrossRef]

Wang, X.

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7, 279–290 (2002).
[CrossRef]

Wang, Y. M.

M. Oldham, H. Sakhalkar, T. Oliver, Y. M. Wang, J. P. Kirpatrick, Y. Cao, C. Badea, G. A. Johnson, and M. Dewhirst, “Three-dimensional imaging of xenograft tumors using optical computed and emission tomography,” Med. Phys. 33, 3193–3202 (2006).
[CrossRef]

Wood, M. F. G.

M. Ahmad, S. Alali, A. Kim, M. F. G. Wood, M. Ikram, and I. Alex Vitkin, “Do different turbid media with matched bulk optical properties also exhibit similar polarization properties?,” Biomed. Opt. Express 2, 3248–3258 (2011).
[CrossRef]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13, 044036 (2008).
[CrossRef]

Zacharakis, G.

A. E. Papadakis, T. G. Maris, G. Zacharakis, V. Papoutsaki, C. Varveris, J. Ripoll, and J. Damilakis, “Technical note: afast laser-based optical-CT scanner for three-dimensional radiation dosimetry,” Med. Phys. 38, 830–835 (2011).
[CrossRef]

A. E. Papadakis, G. Zacharakis, T. G. Maris, J. Ripoll, and John Damilakis, “A new optical-CT apparatus for 3-D radiotherapy dosimetry: is free space scanning feasible?” IEEE Trans. Med. Imaging 29, 1204–1212 (2010).
[CrossRef]

Appl. Opt.

Biomed. Opt. Express

Biophys. J.

P. J. Shaw, D. A. Agard, Y. Hiraoko, and J. W. Sedat, “Tilted view reconstruction in optical microscopy, three-dimensional reconstruction of Drosophila melanogaster embryo nuclei,” Biophys. J. 55, 101–110 (1989).
[CrossRef]

IEEE Trans. Med. Imaging

A. E. Papadakis, G. Zacharakis, T. G. Maris, J. Ripoll, and John Damilakis, “A new optical-CT apparatus for 3-D radiotherapy dosimetry: is free space scanning feasible?” IEEE Trans. Med. Imaging 29, 1204–1212 (2010).
[CrossRef]

Inverse Probl.

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

S. R. Arridge and J. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25, 123010 (2009).
[CrossRef]

J. Anatomy

J. Sharpe, “Optical projection tomography as a new tool for studying embryo anatomy,” J. Anatomy 202, 175–181 (2003).
[CrossRef]

J. Biomed. Opt.

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13, 044036 (2008).
[CrossRef]

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7, 279–290 (2002).
[CrossRef]

J. Opt. Soc. Am. A

Med. Phys.

A. E. Papadakis, T. G. Maris, G. Zacharakis, V. Papoutsaki, C. Varveris, J. Ripoll, and J. Damilakis, “Technical note: afast laser-based optical-CT scanner for three-dimensional radiation dosimetry,” Med. Phys. 38, 830–835 (2011).
[CrossRef]

M. Oldham, H. Sakhalkar, T. Oliver, Y. M. Wang, J. P. Kirpatrick, Y. Cao, C. Badea, G. A. Johnson, and M. Dewhirst, “Three-dimensional imaging of xenograft tumors using optical computed and emission tomography,” Med. Phys. 33, 3193–3202 (2006).
[CrossRef]

R. L. Siddon, “Fast calculation of the exact radiological path for a three-dimensional CT array,” Med. Phys. 12, 252–255 (1985).
[CrossRef]

Microsc. Anal.

H. Meyer, A. Darrell, A. Metaxakis, C. Savakis, and J. Ripoll, “Optical projection tomography for in-vivo imaging of drosophila melanogaster,” Microsc. Anal. 22, 19–21 (2008).

Nat. Methods

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “Live imaging of drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5, 45–47 (2007).
[CrossRef]

Opt. Express

Phys. Rev. E

V. Y. Soloviev, A. Bassi, L. Fieramonti, G. Valentini, C. D’ Andrea, and S. R. Arridge, “Angularly selective mesoscopic tomography,” Phys. Rev. E 84, 051915 (2011).
[CrossRef]

PLoS ONE

M. Rieckher, U. J. Birk, H. Meyer, J. Ripoll, and N. Tavernarakis, “Microscopic optical projection tomography in vivo,” PLoS ONE 6, e18963 (2011).

Science

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef]

Other

S. Chandrasekhar, Radiative Transfer (Dover, 1960).

V. V. Sobolev, A Treatise on Radiative Transfer (D. Van Nostrand, 1963).

S. R. Deans, The Radon Transform and Some of Its Applications (Dover, 2007).

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).

Supplementary Material (1)

» Media 1: AVI (2648 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

The coordinate system for referring to the state of polarization of the incident and the scattered light in single scattering. The reference plane contains the direction of the incident, s0, and the scattered light, s. E and E refer to components of electric vector parallel and perpendicular to the reference plane, respectively. E(0) and E(0) denote components of electric vector of incident radiation.

Fig. 2.
Fig. 2.

Spherical system of coordinates in the velocity space. The unit vector s0 denotes the direction of the incident ray of light; s and s are directions of scattered light rays. Unit vectors e, e, e, and e denote parallel and perpendicular vectors of two reference planes, respectively. Vectors e(0) and e(0) define polarization of the incident radiation.

Fig. 3.
Fig. 3.

Camera’s images displaying I and I scattered on an object embedded within a weakly scattering cylinder.

Fig. 4.
Fig. 4.

Slices showing reconstruction results of the scattering and absorbing object imbedded in the weakly scattering cylinder at three different heights. The first row, (a)–(c), displays the transport coefficient μ at heights z={6.5,7.5,9.5}cm. The second row, (d)–(f), shows reconstructed albedo λ at the same heights.

Fig. 5.
Fig. 5.

(a) Isosurface of the transport coefficient μ. (b) Isosurface of the albedo λ.

Fig. 6.
Fig. 6.

Schematic representation of the OPT setup, showing the main optical components and their configuration.

Fig. 7.
Fig. 7.

A few experimental images of the phantom taken by the CCD camera. Initial position is shown, which corresponds to the rotation of the phantom by 0°. (a)–(d) The first row shows recorded images of the parallel component of the intensity I. (e)–(h) The second row displays the perpendicular component I. Each column shows scattered and transmitted light for different amount of intralipid added to the phantom.

Fig. 8.
Fig. 8.

Reconstruction results for four different concentrations of intralipid added to the cylindrical phantom. Plate 1 displays optical parameters with 0.1 ml of intralipid added; plates 2, 3, and 4 show optical parameters with 0.5, 1.0, and 3.0 ml added correspondingly. (a) and (b) on each plate present central slices of the transport coefficient µ and the albedo λ, respectively. (c) and (d) show isosurfaces of µ and λ, correspondingly.

Equations (42)

Equations on this page are rendered with MathJax. Learn more.

s·I+μ˜I=λμB,
B=14π(4π)P(s,s)I(s)d2s+14πP(s,s0)I0(s0).
I=(I,I,U,V)T.
I=|E|2,
I=|E|2,
U=2Re(EE*),
V=2Im(EE*).
s=(sinθcosφ,sinθsinφ,cosθ)T,
e=sθ=(cosθcosφ,cosθsinφ,sinθ)T,
e=1sinθsφ=(sinφ,cosφ0)T,
e·e=sinθsinθ+cosθcosθcos(φφ),
e·e=cosθsin(φφ),
e·e=cosθsin(φφ),
e·e=cos(φφ),
P=32(p00p01p020p10p11p120p20p21p220000p33),
p00=(e·e)2,p01=(e·e)2,p02=(e·e)(e·e),p10=(e·e)2,p11=(e·e)2,p12=(e·e)(e·e),p20=2(e·e)(e·e),p21=2(e·e)(e·e),p22=s·s+2(e·e)(e·e),p33=s·s.
I(ψψψU)+3(qqqU)·s,
ψ=14π(4π)I(s)d2s,
q=14π(4π)sI(s)d2s,
B=34[(1/3+sin2θ)ψ+cos2θψ]+34(qU·e)sin2θ+B(0),
B=14(ψ+3ψ)+B(0),
BU=12qU·(ss0cosθ)+BU(0),
B(0)=(1/4π)P(s,s0)I0(s0).
·κψ+(μ˜λμ)ψ=λμ4(ψψ)+λμψ(0),
·κψ+(μ˜λμ)ψ=λμ4(ψψ)+λμψ(0),
κ=1/3μ˜,
ψ(0)=116π(I(0)+I(0)),
ψ(0)=316π(I(0)+I(0)).
·qU+μ˜ψU=0,
ψU+(3μ˜λμ2)qU+λμ2(s0·qU)s0=0,
I(r,s)=I0|s·s0=1+0lmaxλ(rsl)μ(rsl)×B(rsl,s)exp(0lμ˜(rsl)dl)dl,
B=34(1/3+sin2θcos2θ1/31)(ψψ)+38π((e·e0)2(e·e0)2(e·e0)2(e·e0)2)(I(0)I(0)),
F=ς(ω)(E+L)dω+ϒ.
E=ξ(s)d2sVχ(r)|IeI|2d3r,
ξ(s)=0n<Nδ(ssn),
χ(r)=0m<Mσmδ(rrm),ς(ω)=0s<Sδ(ωωs),
L=Reξ(s)J,s·I+μ˜IλμBd2s,
ϒ=12(αμΔμ2+αλΔλ2),
sn·J*+μ˜J*=2χ(r)(IeI)*.
μk+1=μk+αμ1fμ,λk+1=λk+αλ1fλ,
fμ=Re(λBI)·J*ξ(s)d2s,fλ=μReB·J*ξ(s)d2s.
αμ,λ1=Cj(k)E1/2fμ,λ1,

Metrics