J. S. Volker, Y. Ziliang, F. Rupert, W. Yuan, B. Guy, Y. Xiaobo, and Z. Xiang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).

[CrossRef]

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332, 1170–1173 (2011).

[CrossRef]

T. L. Dimitrova and A. Weis, “Single photon quantum erasing: a demonstration experiment,” Eur. J. Phys. 31, 625–637 (2010).

[CrossRef]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).

[CrossRef]

A. S. Sanz, M. Davidović, M. Božić, and S. Miret-Artés, “Understanding interference experiments with polarized light through photon trajectories,” Ann. Phys. 325, 763–784 (2010).

[CrossRef]

M. Božić, M. Davidović, T. L. Dimitrova, S. Miret-Artés, A. S. Sanz, and A. Weis, “Generalized Arago–Fresnel laws: the eme-flow-line description,” J. Russ. Laser Res. 31, 117–128 (2010).

[CrossRef]

T. L. Dimitrova and A. Weis, “Lecture demonstrations of interference and quantum erasing with single photons,” Phys. Scr. T135, 014003 (2009).

[CrossRef]

M. Davidović, A. S. Sanz, D. Arsenović, M. Božić, and S. Miret-Artés, “Electromagnetic energy flow lines as possible paths of photons,” Phys. Scr. T135, 014009 (2009).

[CrossRef]

T. L. Dimitrova and A. Weis, “The wave-particle duality of light: a demonstration experiment,” Am. J. Phys. 76, 137–142 (2008).

[CrossRef]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).

[CrossRef]

A. S. Sanz and S. Miret-Artés, “A trajectory-based understanding of quantum interference,” J. Phys. A 41, 435303 (2008).

[CrossRef]

A. S. Sanz, F. Borondo, and S. Miret-Artés, “Particle diffraction studied using quantum trajectories,” J. Phys. Condens. Matter 14, 6109–6145 (2002).

[CrossRef]

D.-S. Min, D. W. Langer, D. K. Pant, and R. D. Coalson, “Numerical techniques for modeling guided-wave photonic devices,” Fiber Integr. Opt. 16, 331–342 (1997).

[CrossRef]

R. D. Coalson, D. K. Pant, A. Ali, and D. W. Langer, “Computing the eigenmodes of lossy field-induced optical waveguides,” J. Lightwave Technol. 12, 1015–1022 (1994).

[CrossRef]

C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comp. Phys. 94, 59–80 (1991).

[CrossRef]

M. D. Feit, J. J. A. Fleck, and A. Stieger, “Solution of the Schrödinger equation by a spectral method,” J. Comput. Phys. 47, 412–433 (1982).

[CrossRef]

P. K. Tien, “Rules of refractive index and a potential well model of the optical waveguides,” Radio Sci. 16, 437–444 (1981).

[CrossRef]

P. K. Tien, “Integrated optics and new wave phenomena in optical waveguides,” Rev. Mod. Phys. 49, 361–420 (1977).

[CrossRef]

J. O. Hirschfelder and K. T. Tang, “Quantum mechanical streamlines. III. Idealized reactive atom-diatomic molecule collision,” J. Chem. Phys. 64, 760–785 (1976).

[CrossRef]

J. O. Hirschfelder and K. T. Tang, “Quantum mechanical streamlines. IV. Collision of two spheres with square potential wells or barriers,” J. Chem. Phys. 65, 470–486 (1976).

[CrossRef]

J. O. Hirschfelder, A. C. Christoph, and W. E. Palke, “Quantum mechanical streamlines. I. Square potential barrier,” J. Chem. Phys. 61, 5435–5455 (1974).

[CrossRef]

J. O. Hirschfelder, C. J. Goebel, and L. W. Bruch, “Quantized vortices around wavefunction nodes. II,” J. Chem. Phys. 61, 5456–5459 (1974).

[CrossRef]

I. Bialynicki-Birula and Z. Bialynicka-Birula, “Magnetic monopoles in the hydrodynamic formulation of quantum mechanics,” Phys. Rev. D 3, 2410–2412 (1971).

[CrossRef]

D. Bohm, “A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. I,” Phys. Rev. 85, 166–179 (1952).

[CrossRef]

E. Madelung, “Quantentheorie in hydrodynamischer Form,” Z. Phys. 40, 322–326 (1926).

[CrossRef]

R. D. Coalson, D. K. Pant, A. Ali, and D. W. Langer, “Computing the eigenmodes of lossy field-induced optical waveguides,” J. Lightwave Technol. 12, 1015–1022 (1994).

[CrossRef]

M. Davidović, A. S. Sanz, D. Arsenović, M. Božić, and S. Miret-Artés, “Electromagnetic energy flow lines as possible paths of photons,” Phys. Scr. T135, 014009 (2009).

[CrossRef]

I. Bialynicki-Birula and Z. Bialynicka-Birula, “Magnetic monopoles in the hydrodynamic formulation of quantum mechanics,” Phys. Rev. D 3, 2410–2412 (1971).

[CrossRef]

I. Bialynicki-Birula and Z. Bialynicka-Birula, “Magnetic monopoles in the hydrodynamic formulation of quantum mechanics,” Phys. Rev. D 3, 2410–2412 (1971).

[CrossRef]

I. Bialynicki-Birula, M. Cieplak, and J. Kaminski, Theory of Quanta (Oxford University, 1992).

C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comp. Phys. 94, 59–80 (1991).

[CrossRef]

D. Bohm, “A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. I,” Phys. Rev. 85, 166–179 (1952).

[CrossRef]

M. Born and E. Wolf, Principles of Optics. Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999), 7th ed.

A. S. Sanz, F. Borondo, and S. Miret-Artés, “Particle diffraction studied using quantum trajectories,” J. Phys. Condens. Matter 14, 6109–6145 (2002).

[CrossRef]

A. S. Sanz, M. Davidović, M. Božić, and S. Miret-Artés, “Understanding interference experiments with polarized light through photon trajectories,” Ann. Phys. 325, 763–784 (2010).

[CrossRef]

M. Božić, M. Davidović, T. L. Dimitrova, S. Miret-Artés, A. S. Sanz, and A. Weis, “Generalized Arago–Fresnel laws: the eme-flow-line description,” J. Russ. Laser Res. 31, 117–128 (2010).

[CrossRef]

M. Davidović, A. S. Sanz, D. Arsenović, M. Božić, and S. Miret-Artés, “Electromagnetic energy flow lines as possible paths of photons,” Phys. Scr. T135, 014009 (2009).

[CrossRef]

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332, 1170–1173 (2011).

[CrossRef]

J. O. Hirschfelder, C. J. Goebel, and L. W. Bruch, “Quantized vortices around wavefunction nodes. II,” J. Chem. Phys. 61, 5456–5459 (1974).

[CrossRef]

H. A. Buchdahl, An Introduction to Hamiltonian Optics(Cambridge University, 1970).

D. K. Pant, R. D. Coalson, M. I. Hernández, and J. Campos-Martínez, “Optimal control theory for optical waveguide design: application to Y-branch structures,” Appl. Opt. 38, 3917–3923 (1999).

[CrossRef]

D. K. Pant, R. D. Coalson, M. I. Hernández, and J. Campos-Martínez, “Optimal control theory for the design of optical waveguides,” J. Lightwave Technol. 16, 292–300 (1998).

[CrossRef]

C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comp. Phys. 94, 59–80 (1991).

[CrossRef]

J. O. Hirschfelder, A. C. Christoph, and W. E. Palke, “Quantum mechanical streamlines. I. Square potential barrier,” J. Chem. Phys. 61, 5435–5455 (1974).

[CrossRef]

I. Bialynicki-Birula, M. Cieplak, and J. Kaminski, Theory of Quanta (Oxford University, 1992).

J. Campos-Martíınez and R. D. Coalson, “The wide-angle equation and its solution through the short-time iterative Lanczos method,” Appl. Opt. 42, 1732–1742 (2003).

[CrossRef]

D. K. Pant, R. D. Coalson, M. I. Hernández, and J. Campos-Martínez, “Optimal control theory for optical waveguide design: application to Y-branch structures,” Appl. Opt. 38, 3917–3923 (1999).

[CrossRef]

D. K. Pant, R. D. Coalson, M. I. Hernández, and J. Campos-Martínez, “Optimal control theory for the design of optical waveguides,” J. Lightwave Technol. 16, 292–300 (1998).

[CrossRef]

D.-S. Min, D. W. Langer, D. K. Pant, and R. D. Coalson, “Numerical techniques for modeling guided-wave photonic devices,” Fiber Integr. Opt. 16, 331–342 (1997).

[CrossRef]

R. D. Coalson, D. K. Pant, A. Ali, and D. W. Langer, “Computing the eigenmodes of lossy field-induced optical waveguides,” J. Lightwave Technol. 12, 1015–1022 (1994).

[CrossRef]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).

[CrossRef]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).

[CrossRef]

M. Božić, M. Davidović, T. L. Dimitrova, S. Miret-Artés, A. S. Sanz, and A. Weis, “Generalized Arago–Fresnel laws: the eme-flow-line description,” J. Russ. Laser Res. 31, 117–128 (2010).

[CrossRef]

A. S. Sanz, M. Davidović, M. Božić, and S. Miret-Artés, “Understanding interference experiments with polarized light through photon trajectories,” Ann. Phys. 325, 763–784 (2010).

[CrossRef]

M. Davidović, A. S. Sanz, D. Arsenović, M. Božić, and S. Miret-Artés, “Electromagnetic energy flow lines as possible paths of photons,” Phys. Scr. T135, 014009 (2009).

[CrossRef]

M. Božić, M. Davidović, T. L. Dimitrova, S. Miret-Artés, A. S. Sanz, and A. Weis, “Generalized Arago–Fresnel laws: the eme-flow-line description,” J. Russ. Laser Res. 31, 117–128 (2010).

[CrossRef]

T. L. Dimitrova and A. Weis, “Single photon quantum erasing: a demonstration experiment,” Eur. J. Phys. 31, 625–637 (2010).

[CrossRef]

T. L. Dimitrova and A. Weis, “Lecture demonstrations of interference and quantum erasing with single photons,” Phys. Scr. T135, 014003 (2009).

[CrossRef]

T. L. Dimitrova and A. Weis, “The wave-particle duality of light: a demonstration experiment,” Am. J. Phys. 76, 137–142 (2008).

[CrossRef]

C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comp. Phys. 94, 59–80 (1991).

[CrossRef]

M. D. Feit and J. J. A. Fleck, “Solution of the Schrödinger equation by a spectral method II: vibrational energy levels of triatomic molecules,” J. Chem. Phys. 78, 301–308 (1983).

[CrossRef]

M. D. Feit, J. J. A. Fleck, and A. Stieger, “Solution of the Schrödinger equation by a spectral method,” J. Comput. Phys. 47, 412–433 (1982).

[CrossRef]

M. D. Feit and J. J. A. Fleck, “Solution of the Schrödinger equation by a spectral method II: vibrational energy levels of triatomic molecules,” J. Chem. Phys. 78, 301–308 (1983).

[CrossRef]

M. D. Feit, J. J. A. Fleck, and A. Stieger, “Solution of the Schrödinger equation by a spectral method,” J. Comput. Phys. 47, 412–433 (1982).

[CrossRef]

C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comp. Phys. 94, 59–80 (1991).

[CrossRef]

J. O. Hirschfelder, C. J. Goebel, and L. W. Bruch, “Quantized vortices around wavefunction nodes. II,” J. Chem. Phys. 61, 5456–5459 (1974).

[CrossRef]

A. S. Sanz, D. López-Durán, and T. González-Lezana, “Investigating transition state resonances in the time domain by means of Bohmian mechanics: the F + HD reaction,” Chem. Phys., doi:10.1016/j.chemphys.2011.07.017 (to be published).

[CrossRef]

C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comp. Phys. 94, 59–80 (1991).

[CrossRef]

J. S. Volker, Y. Ziliang, F. Rupert, W. Yuan, B. Guy, Y. Xiaobo, and Z. Xiang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).

[CrossRef]

C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comp. Phys. 94, 59–80 (1991).

[CrossRef]

D. K. Pant, R. D. Coalson, M. I. Hernández, and J. Campos-Martínez, “Optimal control theory for optical waveguide design: application to Y-branch structures,” Appl. Opt. 38, 3917–3923 (1999).

[CrossRef]

D. K. Pant, R. D. Coalson, M. I. Hernández, and J. Campos-Martínez, “Optimal control theory for the design of optical waveguides,” J. Lightwave Technol. 16, 292–300 (1998).

[CrossRef]

J. O. Hirschfelder and K. T. Tang, “Quantum mechanical streamlines. III. Idealized reactive atom-diatomic molecule collision,” J. Chem. Phys. 64, 760–785 (1976).

[CrossRef]

J. O. Hirschfelder and K. T. Tang, “Quantum mechanical streamlines. IV. Collision of two spheres with square potential wells or barriers,” J. Chem. Phys. 65, 470–486 (1976).

[CrossRef]

J. O. Hirschfelder, C. J. Goebel, and L. W. Bruch, “Quantized vortices around wavefunction nodes. II,” J. Chem. Phys. 61, 5456–5459 (1974).

[CrossRef]

J. O. Hirschfelder, A. C. Christoph, and W. E. Palke, “Quantum mechanical streamlines. I. Square potential barrier,” J. Chem. Phys. 61, 5435–5455 (1974).

[CrossRef]

P. R. Holland, The Quantum Theory of Motion (Cambridge University, 1993).

S. Longhi, D. Janner, M. Marano, and P. Laporta, “Quantum-mechanical analogy of beam propagation in waveguides with a bent axis: dynamic-model stabilization and radiation-loss suppression,” Phys. Rev. E 67, 036601 (2003).

[CrossRef]

C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comp. Phys. 94, 59–80 (1991).

[CrossRef]

I. Bialynicki-Birula, M. Cieplak, and J. Kaminski, Theory of Quanta (Oxford University, 1992).

C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comp. Phys. 94, 59–80 (1991).

[CrossRef]

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332, 1170–1173 (2011).

[CrossRef]

C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comp. Phys. 94, 59–80 (1991).

[CrossRef]

D.-S. Min, D. W. Langer, D. K. Pant, and R. D. Coalson, “Numerical techniques for modeling guided-wave photonic devices,” Fiber Integr. Opt. 16, 331–342 (1997).

[CrossRef]

R. D. Coalson, D. K. Pant, A. Ali, and D. W. Langer, “Computing the eigenmodes of lossy field-induced optical waveguides,” J. Lightwave Technol. 12, 1015–1022 (1994).

[CrossRef]

S. Longhi, D. Janner, M. Marano, and P. Laporta, “Quantum-mechanical analogy of beam propagation in waveguides with a bent axis: dynamic-model stabilization and radiation-loss suppression,” Phys. Rev. E 67, 036601 (2003).

[CrossRef]

C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comp. Phys. 94, 59–80 (1991).

[CrossRef]

C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comp. Phys. 94, 59–80 (1991).

[CrossRef]

S. Longhi, D. Janner, M. Marano, and P. Laporta, “Quantum-mechanical analogy of beam propagation in waveguides with a bent axis: dynamic-model stabilization and radiation-loss suppression,” Phys. Rev. E 67, 036601 (2003).

[CrossRef]

A. S. Sanz, D. López-Durán, and T. González-Lezana, “Investigating transition state resonances in the time domain by means of Bohmian mechanics: the F + HD reaction,” Chem. Phys., doi:10.1016/j.chemphys.2011.07.017 (to be published).

[CrossRef]

E. Madelung, “Quantentheorie in hydrodynamischer Form,” Z. Phys. 40, 322–326 (1926).

[CrossRef]

S. Longhi, D. Janner, M. Marano, and P. Laporta, “Quantum-mechanical analogy of beam propagation in waveguides with a bent axis: dynamic-model stabilization and radiation-loss suppression,” Phys. Rev. E 67, 036601 (2003).

[CrossRef]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).

[CrossRef]

C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comp. Phys. 94, 59–80 (1991).

[CrossRef]

D.-S. Min, D. W. Langer, D. K. Pant, and R. D. Coalson, “Numerical techniques for modeling guided-wave photonic devices,” Fiber Integr. Opt. 16, 331–342 (1997).

[CrossRef]

A. S. Sanz, M. Davidović, M. Božić, and S. Miret-Artés, “Understanding interference experiments with polarized light through photon trajectories,” Ann. Phys. 325, 763–784 (2010).

[CrossRef]

M. Božić, M. Davidović, T. L. Dimitrova, S. Miret-Artés, A. S. Sanz, and A. Weis, “Generalized Arago–Fresnel laws: the eme-flow-line description,” J. Russ. Laser Res. 31, 117–128 (2010).

[CrossRef]

M. Davidović, A. S. Sanz, D. Arsenović, M. Božić, and S. Miret-Artés, “Electromagnetic energy flow lines as possible paths of photons,” Phys. Scr. T135, 014009 (2009).

[CrossRef]

A. S. Sanz and S. Miret-Artés, “A trajectory-based understanding of quantum interference,” J. Phys. A 41, 435303 (2008).

[CrossRef]

A. S. Sanz, F. Borondo, and S. Miret-Artés, “Particle diffraction studied using quantum trajectories,” J. Phys. Condens. Matter 14, 6109–6145 (2002).

[CrossRef]

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332, 1170–1173 (2011).

[CrossRef]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).

[CrossRef]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).

[CrossRef]

J. O. Hirschfelder, A. C. Christoph, and W. E. Palke, “Quantum mechanical streamlines. I. Square potential barrier,” J. Chem. Phys. 61, 5435–5455 (1974).

[CrossRef]

D. K. Pant, R. D. Coalson, M. I. Hernández, and J. Campos-Martínez, “Optimal control theory for optical waveguide design: application to Y-branch structures,” Appl. Opt. 38, 3917–3923 (1999).

[CrossRef]

D. K. Pant, R. D. Coalson, M. I. Hernández, and J. Campos-Martínez, “Optimal control theory for the design of optical waveguides,” J. Lightwave Technol. 16, 292–300 (1998).

[CrossRef]

D.-S. Min, D. W. Langer, D. K. Pant, and R. D. Coalson, “Numerical techniques for modeling guided-wave photonic devices,” Fiber Integr. Opt. 16, 331–342 (1997).

[CrossRef]

R. D. Coalson, D. K. Pant, A. Ali, and D. W. Langer, “Computing the eigenmodes of lossy field-induced optical waveguides,” J. Lightwave Technol. 12, 1015–1022 (1994).

[CrossRef]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).

[CrossRef]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).

[CrossRef]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).

[CrossRef]

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332, 1170–1173 (2011).

[CrossRef]

C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comp. Phys. 94, 59–80 (1991).

[CrossRef]

J. S. Volker, Y. Ziliang, F. Rupert, W. Yuan, B. Guy, Y. Xiaobo, and Z. Xiang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).

[CrossRef]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).

[CrossRef]

A. S. Sanz, M. Davidović, M. Božić, and S. Miret-Artés, “Understanding interference experiments with polarized light through photon trajectories,” Ann. Phys. 325, 763–784 (2010).

[CrossRef]

M. Božić, M. Davidović, T. L. Dimitrova, S. Miret-Artés, A. S. Sanz, and A. Weis, “Generalized Arago–Fresnel laws: the eme-flow-line description,” J. Russ. Laser Res. 31, 117–128 (2010).

[CrossRef]

M. Davidović, A. S. Sanz, D. Arsenović, M. Božić, and S. Miret-Artés, “Electromagnetic energy flow lines as possible paths of photons,” Phys. Scr. T135, 014009 (2009).

[CrossRef]

A. S. Sanz and S. Miret-Artés, “A trajectory-based understanding of quantum interference,” J. Phys. A 41, 435303 (2008).

[CrossRef]

A. S. Sanz, F. Borondo, and S. Miret-Artés, “Particle diffraction studied using quantum trajectories,” J. Phys. Condens. Matter 14, 6109–6145 (2002).

[CrossRef]

A. S. Sanz, D. López-Durán, and T. González-Lezana, “Investigating transition state resonances in the time domain by means of Bohmian mechanics: the F + HD reaction,” Chem. Phys., doi:10.1016/j.chemphys.2011.07.017 (to be published).

[CrossRef]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).

[CrossRef]

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332, 1170–1173 (2011).

[CrossRef]

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332, 1170–1173 (2011).

[CrossRef]

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332, 1170–1173 (2011).

[CrossRef]

M. D. Feit, J. J. A. Fleck, and A. Stieger, “Solution of the Schrödinger equation by a spectral method,” J. Comput. Phys. 47, 412–433 (1982).

[CrossRef]

J. O. Hirschfelder and K. T. Tang, “Quantum mechanical streamlines. IV. Collision of two spheres with square potential wells or barriers,” J. Chem. Phys. 65, 470–486 (1976).

[CrossRef]

J. O. Hirschfelder and K. T. Tang, “Quantum mechanical streamlines. III. Idealized reactive atom-diatomic molecule collision,” J. Chem. Phys. 64, 760–785 (1976).

[CrossRef]

P. K. Tien, “Rules of refractive index and a potential well model of the optical waveguides,” Radio Sci. 16, 437–444 (1981).

[CrossRef]

P. K. Tien, “Integrated optics and new wave phenomena in optical waveguides,” Rev. Mod. Phys. 49, 361–420 (1977).

[CrossRef]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).

[CrossRef]

J. S. Volker, Y. Ziliang, F. Rupert, W. Yuan, B. Guy, Y. Xiaobo, and Z. Xiang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).

[CrossRef]

M. Božić, M. Davidović, T. L. Dimitrova, S. Miret-Artés, A. S. Sanz, and A. Weis, “Generalized Arago–Fresnel laws: the eme-flow-line description,” J. Russ. Laser Res. 31, 117–128 (2010).

[CrossRef]

T. L. Dimitrova and A. Weis, “Single photon quantum erasing: a demonstration experiment,” Eur. J. Phys. 31, 625–637 (2010).

[CrossRef]

T. L. Dimitrova and A. Weis, “Lecture demonstrations of interference and quantum erasing with single photons,” Phys. Scr. T135, 014003 (2009).

[CrossRef]

T. L. Dimitrova and A. Weis, “The wave-particle duality of light: a demonstration experiment,” Am. J. Phys. 76, 137–142 (2008).

[CrossRef]

M. Born and E. Wolf, Principles of Optics. Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999), 7th ed.

R. E. Wyatt, Quantum Dynamics with Trajectories (Springer, 2005).

J. S. Volker, Y. Ziliang, F. Rupert, W. Yuan, B. Guy, Y. Xiaobo, and Z. Xiang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).

[CrossRef]

J. S. Volker, Y. Ziliang, F. Rupert, W. Yuan, B. Guy, Y. Xiaobo, and Z. Xiang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).

[CrossRef]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).

[CrossRef]

J. S. Volker, Y. Ziliang, F. Rupert, W. Yuan, B. Guy, Y. Xiaobo, and Z. Xiang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).

[CrossRef]

J. S. Volker, Y. Ziliang, F. Rupert, W. Yuan, B. Guy, Y. Xiaobo, and Z. Xiang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).

[CrossRef]

T. L. Dimitrova and A. Weis, “The wave-particle duality of light: a demonstration experiment,” Am. J. Phys. 76, 137–142 (2008).

[CrossRef]

A. S. Sanz, M. Davidović, M. Božić, and S. Miret-Artés, “Understanding interference experiments with polarized light through photon trajectories,” Ann. Phys. 325, 763–784 (2010).

[CrossRef]

A. S. Sanz, D. López-Durán, and T. González-Lezana, “Investigating transition state resonances in the time domain by means of Bohmian mechanics: the F + HD reaction,” Chem. Phys., doi:10.1016/j.chemphys.2011.07.017 (to be published).

[CrossRef]

T. L. Dimitrova and A. Weis, “Single photon quantum erasing: a demonstration experiment,” Eur. J. Phys. 31, 625–637 (2010).

[CrossRef]

D.-S. Min, D. W. Langer, D. K. Pant, and R. D. Coalson, “Numerical techniques for modeling guided-wave photonic devices,” Fiber Integr. Opt. 16, 331–342 (1997).

[CrossRef]

J. O. Hirschfelder, A. C. Christoph, and W. E. Palke, “Quantum mechanical streamlines. I. Square potential barrier,” J. Chem. Phys. 61, 5435–5455 (1974).

[CrossRef]

J. O. Hirschfelder, C. J. Goebel, and L. W. Bruch, “Quantized vortices around wavefunction nodes. II,” J. Chem. Phys. 61, 5456–5459 (1974).

[CrossRef]

J. O. Hirschfelder and K. T. Tang, “Quantum mechanical streamlines. III. Idealized reactive atom-diatomic molecule collision,” J. Chem. Phys. 64, 760–785 (1976).

[CrossRef]

J. O. Hirschfelder and K. T. Tang, “Quantum mechanical streamlines. IV. Collision of two spheres with square potential wells or barriers,” J. Chem. Phys. 65, 470–486 (1976).

[CrossRef]

M. D. Feit and J. J. A. Fleck, “Solution of the Schrödinger equation by a spectral method II: vibrational energy levels of triatomic molecules,” J. Chem. Phys. 78, 301–308 (1983).

[CrossRef]

C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comp. Phys. 94, 59–80 (1991).

[CrossRef]

M. D. Feit, J. J. A. Fleck, and A. Stieger, “Solution of the Schrödinger equation by a spectral method,” J. Comput. Phys. 47, 412–433 (1982).

[CrossRef]

D. K. Pant, R. D. Coalson, M. I. Hernández, and J. Campos-Martínez, “Optimal control theory for the design of optical waveguides,” J. Lightwave Technol. 16, 292–300 (1998).

[CrossRef]

R. D. Coalson, D. K. Pant, A. Ali, and D. W. Langer, “Computing the eigenmodes of lossy field-induced optical waveguides,” J. Lightwave Technol. 12, 1015–1022 (1994).

[CrossRef]

A. S. Sanz and S. Miret-Artés, “A trajectory-based understanding of quantum interference,” J. Phys. A 41, 435303 (2008).

[CrossRef]

A. S. Sanz, F. Borondo, and S. Miret-Artés, “Particle diffraction studied using quantum trajectories,” J. Phys. Condens. Matter 14, 6109–6145 (2002).

[CrossRef]

M. Božić, M. Davidović, T. L. Dimitrova, S. Miret-Artés, A. S. Sanz, and A. Weis, “Generalized Arago–Fresnel laws: the eme-flow-line description,” J. Russ. Laser Res. 31, 117–128 (2010).

[CrossRef]

J. S. Volker, Y. Ziliang, F. Rupert, W. Yuan, B. Guy, Y. Xiaobo, and Z. Xiang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).

[CrossRef]

D. Bohm, “A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. I,” Phys. Rev. 85, 166–179 (1952).

[CrossRef]

I. Bialynicki-Birula and Z. Bialynicka-Birula, “Magnetic monopoles in the hydrodynamic formulation of quantum mechanics,” Phys. Rev. D 3, 2410–2412 (1971).

[CrossRef]

S. Longhi, D. Janner, M. Marano, and P. Laporta, “Quantum-mechanical analogy of beam propagation in waveguides with a bent axis: dynamic-model stabilization and radiation-loss suppression,” Phys. Rev. E 67, 036601 (2003).

[CrossRef]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).

[CrossRef]

M. Davidović, A. S. Sanz, D. Arsenović, M. Božić, and S. Miret-Artés, “Electromagnetic energy flow lines as possible paths of photons,” Phys. Scr. T135, 014009 (2009).

[CrossRef]

T. L. Dimitrova and A. Weis, “Lecture demonstrations of interference and quantum erasing with single photons,” Phys. Scr. T135, 014003 (2009).

[CrossRef]

P. K. Tien, “Rules of refractive index and a potential well model of the optical waveguides,” Radio Sci. 16, 437–444 (1981).

[CrossRef]

P. K. Tien, “Integrated optics and new wave phenomena in optical waveguides,” Rev. Mod. Phys. 49, 361–420 (1977).

[CrossRef]

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332, 1170–1173 (2011).

[CrossRef]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).

[CrossRef]

E. Madelung, “Quantentheorie in hydrodynamischer Form,” Z. Phys. 40, 322–326 (1926).

[CrossRef]

I. Bialynicki-Birula, M. Cieplak, and J. Kaminski, Theory of Quanta (Oxford University, 1992).

R. E. Wyatt, Quantum Dynamics with Trajectories (Springer, 2005).

M. Born and E. Wolf, Principles of Optics. Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999), 7th ed.

H. A. Buchdahl, An Introduction to Hamiltonian Optics(Cambridge University, 1970).

P. R. Holland, The Quantum Theory of Motion (Cambridge University, 1993).

A. S. Sanz and S. Miret-Artés, “Determining final probabilities directly from the initial state,” http://arxiv.org/abs/1112.3830 .