Abstract

The range of variation in environmental stimuli is much larger than the visual system can represent. It is therefore sensible for the system to adjust its responses to the momentary input statistics of the environment, such as when our pupils contract to limit the light entering the eye. Previous evidence indicates that the visual system increasingly centers responses on the mean of the visual input and scales responses to its variation during adaptation. To what degree does adaptation to a stimulus varying in luminance over time result in such adjustment of responses? The first two experiments were designed to test whether sensitivity to changes in the amplitude and the mean of a 9.6° central patch varying sinusoidally in luminance at 0.6 Hz would increase or decrease with adaptation. This was also tested for a dynamic peripheral stimulus (random patches rotating on the screen) to test to what extent the effects uncovered in the first two experiments reflect retinotopic mechanisms. Sensitivity to changes in mean and amplitude of the temporal luminance variation increased sharply the longer the adaptation to the variation, both for the large patch and the peripheral patches. Adaptation to luminance variation leads to increased sensitivity to temporal luminance variation for both central and peripheral presentation, the latter result ruling retinotopic mechanisms out as sole explanations for the adaptation effects.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Neisser, Cognitive Psychology (Apple-Century-Crofts, 1967).
  2. C. Koch and S. Ullman, “Shifts in selective visual attention: towards the underlying neural circuitry,” Hum. Neurobiol. 4, 219–227 (1985).
  3. K. Nakayama, “The iconic bottleneck and the tenuous link between early visual processing and perception,” in Vision: Coding and Efficiency, C. Blakemore, ed. (Cambridge University, 1990), pp. 411–422.
  4. R. Desimone and J. Duncan, “Neural mechanisms of selective visual attention,” Annu. Rev. Neurosci. 18, 193–222 (1995).
    [CrossRef]
  5. H. E. Egeth and S. Yantis, “Visual attention: control, representation, and time course,” Annu. Rev. Psychol. 48, 269–297 (1997).
    [CrossRef]
  6. H. E. Pashler, The Psychology of Attention (MIT, 1998).
  7. Á. Kristjánsson, “Rapid learning in attention shifts—a review,” Vis. Cogn. 13, 324–362 (2006).
    [CrossRef]
  8. G. Fechner, Elements of Psychophysics (Holt, Rinehart, and Winston, 1966).
  9. H. Barlow, “A theory about the functional role and synaptic mechanism of visual after-effects,” In Vision: Coding and Efficiency, C. Blakemore, ed. (Cambridge University, 1990), pp. 363–375.
  10. C. W. G. Clifford and K. Langley, “A model of temporal adaptation in fly motion vision,” Vis. Res. 36, 2595–2608 (1996).
    [CrossRef]
  11. P. J. Bex, S. Beddingham, and S. T. Hammett, “Apparent speed and speed sensitivity during adaptation to motion,” J. Opt. Soc. Am. 16, 2817–2824 (1999).
    [CrossRef]
  12. Á. Kristjánsson, “Increased sensitivity to speed changes during adaptation to first-order, but not to second-order motion,” Vis. Res. 41, 1825–1832 (2001).
    [CrossRef]
  13. C. W. G. Clifford and P. Wenderoth, “Adaptation to temporal modulation can enhance differential speed sensitivity,” Vis. Res. 39, 4324–4331 (1999).
    [CrossRef]
  14. Á Kristjánsson, “The functional benefits of tilt adaptation,” Seeing Perceiving 24, 37–51 (2011).
    [CrossRef]
  15. D. Regan and K. I. Beverley, “Postadaptation orientation discrimination” J. Opt. Soc. Am. A 2, 147–155 (1985).
    [CrossRef]
  16. J. Chen, H. Yang, A. B. Wang, and F. Fang, “Perceptual consequences of face viewpoint adaptation: face viewpoint aftereffect, changes of differential sensitivity to face view, and their relationship,” J. Vision 10(3):12, 1–11 (2010).
    [CrossRef]
  17. M. J. Wainwright, “Visual adaptation as optimal information transmission,” Vis. Res. 39, 3960–3974 (1999).
    [CrossRef]
  18. M. A. Webster and J. D. Mollon, “Adaptation and the color statistics of natural images,” Vis. Res. 37, 3283–3298 (1997).
    [CrossRef]
  19. H. Helson, “Fundamental problems in color vision. I. The principle governing changes in hue, saturation and lightness of non-selective samples in chromatic illumination,” J. Exp. Psychol. 23, 439–476 (1938).
    [CrossRef]
  20. H. HelsonAdaptation-Level Theory: An Experimental and Systematic Approach to Behavior (Harper & Row, 1964).
  21. K. J. W. Craik, “The effect of adaptation on differential brightness discrimination,” J. Physiol. 92, 406–421 (1938).
  22. C. W. G. Clifford, P. Wenderoth, and B. Spehar, “A functional angle on some after-effects in cortical vision,” Proc. R. Soc. B 267, 1705–1710 (2000).
    [CrossRef]
  23. C. W. G. Clifford, “Functional ideas about adaptation applied to spatial and motion vision,” in Fitting the Mind to the World: Adaptation and After-effects in High-Level VisionC. W. G. Clifford and G. Rhodes., eds. (Oxford University, 2007), pp. 47–82.
  24. S. M. Anstis, “Visual adaptation to gradual changes of intensity,” Science 155, 710–712 (1967).
    [CrossRef]
  25. R. Comtois, Vision Shell PPC [Software Libraries], (R. Comtois, 2000).
  26. S. Schieting and L. Spillmann, “Flicker adaptation in the peripheral retina,” Vis. Res. 27, 277–284 (1987).
    [CrossRef]
  27. S. Anstis, “Adaptation to peripheral flicker,” Vis. Res. 36, 3479–3485 (1996).
    [CrossRef]
  28. F. Attneave, “Some informational aspects of visual perception,” Psychol. Rev. 61, 183–193 (1954).
    [CrossRef]
  29. T. N. Cornsweet, Visual Perception (Academic, 1970).
  30. D. D. Hoffman and W. Richards, “Parts of recognition,” Cognition 18, 65–96 (1984).
    [CrossRef]
  31. E. H. Land, “The retinex theory of colour vision,” Proc. R. Inst. G. B. 47, 23–58 (1974).
  32. Á. Kristjánsson and P. U. Tse, “Curvature discontinuities are cues for rapid shape analysis,” Percept. Psychophys. 63, 390–403 (2001).
    [CrossRef]
  33. Á. Kristjánsson, “Learning in shifts of transient attention improves recognition of parts of ambiguous figure-ground displays,” J. Vision 9(4):21, 1–11 (2009).
    [CrossRef]
  34. Á. Kristjánsson and G. Campana, “Where perception meets memory: a review of priming in visual search,” Atten. Percept. Psychophys. 72, 5–18 (2010).
    [CrossRef]
  35. J. Edelman, Á. Kristjánsson, and K. Nakayama, “The influence of object-relative visuomotor set on express saccades,” J. Vision 7(6):12, 1–13 (2007).
    [CrossRef]
  36. Á. Kristjansson, M. Mackeben, and K. Nakayama, “Rapid, object-based learning in the deployment of transient attention,” Perception 30, 1375–1387 (2001).
    [CrossRef]
  37. Á. Kristjánsson and K. Nakayama, “A primitive memory system for the deployment of transient attention,” Percept. Psychophys. 65, 711–724 (2003).
    [CrossRef]
  38. J. W. Brascamp, R. Blake, and Á Kristjánsson, “Deciding where to attend: priming of pop-out drives target selection,” J. Exp. Psychol. Hum. Percept. Perform. 37, 1700–1707 (2011).
    [CrossRef]
  39. Á Kristjánsson, “I know what you did on the last trial—a selective review of research on priming in visual search,” Front. Biosci. 13, 1171–1181 (2008).
    [CrossRef]
  40. Z. Kourtzi and N. Kanwisher, “The human lateral occipital complex represents perceived object shape,” Science 293, 1506–1509 (2001).
    [CrossRef]
  41. K. Grill-Spector, R. Henson, and A. Martin, “Repetition and the brain: neural models of stimulus specific effects,” Trends Cogn. Sci. 10, 14–23 (2006).
    [CrossRef]
  42. J. J. Geng, E. Eger, C. Ruff, Á. Kristjánsson, P. Rothstein, and J. Driver, “On-line attentional selection from competing stimuli in opposite visual fields: effects on human visual cortex and control processes,” J. Neurophysiol. 96, 2601–2612(2006).
    [CrossRef]
  43. Á. Kristjánsson, P. Vuilleumier, S. Schwartz, E. Macaluso, and J. Driver, “Neural basis for priming of pop-out revealed with fMRI,” Cereb. Cortex 17, 1612–1624 (2007).
    [CrossRef]
  44. C. Rorden, Á. Kristjánsson, K. Pirog-Revill, and S. Saevarsson, “Neural correlates of inter-trial priming and role-reversal in visual search,” Front. Hum. Neurosci. 5, 1–8 (2011).
    [CrossRef]
  45. K. Arnold and S. Anstis, “Properties of the visual channels that underlie adaptation to gradual change of luminance,” Vis. Res. 33, 47–54 (1993).
    [CrossRef]
  46. S. Shady, D. I. A. MacLeod, and H. S. Fisher, “Adaptation from invisible flicker,” Proc. Natl. Acad. Sci. USA 101, 5170–5173 (2004).
    [CrossRef]
  47. J. Krauskopf, “Discrimination and detection of changes in luminance,” Vis. Res. 20, 671–677 (1980).
    [CrossRef]
  48. J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
    [CrossRef]
  49. C. Blakemore and F. W. Campbell, “On the existence of neurons in the human visual system selectively sensitive to the orientation and size of images,” J. Physiol. 203, 237–260 (1969).
  50. R. Shapley and C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” Prog. Retin. Res. 3, 263–346 (1984).
    [CrossRef]
  51. R. Shapley and J. D. Victor, “How the contrast gain control modifies the frequency responses of cat retinal ganglion cells,” J. Physiol. 318, 161–179 (1981).
  52. A. B. Watson and J. A. Solomon, “A model of visual contrast gain control and pattern masking,” J. Opt. Soc. Am. A 14, 2379–2391 (1997).
    [CrossRef]
  53. M. Carandini, D. J. Heeger, and J. A. Movshon, “Linearity and gain control in V1 simple cells,” in Vol. 13 of Cerebral Cortex, P. S. Ulinski, E. G. Jones, and A. Peters, eds. (Kluwer/Plenum, 1999).
  54. D. Chander and E. J. Chichilinsky, “Adaptation to temporal contrast in primate and salamander retina,” J. Neurosci. 21, 9904–9916 (2001).
  55. S. M. Smirnakis, M. J. Berry, D. K. Warland, W. Blalek, and M. Meister ”Adaptation of retinal processing to image contrast and spatial scale,” Nature 386, 69–73 (1997).
    [CrossRef]
  56. J. Nachmias, “The role of virtual standards in visual discrimination,” Vis. Res. 46, 2456–2464 (2006).
    [CrossRef]

2011

Á Kristjánsson, “The functional benefits of tilt adaptation,” Seeing Perceiving 24, 37–51 (2011).
[CrossRef]

J. W. Brascamp, R. Blake, and Á Kristjánsson, “Deciding where to attend: priming of pop-out drives target selection,” J. Exp. Psychol. Hum. Percept. Perform. 37, 1700–1707 (2011).
[CrossRef]

C. Rorden, Á. Kristjánsson, K. Pirog-Revill, and S. Saevarsson, “Neural correlates of inter-trial priming and role-reversal in visual search,” Front. Hum. Neurosci. 5, 1–8 (2011).
[CrossRef]

2010

Á. Kristjánsson and G. Campana, “Where perception meets memory: a review of priming in visual search,” Atten. Percept. Psychophys. 72, 5–18 (2010).
[CrossRef]

J. Chen, H. Yang, A. B. Wang, and F. Fang, “Perceptual consequences of face viewpoint adaptation: face viewpoint aftereffect, changes of differential sensitivity to face view, and their relationship,” J. Vision 10(3):12, 1–11 (2010).
[CrossRef]

2009

Á. Kristjánsson, “Learning in shifts of transient attention improves recognition of parts of ambiguous figure-ground displays,” J. Vision 9(4):21, 1–11 (2009).
[CrossRef]

2008

Á Kristjánsson, “I know what you did on the last trial—a selective review of research on priming in visual search,” Front. Biosci. 13, 1171–1181 (2008).
[CrossRef]

2007

J. Edelman, Á. Kristjánsson, and K. Nakayama, “The influence of object-relative visuomotor set on express saccades,” J. Vision 7(6):12, 1–13 (2007).
[CrossRef]

Á. Kristjánsson, P. Vuilleumier, S. Schwartz, E. Macaluso, and J. Driver, “Neural basis for priming of pop-out revealed with fMRI,” Cereb. Cortex 17, 1612–1624 (2007).
[CrossRef]

2006

J. Nachmias, “The role of virtual standards in visual discrimination,” Vis. Res. 46, 2456–2464 (2006).
[CrossRef]

K. Grill-Spector, R. Henson, and A. Martin, “Repetition and the brain: neural models of stimulus specific effects,” Trends Cogn. Sci. 10, 14–23 (2006).
[CrossRef]

J. J. Geng, E. Eger, C. Ruff, Á. Kristjánsson, P. Rothstein, and J. Driver, “On-line attentional selection from competing stimuli in opposite visual fields: effects on human visual cortex and control processes,” J. Neurophysiol. 96, 2601–2612(2006).
[CrossRef]

Á. Kristjánsson, “Rapid learning in attention shifts—a review,” Vis. Cogn. 13, 324–362 (2006).
[CrossRef]

2004

S. Shady, D. I. A. MacLeod, and H. S. Fisher, “Adaptation from invisible flicker,” Proc. Natl. Acad. Sci. USA 101, 5170–5173 (2004).
[CrossRef]

2003

Á. Kristjánsson and K. Nakayama, “A primitive memory system for the deployment of transient attention,” Percept. Psychophys. 65, 711–724 (2003).
[CrossRef]

2001

Z. Kourtzi and N. Kanwisher, “The human lateral occipital complex represents perceived object shape,” Science 293, 1506–1509 (2001).
[CrossRef]

Á. Kristjansson, M. Mackeben, and K. Nakayama, “Rapid, object-based learning in the deployment of transient attention,” Perception 30, 1375–1387 (2001).
[CrossRef]

Á. Kristjánsson and P. U. Tse, “Curvature discontinuities are cues for rapid shape analysis,” Percept. Psychophys. 63, 390–403 (2001).
[CrossRef]

Á. Kristjánsson, “Increased sensitivity to speed changes during adaptation to first-order, but not to second-order motion,” Vis. Res. 41, 1825–1832 (2001).
[CrossRef]

D. Chander and E. J. Chichilinsky, “Adaptation to temporal contrast in primate and salamander retina,” J. Neurosci. 21, 9904–9916 (2001).

2000

C. W. G. Clifford, P. Wenderoth, and B. Spehar, “A functional angle on some after-effects in cortical vision,” Proc. R. Soc. B 267, 1705–1710 (2000).
[CrossRef]

1999

M. J. Wainwright, “Visual adaptation as optimal information transmission,” Vis. Res. 39, 3960–3974 (1999).
[CrossRef]

C. W. G. Clifford and P. Wenderoth, “Adaptation to temporal modulation can enhance differential speed sensitivity,” Vis. Res. 39, 4324–4331 (1999).
[CrossRef]

P. J. Bex, S. Beddingham, and S. T. Hammett, “Apparent speed and speed sensitivity during adaptation to motion,” J. Opt. Soc. Am. 16, 2817–2824 (1999).
[CrossRef]

1997

H. E. Egeth and S. Yantis, “Visual attention: control, representation, and time course,” Annu. Rev. Psychol. 48, 269–297 (1997).
[CrossRef]

M. A. Webster and J. D. Mollon, “Adaptation and the color statistics of natural images,” Vis. Res. 37, 3283–3298 (1997).
[CrossRef]

S. M. Smirnakis, M. J. Berry, D. K. Warland, W. Blalek, and M. Meister ”Adaptation of retinal processing to image contrast and spatial scale,” Nature 386, 69–73 (1997).
[CrossRef]

A. B. Watson and J. A. Solomon, “A model of visual contrast gain control and pattern masking,” J. Opt. Soc. Am. A 14, 2379–2391 (1997).
[CrossRef]

1996

C. W. G. Clifford and K. Langley, “A model of temporal adaptation in fly motion vision,” Vis. Res. 36, 2595–2608 (1996).
[CrossRef]

S. Anstis, “Adaptation to peripheral flicker,” Vis. Res. 36, 3479–3485 (1996).
[CrossRef]

1995

R. Desimone and J. Duncan, “Neural mechanisms of selective visual attention,” Annu. Rev. Neurosci. 18, 193–222 (1995).
[CrossRef]

1993

K. Arnold and S. Anstis, “Properties of the visual channels that underlie adaptation to gradual change of luminance,” Vis. Res. 33, 47–54 (1993).
[CrossRef]

1987

S. Schieting and L. Spillmann, “Flicker adaptation in the peripheral retina,” Vis. Res. 27, 277–284 (1987).
[CrossRef]

1985

C. Koch and S. Ullman, “Shifts in selective visual attention: towards the underlying neural circuitry,” Hum. Neurobiol. 4, 219–227 (1985).

D. Regan and K. I. Beverley, “Postadaptation orientation discrimination” J. Opt. Soc. Am. A 2, 147–155 (1985).
[CrossRef]

1984

D. D. Hoffman and W. Richards, “Parts of recognition,” Cognition 18, 65–96 (1984).
[CrossRef]

R. Shapley and C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” Prog. Retin. Res. 3, 263–346 (1984).
[CrossRef]

1982

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

1981

R. Shapley and J. D. Victor, “How the contrast gain control modifies the frequency responses of cat retinal ganglion cells,” J. Physiol. 318, 161–179 (1981).

1980

J. Krauskopf, “Discrimination and detection of changes in luminance,” Vis. Res. 20, 671–677 (1980).
[CrossRef]

1974

E. H. Land, “The retinex theory of colour vision,” Proc. R. Inst. G. B. 47, 23–58 (1974).

1969

C. Blakemore and F. W. Campbell, “On the existence of neurons in the human visual system selectively sensitive to the orientation and size of images,” J. Physiol. 203, 237–260 (1969).

1967

S. M. Anstis, “Visual adaptation to gradual changes of intensity,” Science 155, 710–712 (1967).
[CrossRef]

1954

F. Attneave, “Some informational aspects of visual perception,” Psychol. Rev. 61, 183–193 (1954).
[CrossRef]

1938

H. Helson, “Fundamental problems in color vision. I. The principle governing changes in hue, saturation and lightness of non-selective samples in chromatic illumination,” J. Exp. Psychol. 23, 439–476 (1938).
[CrossRef]

K. J. W. Craik, “The effect of adaptation on differential brightness discrimination,” J. Physiol. 92, 406–421 (1938).

Anstis, S.

S. Anstis, “Adaptation to peripheral flicker,” Vis. Res. 36, 3479–3485 (1996).
[CrossRef]

K. Arnold and S. Anstis, “Properties of the visual channels that underlie adaptation to gradual change of luminance,” Vis. Res. 33, 47–54 (1993).
[CrossRef]

Anstis, S. M.

S. M. Anstis, “Visual adaptation to gradual changes of intensity,” Science 155, 710–712 (1967).
[CrossRef]

Arnold, K.

K. Arnold and S. Anstis, “Properties of the visual channels that underlie adaptation to gradual change of luminance,” Vis. Res. 33, 47–54 (1993).
[CrossRef]

Attneave, F.

F. Attneave, “Some informational aspects of visual perception,” Psychol. Rev. 61, 183–193 (1954).
[CrossRef]

Barlow, H.

H. Barlow, “A theory about the functional role and synaptic mechanism of visual after-effects,” In Vision: Coding and Efficiency, C. Blakemore, ed. (Cambridge University, 1990), pp. 363–375.

Beddingham, S.

P. J. Bex, S. Beddingham, and S. T. Hammett, “Apparent speed and speed sensitivity during adaptation to motion,” J. Opt. Soc. Am. 16, 2817–2824 (1999).
[CrossRef]

Berry, M. J.

S. M. Smirnakis, M. J. Berry, D. K. Warland, W. Blalek, and M. Meister ”Adaptation of retinal processing to image contrast and spatial scale,” Nature 386, 69–73 (1997).
[CrossRef]

Beverley, K. I.

Bex, P. J.

P. J. Bex, S. Beddingham, and S. T. Hammett, “Apparent speed and speed sensitivity during adaptation to motion,” J. Opt. Soc. Am. 16, 2817–2824 (1999).
[CrossRef]

Blake, R.

J. W. Brascamp, R. Blake, and Á Kristjánsson, “Deciding where to attend: priming of pop-out drives target selection,” J. Exp. Psychol. Hum. Percept. Perform. 37, 1700–1707 (2011).
[CrossRef]

Blakemore, C.

C. Blakemore and F. W. Campbell, “On the existence of neurons in the human visual system selectively sensitive to the orientation and size of images,” J. Physiol. 203, 237–260 (1969).

Blalek, W.

S. M. Smirnakis, M. J. Berry, D. K. Warland, W. Blalek, and M. Meister ”Adaptation of retinal processing to image contrast and spatial scale,” Nature 386, 69–73 (1997).
[CrossRef]

Brascamp, J. W.

J. W. Brascamp, R. Blake, and Á Kristjánsson, “Deciding where to attend: priming of pop-out drives target selection,” J. Exp. Psychol. Hum. Percept. Perform. 37, 1700–1707 (2011).
[CrossRef]

Campana, G.

Á. Kristjánsson and G. Campana, “Where perception meets memory: a review of priming in visual search,” Atten. Percept. Psychophys. 72, 5–18 (2010).
[CrossRef]

Campbell, F. W.

C. Blakemore and F. W. Campbell, “On the existence of neurons in the human visual system selectively sensitive to the orientation and size of images,” J. Physiol. 203, 237–260 (1969).

Carandini, M.

M. Carandini, D. J. Heeger, and J. A. Movshon, “Linearity and gain control in V1 simple cells,” in Vol. 13 of Cerebral Cortex, P. S. Ulinski, E. G. Jones, and A. Peters, eds. (Kluwer/Plenum, 1999).

Chander, D.

D. Chander and E. J. Chichilinsky, “Adaptation to temporal contrast in primate and salamander retina,” J. Neurosci. 21, 9904–9916 (2001).

Chen, J.

J. Chen, H. Yang, A. B. Wang, and F. Fang, “Perceptual consequences of face viewpoint adaptation: face viewpoint aftereffect, changes of differential sensitivity to face view, and their relationship,” J. Vision 10(3):12, 1–11 (2010).
[CrossRef]

Chichilinsky, E. J.

D. Chander and E. J. Chichilinsky, “Adaptation to temporal contrast in primate and salamander retina,” J. Neurosci. 21, 9904–9916 (2001).

Clifford, C. W. G.

C. W. G. Clifford, P. Wenderoth, and B. Spehar, “A functional angle on some after-effects in cortical vision,” Proc. R. Soc. B 267, 1705–1710 (2000).
[CrossRef]

C. W. G. Clifford and P. Wenderoth, “Adaptation to temporal modulation can enhance differential speed sensitivity,” Vis. Res. 39, 4324–4331 (1999).
[CrossRef]

C. W. G. Clifford and K. Langley, “A model of temporal adaptation in fly motion vision,” Vis. Res. 36, 2595–2608 (1996).
[CrossRef]

C. W. G. Clifford, “Functional ideas about adaptation applied to spatial and motion vision,” in Fitting the Mind to the World: Adaptation and After-effects in High-Level VisionC. W. G. Clifford and G. Rhodes., eds. (Oxford University, 2007), pp. 47–82.

Comtois, R.

R. Comtois, Vision Shell PPC [Software Libraries], (R. Comtois, 2000).

Cornsweet, T. N.

T. N. Cornsweet, Visual Perception (Academic, 1970).

Craik, K. J. W.

K. J. W. Craik, “The effect of adaptation on differential brightness discrimination,” J. Physiol. 92, 406–421 (1938).

Desimone, R.

R. Desimone and J. Duncan, “Neural mechanisms of selective visual attention,” Annu. Rev. Neurosci. 18, 193–222 (1995).
[CrossRef]

Driver, J.

Á. Kristjánsson, P. Vuilleumier, S. Schwartz, E. Macaluso, and J. Driver, “Neural basis for priming of pop-out revealed with fMRI,” Cereb. Cortex 17, 1612–1624 (2007).
[CrossRef]

J. J. Geng, E. Eger, C. Ruff, Á. Kristjánsson, P. Rothstein, and J. Driver, “On-line attentional selection from competing stimuli in opposite visual fields: effects on human visual cortex and control processes,” J. Neurophysiol. 96, 2601–2612(2006).
[CrossRef]

Duncan, J.

R. Desimone and J. Duncan, “Neural mechanisms of selective visual attention,” Annu. Rev. Neurosci. 18, 193–222 (1995).
[CrossRef]

Edelman, J.

J. Edelman, Á. Kristjánsson, and K. Nakayama, “The influence of object-relative visuomotor set on express saccades,” J. Vision 7(6):12, 1–13 (2007).
[CrossRef]

Eger, E.

J. J. Geng, E. Eger, C. Ruff, Á. Kristjánsson, P. Rothstein, and J. Driver, “On-line attentional selection from competing stimuli in opposite visual fields: effects on human visual cortex and control processes,” J. Neurophysiol. 96, 2601–2612(2006).
[CrossRef]

Egeth, H. E.

H. E. Egeth and S. Yantis, “Visual attention: control, representation, and time course,” Annu. Rev. Psychol. 48, 269–297 (1997).
[CrossRef]

Enroth-Cugell, C.

R. Shapley and C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” Prog. Retin. Res. 3, 263–346 (1984).
[CrossRef]

Fang, F.

J. Chen, H. Yang, A. B. Wang, and F. Fang, “Perceptual consequences of face viewpoint adaptation: face viewpoint aftereffect, changes of differential sensitivity to face view, and their relationship,” J. Vision 10(3):12, 1–11 (2010).
[CrossRef]

Fechner, G.

G. Fechner, Elements of Psychophysics (Holt, Rinehart, and Winston, 1966).

Fisher, H. S.

S. Shady, D. I. A. MacLeod, and H. S. Fisher, “Adaptation from invisible flicker,” Proc. Natl. Acad. Sci. USA 101, 5170–5173 (2004).
[CrossRef]

Geng, J. J.

J. J. Geng, E. Eger, C. Ruff, Á. Kristjánsson, P. Rothstein, and J. Driver, “On-line attentional selection from competing stimuli in opposite visual fields: effects on human visual cortex and control processes,” J. Neurophysiol. 96, 2601–2612(2006).
[CrossRef]

Grill-Spector, K.

K. Grill-Spector, R. Henson, and A. Martin, “Repetition and the brain: neural models of stimulus specific effects,” Trends Cogn. Sci. 10, 14–23 (2006).
[CrossRef]

Hammett, S. T.

P. J. Bex, S. Beddingham, and S. T. Hammett, “Apparent speed and speed sensitivity during adaptation to motion,” J. Opt. Soc. Am. 16, 2817–2824 (1999).
[CrossRef]

Heeger, D. J.

M. Carandini, D. J. Heeger, and J. A. Movshon, “Linearity and gain control in V1 simple cells,” in Vol. 13 of Cerebral Cortex, P. S. Ulinski, E. G. Jones, and A. Peters, eds. (Kluwer/Plenum, 1999).

Heeley, D. W.

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

Helson, H.

H. Helson, “Fundamental problems in color vision. I. The principle governing changes in hue, saturation and lightness of non-selective samples in chromatic illumination,” J. Exp. Psychol. 23, 439–476 (1938).
[CrossRef]

H. HelsonAdaptation-Level Theory: An Experimental and Systematic Approach to Behavior (Harper & Row, 1964).

Henson, R.

K. Grill-Spector, R. Henson, and A. Martin, “Repetition and the brain: neural models of stimulus specific effects,” Trends Cogn. Sci. 10, 14–23 (2006).
[CrossRef]

Hoffman, D. D.

D. D. Hoffman and W. Richards, “Parts of recognition,” Cognition 18, 65–96 (1984).
[CrossRef]

Kanwisher, N.

Z. Kourtzi and N. Kanwisher, “The human lateral occipital complex represents perceived object shape,” Science 293, 1506–1509 (2001).
[CrossRef]

Koch, C.

C. Koch and S. Ullman, “Shifts in selective visual attention: towards the underlying neural circuitry,” Hum. Neurobiol. 4, 219–227 (1985).

Kourtzi, Z.

Z. Kourtzi and N. Kanwisher, “The human lateral occipital complex represents perceived object shape,” Science 293, 1506–1509 (2001).
[CrossRef]

Krauskopf, J.

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

J. Krauskopf, “Discrimination and detection of changes in luminance,” Vis. Res. 20, 671–677 (1980).
[CrossRef]

Kristjansson, Á.

Á. Kristjansson, M. Mackeben, and K. Nakayama, “Rapid, object-based learning in the deployment of transient attention,” Perception 30, 1375–1387 (2001).
[CrossRef]

Kristjánsson, Á

J. W. Brascamp, R. Blake, and Á Kristjánsson, “Deciding where to attend: priming of pop-out drives target selection,” J. Exp. Psychol. Hum. Percept. Perform. 37, 1700–1707 (2011).
[CrossRef]

Á Kristjánsson, “The functional benefits of tilt adaptation,” Seeing Perceiving 24, 37–51 (2011).
[CrossRef]

Á Kristjánsson, “I know what you did on the last trial—a selective review of research on priming in visual search,” Front. Biosci. 13, 1171–1181 (2008).
[CrossRef]

Kristjánsson, Á.

C. Rorden, Á. Kristjánsson, K. Pirog-Revill, and S. Saevarsson, “Neural correlates of inter-trial priming and role-reversal in visual search,” Front. Hum. Neurosci. 5, 1–8 (2011).
[CrossRef]

Á. Kristjánsson and G. Campana, “Where perception meets memory: a review of priming in visual search,” Atten. Percept. Psychophys. 72, 5–18 (2010).
[CrossRef]

Á. Kristjánsson, “Learning in shifts of transient attention improves recognition of parts of ambiguous figure-ground displays,” J. Vision 9(4):21, 1–11 (2009).
[CrossRef]

J. Edelman, Á. Kristjánsson, and K. Nakayama, “The influence of object-relative visuomotor set on express saccades,” J. Vision 7(6):12, 1–13 (2007).
[CrossRef]

Á. Kristjánsson, P. Vuilleumier, S. Schwartz, E. Macaluso, and J. Driver, “Neural basis for priming of pop-out revealed with fMRI,” Cereb. Cortex 17, 1612–1624 (2007).
[CrossRef]

J. J. Geng, E. Eger, C. Ruff, Á. Kristjánsson, P. Rothstein, and J. Driver, “On-line attentional selection from competing stimuli in opposite visual fields: effects on human visual cortex and control processes,” J. Neurophysiol. 96, 2601–2612(2006).
[CrossRef]

Á. Kristjánsson, “Rapid learning in attention shifts—a review,” Vis. Cogn. 13, 324–362 (2006).
[CrossRef]

Á. Kristjánsson and K. Nakayama, “A primitive memory system for the deployment of transient attention,” Percept. Psychophys. 65, 711–724 (2003).
[CrossRef]

Á. Kristjánsson and P. U. Tse, “Curvature discontinuities are cues for rapid shape analysis,” Percept. Psychophys. 63, 390–403 (2001).
[CrossRef]

Á. Kristjánsson, “Increased sensitivity to speed changes during adaptation to first-order, but not to second-order motion,” Vis. Res. 41, 1825–1832 (2001).
[CrossRef]

Land, E. H.

E. H. Land, “The retinex theory of colour vision,” Proc. R. Inst. G. B. 47, 23–58 (1974).

Langley, K.

C. W. G. Clifford and K. Langley, “A model of temporal adaptation in fly motion vision,” Vis. Res. 36, 2595–2608 (1996).
[CrossRef]

Macaluso, E.

Á. Kristjánsson, P. Vuilleumier, S. Schwartz, E. Macaluso, and J. Driver, “Neural basis for priming of pop-out revealed with fMRI,” Cereb. Cortex 17, 1612–1624 (2007).
[CrossRef]

Mackeben, M.

Á. Kristjansson, M. Mackeben, and K. Nakayama, “Rapid, object-based learning in the deployment of transient attention,” Perception 30, 1375–1387 (2001).
[CrossRef]

MacLeod, D. I. A.

S. Shady, D. I. A. MacLeod, and H. S. Fisher, “Adaptation from invisible flicker,” Proc. Natl. Acad. Sci. USA 101, 5170–5173 (2004).
[CrossRef]

Martin, A.

K. Grill-Spector, R. Henson, and A. Martin, “Repetition and the brain: neural models of stimulus specific effects,” Trends Cogn. Sci. 10, 14–23 (2006).
[CrossRef]

Meister, M.

S. M. Smirnakis, M. J. Berry, D. K. Warland, W. Blalek, and M. Meister ”Adaptation of retinal processing to image contrast and spatial scale,” Nature 386, 69–73 (1997).
[CrossRef]

Mollon, J. D.

M. A. Webster and J. D. Mollon, “Adaptation and the color statistics of natural images,” Vis. Res. 37, 3283–3298 (1997).
[CrossRef]

Movshon, J. A.

M. Carandini, D. J. Heeger, and J. A. Movshon, “Linearity and gain control in V1 simple cells,” in Vol. 13 of Cerebral Cortex, P. S. Ulinski, E. G. Jones, and A. Peters, eds. (Kluwer/Plenum, 1999).

Nachmias, J.

J. Nachmias, “The role of virtual standards in visual discrimination,” Vis. Res. 46, 2456–2464 (2006).
[CrossRef]

Nakayama, K.

J. Edelman, Á. Kristjánsson, and K. Nakayama, “The influence of object-relative visuomotor set on express saccades,” J. Vision 7(6):12, 1–13 (2007).
[CrossRef]

Á. Kristjánsson and K. Nakayama, “A primitive memory system for the deployment of transient attention,” Percept. Psychophys. 65, 711–724 (2003).
[CrossRef]

Á. Kristjansson, M. Mackeben, and K. Nakayama, “Rapid, object-based learning in the deployment of transient attention,” Perception 30, 1375–1387 (2001).
[CrossRef]

K. Nakayama, “The iconic bottleneck and the tenuous link between early visual processing and perception,” in Vision: Coding and Efficiency, C. Blakemore, ed. (Cambridge University, 1990), pp. 411–422.

Neisser, U.

U. Neisser, Cognitive Psychology (Apple-Century-Crofts, 1967).

Pashler, H. E.

H. E. Pashler, The Psychology of Attention (MIT, 1998).

Pirog-Revill, K.

C. Rorden, Á. Kristjánsson, K. Pirog-Revill, and S. Saevarsson, “Neural correlates of inter-trial priming and role-reversal in visual search,” Front. Hum. Neurosci. 5, 1–8 (2011).
[CrossRef]

Regan, D.

Richards, W.

D. D. Hoffman and W. Richards, “Parts of recognition,” Cognition 18, 65–96 (1984).
[CrossRef]

Rorden, C.

C. Rorden, Á. Kristjánsson, K. Pirog-Revill, and S. Saevarsson, “Neural correlates of inter-trial priming and role-reversal in visual search,” Front. Hum. Neurosci. 5, 1–8 (2011).
[CrossRef]

Rothstein, P.

J. J. Geng, E. Eger, C. Ruff, Á. Kristjánsson, P. Rothstein, and J. Driver, “On-line attentional selection from competing stimuli in opposite visual fields: effects on human visual cortex and control processes,” J. Neurophysiol. 96, 2601–2612(2006).
[CrossRef]

Ruff, C.

J. J. Geng, E. Eger, C. Ruff, Á. Kristjánsson, P. Rothstein, and J. Driver, “On-line attentional selection from competing stimuli in opposite visual fields: effects on human visual cortex and control processes,” J. Neurophysiol. 96, 2601–2612(2006).
[CrossRef]

Saevarsson, S.

C. Rorden, Á. Kristjánsson, K. Pirog-Revill, and S. Saevarsson, “Neural correlates of inter-trial priming and role-reversal in visual search,” Front. Hum. Neurosci. 5, 1–8 (2011).
[CrossRef]

Schieting, S.

S. Schieting and L. Spillmann, “Flicker adaptation in the peripheral retina,” Vis. Res. 27, 277–284 (1987).
[CrossRef]

Schwartz, S.

Á. Kristjánsson, P. Vuilleumier, S. Schwartz, E. Macaluso, and J. Driver, “Neural basis for priming of pop-out revealed with fMRI,” Cereb. Cortex 17, 1612–1624 (2007).
[CrossRef]

Shady, S.

S. Shady, D. I. A. MacLeod, and H. S. Fisher, “Adaptation from invisible flicker,” Proc. Natl. Acad. Sci. USA 101, 5170–5173 (2004).
[CrossRef]

Shapley, R.

R. Shapley and C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” Prog. Retin. Res. 3, 263–346 (1984).
[CrossRef]

R. Shapley and J. D. Victor, “How the contrast gain control modifies the frequency responses of cat retinal ganglion cells,” J. Physiol. 318, 161–179 (1981).

Smirnakis, S. M.

S. M. Smirnakis, M. J. Berry, D. K. Warland, W. Blalek, and M. Meister ”Adaptation of retinal processing to image contrast and spatial scale,” Nature 386, 69–73 (1997).
[CrossRef]

Solomon, J. A.

Spehar, B.

C. W. G. Clifford, P. Wenderoth, and B. Spehar, “A functional angle on some after-effects in cortical vision,” Proc. R. Soc. B 267, 1705–1710 (2000).
[CrossRef]

Spillmann, L.

S. Schieting and L. Spillmann, “Flicker adaptation in the peripheral retina,” Vis. Res. 27, 277–284 (1987).
[CrossRef]

Tse, P. U.

Á. Kristjánsson and P. U. Tse, “Curvature discontinuities are cues for rapid shape analysis,” Percept. Psychophys. 63, 390–403 (2001).
[CrossRef]

Ullman, S.

C. Koch and S. Ullman, “Shifts in selective visual attention: towards the underlying neural circuitry,” Hum. Neurobiol. 4, 219–227 (1985).

Victor, J. D.

R. Shapley and J. D. Victor, “How the contrast gain control modifies the frequency responses of cat retinal ganglion cells,” J. Physiol. 318, 161–179 (1981).

Vuilleumier, P.

Á. Kristjánsson, P. Vuilleumier, S. Schwartz, E. Macaluso, and J. Driver, “Neural basis for priming of pop-out revealed with fMRI,” Cereb. Cortex 17, 1612–1624 (2007).
[CrossRef]

Wainwright, M. J.

M. J. Wainwright, “Visual adaptation as optimal information transmission,” Vis. Res. 39, 3960–3974 (1999).
[CrossRef]

Wang, A. B.

J. Chen, H. Yang, A. B. Wang, and F. Fang, “Perceptual consequences of face viewpoint adaptation: face viewpoint aftereffect, changes of differential sensitivity to face view, and their relationship,” J. Vision 10(3):12, 1–11 (2010).
[CrossRef]

Warland, D. K.

S. M. Smirnakis, M. J. Berry, D. K. Warland, W. Blalek, and M. Meister ”Adaptation of retinal processing to image contrast and spatial scale,” Nature 386, 69–73 (1997).
[CrossRef]

Watson, A. B.

Webster, M. A.

M. A. Webster and J. D. Mollon, “Adaptation and the color statistics of natural images,” Vis. Res. 37, 3283–3298 (1997).
[CrossRef]

Wenderoth, P.

C. W. G. Clifford, P. Wenderoth, and B. Spehar, “A functional angle on some after-effects in cortical vision,” Proc. R. Soc. B 267, 1705–1710 (2000).
[CrossRef]

C. W. G. Clifford and P. Wenderoth, “Adaptation to temporal modulation can enhance differential speed sensitivity,” Vis. Res. 39, 4324–4331 (1999).
[CrossRef]

Williams, D. R.

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

Yang, H.

J. Chen, H. Yang, A. B. Wang, and F. Fang, “Perceptual consequences of face viewpoint adaptation: face viewpoint aftereffect, changes of differential sensitivity to face view, and their relationship,” J. Vision 10(3):12, 1–11 (2010).
[CrossRef]

Yantis, S.

H. E. Egeth and S. Yantis, “Visual attention: control, representation, and time course,” Annu. Rev. Psychol. 48, 269–297 (1997).
[CrossRef]

Proc. R. Inst. G. B.

E. H. Land, “The retinex theory of colour vision,” Proc. R. Inst. G. B. 47, 23–58 (1974).

Annu. Rev. Neurosci.

R. Desimone and J. Duncan, “Neural mechanisms of selective visual attention,” Annu. Rev. Neurosci. 18, 193–222 (1995).
[CrossRef]

Annu. Rev. Psychol.

H. E. Egeth and S. Yantis, “Visual attention: control, representation, and time course,” Annu. Rev. Psychol. 48, 269–297 (1997).
[CrossRef]

Atten. Percept. Psychophys.

Á. Kristjánsson and G. Campana, “Where perception meets memory: a review of priming in visual search,” Atten. Percept. Psychophys. 72, 5–18 (2010).
[CrossRef]

Cereb. Cortex

Á. Kristjánsson, P. Vuilleumier, S. Schwartz, E. Macaluso, and J. Driver, “Neural basis for priming of pop-out revealed with fMRI,” Cereb. Cortex 17, 1612–1624 (2007).
[CrossRef]

Cognition

D. D. Hoffman and W. Richards, “Parts of recognition,” Cognition 18, 65–96 (1984).
[CrossRef]

Front. Biosci.

Á Kristjánsson, “I know what you did on the last trial—a selective review of research on priming in visual search,” Front. Biosci. 13, 1171–1181 (2008).
[CrossRef]

Front. Hum. Neurosci.

C. Rorden, Á. Kristjánsson, K. Pirog-Revill, and S. Saevarsson, “Neural correlates of inter-trial priming and role-reversal in visual search,” Front. Hum. Neurosci. 5, 1–8 (2011).
[CrossRef]

Hum. Neurobiol.

C. Koch and S. Ullman, “Shifts in selective visual attention: towards the underlying neural circuitry,” Hum. Neurobiol. 4, 219–227 (1985).

J. Exp. Psychol.

H. Helson, “Fundamental problems in color vision. I. The principle governing changes in hue, saturation and lightness of non-selective samples in chromatic illumination,” J. Exp. Psychol. 23, 439–476 (1938).
[CrossRef]

J. Exp. Psychol. Hum. Percept. Perform.

J. W. Brascamp, R. Blake, and Á Kristjánsson, “Deciding where to attend: priming of pop-out drives target selection,” J. Exp. Psychol. Hum. Percept. Perform. 37, 1700–1707 (2011).
[CrossRef]

J. Neurophysiol.

J. J. Geng, E. Eger, C. Ruff, Á. Kristjánsson, P. Rothstein, and J. Driver, “On-line attentional selection from competing stimuli in opposite visual fields: effects on human visual cortex and control processes,” J. Neurophysiol. 96, 2601–2612(2006).
[CrossRef]

J. Neurosci.

D. Chander and E. J. Chichilinsky, “Adaptation to temporal contrast in primate and salamander retina,” J. Neurosci. 21, 9904–9916 (2001).

J. Opt. Soc. Am.

P. J. Bex, S. Beddingham, and S. T. Hammett, “Apparent speed and speed sensitivity during adaptation to motion,” J. Opt. Soc. Am. 16, 2817–2824 (1999).
[CrossRef]

J. Opt. Soc. Am. A

J. Physiol.

C. Blakemore and F. W. Campbell, “On the existence of neurons in the human visual system selectively sensitive to the orientation and size of images,” J. Physiol. 203, 237–260 (1969).

R. Shapley and J. D. Victor, “How the contrast gain control modifies the frequency responses of cat retinal ganglion cells,” J. Physiol. 318, 161–179 (1981).

K. J. W. Craik, “The effect of adaptation on differential brightness discrimination,” J. Physiol. 92, 406–421 (1938).

J. Vision

J. Edelman, Á. Kristjánsson, and K. Nakayama, “The influence of object-relative visuomotor set on express saccades,” J. Vision 7(6):12, 1–13 (2007).
[CrossRef]

Á. Kristjánsson, “Learning in shifts of transient attention improves recognition of parts of ambiguous figure-ground displays,” J. Vision 9(4):21, 1–11 (2009).
[CrossRef]

J. Chen, H. Yang, A. B. Wang, and F. Fang, “Perceptual consequences of face viewpoint adaptation: face viewpoint aftereffect, changes of differential sensitivity to face view, and their relationship,” J. Vision 10(3):12, 1–11 (2010).
[CrossRef]

Nature

S. M. Smirnakis, M. J. Berry, D. K. Warland, W. Blalek, and M. Meister ”Adaptation of retinal processing to image contrast and spatial scale,” Nature 386, 69–73 (1997).
[CrossRef]

Percept. Psychophys.

Á. Kristjánsson and K. Nakayama, “A primitive memory system for the deployment of transient attention,” Percept. Psychophys. 65, 711–724 (2003).
[CrossRef]

Á. Kristjánsson and P. U. Tse, “Curvature discontinuities are cues for rapid shape analysis,” Percept. Psychophys. 63, 390–403 (2001).
[CrossRef]

Perception

Á. Kristjansson, M. Mackeben, and K. Nakayama, “Rapid, object-based learning in the deployment of transient attention,” Perception 30, 1375–1387 (2001).
[CrossRef]

Proc. Natl. Acad. Sci. USA

S. Shady, D. I. A. MacLeod, and H. S. Fisher, “Adaptation from invisible flicker,” Proc. Natl. Acad. Sci. USA 101, 5170–5173 (2004).
[CrossRef]

Proc. R. Soc. B

C. W. G. Clifford, P. Wenderoth, and B. Spehar, “A functional angle on some after-effects in cortical vision,” Proc. R. Soc. B 267, 1705–1710 (2000).
[CrossRef]

Prog. Retin. Res.

R. Shapley and C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” Prog. Retin. Res. 3, 263–346 (1984).
[CrossRef]

Psychol. Rev.

F. Attneave, “Some informational aspects of visual perception,” Psychol. Rev. 61, 183–193 (1954).
[CrossRef]

Science

S. M. Anstis, “Visual adaptation to gradual changes of intensity,” Science 155, 710–712 (1967).
[CrossRef]

Z. Kourtzi and N. Kanwisher, “The human lateral occipital complex represents perceived object shape,” Science 293, 1506–1509 (2001).
[CrossRef]

Seeing Perceiving

Á Kristjánsson, “The functional benefits of tilt adaptation,” Seeing Perceiving 24, 37–51 (2011).
[CrossRef]

Trends Cogn. Sci.

K. Grill-Spector, R. Henson, and A. Martin, “Repetition and the brain: neural models of stimulus specific effects,” Trends Cogn. Sci. 10, 14–23 (2006).
[CrossRef]

Vis. Cogn.

Á. Kristjánsson, “Rapid learning in attention shifts—a review,” Vis. Cogn. 13, 324–362 (2006).
[CrossRef]

Vis. Res.

C. W. G. Clifford and K. Langley, “A model of temporal adaptation in fly motion vision,” Vis. Res. 36, 2595–2608 (1996).
[CrossRef]

M. J. Wainwright, “Visual adaptation as optimal information transmission,” Vis. Res. 39, 3960–3974 (1999).
[CrossRef]

M. A. Webster and J. D. Mollon, “Adaptation and the color statistics of natural images,” Vis. Res. 37, 3283–3298 (1997).
[CrossRef]

Á. Kristjánsson, “Increased sensitivity to speed changes during adaptation to first-order, but not to second-order motion,” Vis. Res. 41, 1825–1832 (2001).
[CrossRef]

C. W. G. Clifford and P. Wenderoth, “Adaptation to temporal modulation can enhance differential speed sensitivity,” Vis. Res. 39, 4324–4331 (1999).
[CrossRef]

S. Schieting and L. Spillmann, “Flicker adaptation in the peripheral retina,” Vis. Res. 27, 277–284 (1987).
[CrossRef]

S. Anstis, “Adaptation to peripheral flicker,” Vis. Res. 36, 3479–3485 (1996).
[CrossRef]

J. Krauskopf, “Discrimination and detection of changes in luminance,” Vis. Res. 20, 671–677 (1980).
[CrossRef]

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

K. Arnold and S. Anstis, “Properties of the visual channels that underlie adaptation to gradual change of luminance,” Vis. Res. 33, 47–54 (1993).
[CrossRef]

J. Nachmias, “The role of virtual standards in visual discrimination,” Vis. Res. 46, 2456–2464 (2006).
[CrossRef]

Other

M. Carandini, D. J. Heeger, and J. A. Movshon, “Linearity and gain control in V1 simple cells,” in Vol. 13 of Cerebral Cortex, P. S. Ulinski, E. G. Jones, and A. Peters, eds. (Kluwer/Plenum, 1999).

T. N. Cornsweet, Visual Perception (Academic, 1970).

R. Comtois, Vision Shell PPC [Software Libraries], (R. Comtois, 2000).

C. W. G. Clifford, “Functional ideas about adaptation applied to spatial and motion vision,” in Fitting the Mind to the World: Adaptation and After-effects in High-Level VisionC. W. G. Clifford and G. Rhodes., eds. (Oxford University, 2007), pp. 47–82.

H. HelsonAdaptation-Level Theory: An Experimental and Systematic Approach to Behavior (Harper & Row, 1964).

U. Neisser, Cognitive Psychology (Apple-Century-Crofts, 1967).

G. Fechner, Elements of Psychophysics (Holt, Rinehart, and Winston, 1966).

H. Barlow, “A theory about the functional role and synaptic mechanism of visual after-effects,” In Vision: Coding and Efficiency, C. Blakemore, ed. (Cambridge University, 1990), pp. 363–375.

K. Nakayama, “The iconic bottleneck and the tenuous link between early visual processing and perception,” in Vision: Coding and Efficiency, C. Blakemore, ed. (Cambridge University, 1990), pp. 411–422.

H. E. Pashler, The Psychology of Attention (MIT, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Nature of the two possible changes to the 0.6 Hz sinusoidal temporal luminance variation. Here the change in amplitude or mean is, for convenience, denoted as occurring following three full cycles (5 s) of the sinusoidal variation, while the actual change times varied (see methods for each experiment). The amplitude (A) and mean (M) increase in both cases, while they could both increase or decrease in the experiments. A. In experiments 1A and 2A, the amplitude of the luminance variation either increased or decreased (by ΔA) following the adaptation time (its mean was constant throughout). B. In experiment 1B and 2B, the mean (M) of the variation changed (by ΔM) following the adaptation period (the amplitude was unchanged). Note that the temporal frequency of the variation was kept constant, however, so that it could not serve as a cue. As the figure shows, the transition from the old to the new amplitudes and means was smooth, so no abrupt luminance changes could serve as cues to the changes [see Eqs. (1) and (3) and methods for further information].

Fig. 2.
Fig. 2.

Results from (left) experiment 1A and (right) experiment 1B. A. Thresholds estimated from the psychometric functions for the seven participants in the short version of the experiments. The solid line traces the mean of the seven thresholds. B. Thresholds estimated from the fitted psychometric functions for the two observers tested on 5120 trials each for the different adaptation times. C. Percentage correct for the seven observers tested in the short versions of the experiments for the different adaptation times and different size of changes in amplitude (experiment 1A) and mean (experiment 1B). D. Similar average results as in C for the two observers in the long versions of the experiments.

Fig. 3.
Fig. 3.

Schematic of the luminance-varying stimulus used in experiments 2A and 2B at four different times (T1 to T4). The different numbers denote a given luminance value of the sinusoidal luminance variation at a given time. At T2, one of the patches (randomly chosen) takes on the next value (9 in the figure) of the sinusoidally varying pattern, at T3 another randomly chosen patch takes on the next value (10), at T4 another one took the next value (11), and so on. The patch that changed at any given moment was chosen randomly, with the only algorithmic constraint that the same patch was never chosen again before three changes had occurred. The arrows serve to indicate that the display items rotated throughout (clockwise or counterclockwise, randomly determined) at a velocity of 1.4deg/s.

Fig. 4.
Fig. 4.

Results from experiments 2A and 2B. A. Estimated thresholds (using similar psychometric functions as presented for experiments 1 and 2) for discrimination of amplitude change (experiment 2A); B. thresholds for discrimination of changes in mean (experiment 2B) as a function of adaptation time.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Lum(t)=M+[sin(tf(t))*π]*Apre.
P(iA)=11+e(b0+b1*ΔA).
Lum(t)=Mpre+[sin(tf(t))*π]*A.
P(iM)=11+e(b0+b1*ΔM),

Metrics