Abstract

Colors defined by the two intermediate directions in color space, “orange–cyan” and “lime–magenta,” elicit the same spatiotemporal average response from the two cardinal chromatic channels in the lateral geniculate nucleus (LGN). While we found LGN functional magnetic resonance imaging (fMRI) responses to these pairs of colors were statistically indistinguishable, primary visual cortex (V1) fMRI responses were stronger to orange–cyan. Moreover, linear combinations of single-cell responses to cone-isolating stimuli of V1 cone-opponent cells also yielded stronger predicted responses to orange–cyan over lime–magenta, suggesting these neurons underlie the fMRI result. These observations are consistent with the hypothesis that V1 recombines LGN signals into “higher-order” mechanisms tuned to noncardinal color directions. In light of work showing that natural images and daylight samples are biased toward orange–cyan, our findings further suggest that V1 is adapted to daylight. V1, especially double-opponent cells, may function to extract spatial information from color boundaries correlated with scene-structure cues, such as shadows lit by ambient blue sky juxtaposed with surfaces reflecting sunshine.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
    [CrossRef]
  2. A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
  3. E. Goddard, D. J. Mannion, J. S. McDonald, S. G. Solomon, and C. W. Clifford, “Combination of subcortical color channels in human visual cortex,” J. Vision 10(5):25, 1–17 (2010).
    [CrossRef]
  4. D. I. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
    [CrossRef]
  5. B. R. Conway, S. Chatterjee, G. D. Field, G. D. Horwitz, E. N. Johnson, K. Koida, and K. Mancuso, “Advances in color science: from retina to behavior,” J. Neurosci. 30, 14955–14963 (2010).
    [CrossRef]
  6. R. T. Eskew, “Higher order color mechanisms: a critical review,” Vis. Res. 49, 2686–2704 (2009).
    [CrossRef]
  7. T. Hansen, Department of General and Experimental Psychology, Justus Liebig University Giessen, Otto-Behaghel-Strasse 10 F1, Giessen 35394 (personal communication, 2011).
  8. Q. Zaidi, Graduate Center for Vision Research, State University of New York, College of Optometry, 33 West 42nd Street, New York, New York 10036 (personal communication, 2011).
  9. D. B. Judd, “Report of U. S. secretariat committee on colorimetry and artificial daylight,” in Vol. 1 of Proceedings of the Twelfth Session of the CIE (Bureau Central de la CIE, 1951), p. 11.
  10. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, 1982).
  11. T. Hansen, M. Giesel, and K. R. Gegenfurtner, “Chromatic discrimination of natural objects,” J. Vision 8(1):2, 1–19 (2008).
  12. B. R. Conway and D. Y. Tsao, “Color architecture in alert macaque cortex revealed by fMRI,” Cereb. Cortex 16, 1604–1613 (2005).
    [CrossRef]
  13. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
    [CrossRef]
  14. G. Paxinos, Huang X-F, and A. W. Toga, The Rhesus Monkey Brain In Stereotaxic Coordinates (Academic, 2000).
  15. R. W. Cox and J. S. Hyde, “Software tools for analysis and visualization of fMRI data,” NMR Biomed. 10, 171–178 (1997).
    [CrossRef]
  16. B. R. Conway, S. Moeller, and D. Y. Tsao, “Specialized color modules in macaque extrastriate cortex,” Neuron 56, 560–573 (2007).
    [CrossRef]
  17. D. Y. Tsao, W. Vanduffel, Y. Sasaki, D. Fize, T. A. Knutsen, J. B. Mandeville, L. L. Wald, A. M. Dale, B. R. Rosen, D. C. Van Essen, M. S. Livingstone, G. A. Orban, and R. B. Tootell, “Stereopsis activates V3A and caudal intraparietal areas in macaques and humans,” Neuron 39, 555–568 (2003).
    [CrossRef]
  18. J. Winawer, H. Horiguchi, R. A. Sayres, K. Amano, and B. A. Wandell, “Mapping hV4 and ventral occipital cortex: the venous eclipse,” J. Vision 10(5):1, 1–22 (2010).
    [CrossRef]
  19. G. J. Brouwer and D. J. Heeger, “Decoding and reconstructing color from responses in human visual cortex,” J. Neurosci. 29, 13992–14003 (2009).
    [CrossRef]
  20. B. R. Conway, “Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1),” J. Neurosci. 21, 2768–2783 (2001).
  21. B. R. Conway and M. S. Livingstone, “Spatial and temporal properties of cone signals in alert macaque primary visual cortex,” J. Neurosci. 26, 10826–10846 (2006).
    [CrossRef]
  22. A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vis. Res. 40, 1711–1737 (2000).
    [CrossRef]
  23. B. R. Conway, D. H. Hubel, and M. S. Livingstone, “Color contrast in macaque V1,” Cereb. Cortex 12, 915–925 (2002).
    [CrossRef]
  24. S. G. Solomon and P. Lennie, “Chromatic gain controls in visual cortical neurons,” J. Neurosci. 25, 4779–4792 (2005).
    [CrossRef]
  25. T. Wachtler, T. J. Sejnowski, and T. D. Albright, “Representation of color stimuli in awake macaque primary visual cortex,” Neuron 37, 681–691 (2003).
    [CrossRef]
  26. G. D. Horwitz, E. J. Chichilnisky, and T. D. Albright, “Cone inputs to simple and complex cells in V1 of awake macaque,” J. Neurophysiol. 97, 3070–3081 (2007).
    [CrossRef]
  27. S. G. Solomon and P. Lennie, “The machinery of colour vision,” Nat. Rev. Neurosci. 8, 276–286 (2007).
    [CrossRef]
  28. C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
    [CrossRef]
  29. C. R. Ingling, “The spectral sensitivity of the opponent-color channels,” Vis. Res. 17, 1083–1089 (1977).
    [CrossRef]
  30. D. J. Heeger, A. C. Huk, W. S. Geisler, and D. G. Albrecht, “Spikes versus BOLD: what does neuroimaging tell us about neuronal activity?” Nat. Neurosci. 3, 631–633 (2000).
    [CrossRef]
  31. D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. 195, 215–243 (1968).
  32. B. R. Conway, “Color vision, cones, and color-coding in the cortex,” Neuroscientist 15, 274–290 (2009).
    [CrossRef]
  33. R. L. De Valois, H. C. Morgan, M. C. Polson, W. R. Mead, and E. M. Hull, “Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests,” Vis. Res. 14, 53–67(1974).
    [CrossRef]
  34. D. A. Baylor, B. J. Nunn, and J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. 390, 145–160 (1987).
  35. D. M. Snodderly, J. D. Auran, and F. C. Delori, “The macular pigment. II. Spatial distribution in primate retinas,” Investig. Ophthalmol. Vis. Sci. 25, 674–685 (1984).
  36. H. Sun, H. E. Smithson, Q. Zaidi, and B. B. Lee, “Specificity of cone inputs to macaque retinal ganglion cells,” J. Neurophysiol. 95, 837–849 (2005).
    [CrossRef]
  37. J. Hernandez-Andres, J. Romero, J. L. Nieves, and R. L. Lee, “Color and spectral analysis of daylight in southern Europe,” J. Opt. Soc. Am. A 18, 1325–1335 (2001).
    [CrossRef]
  38. N. W. Daw, “Goldfish retina: organization for simultaneous color contrast,” Science 158, 942–944 (1967).
    [CrossRef]
  39. A. Hurlbert and K. Wolf, “Color contrast: a contributory mechanism to color constancy,” Prog. Brain Res. 144, 147–160 (2004).
    [CrossRef]
  40. M. A. Webster and J. D. Mollon, “Adaptation and the color statistics of natural images,” Vis. Res. 37, 3283–3298 (1997).
    [CrossRef]
  41. D. Bimler, “Flicker between equal-luminance colors examined with multidimensional scaling,” J. Opt. Soc. Am. A 27, 523–531(2010).
    [CrossRef]
  42. P. Sciretta, “Orange/blue contrast in movie posters,” 2009, http://ohnotheydidnt.livejournal.com/41879586.html .
  43. I. Juricevic, L. Land, A. Wilkins, and M. A. Webster, “Visual discomfort and natural image statistics,” Perception 39, 884–899 (2010).
    [CrossRef]
  44. J. Krauskopf and K. Gegenfurtner, “Color discrimination and adaptation,” Vis. Res. 32, 2165–2175 (1992).
    [CrossRef]
  45. A. L. Nagy, R. T. Eskew, and R. M. Boynton, “Analysis of color-matching ellipses in a cone-excitation space,” J. Opt. Soc. Am. A 4, 756–768 (1987).
    [CrossRef]
  46. K. C. McDermott, G. Malkoc, J. B. Mulligan, and M. A. Webster, “Adaptation and visual salience,” J. Vision 10(13):17, 1–32 (2010).
    [CrossRef]
  47. M. V. Danilova and J. D. Mollon, “Parafoveal color discrimination: a chromaticity locus of enhanced discrimination,” J. Vision 10(1):4, 1–9 (2010).
    [CrossRef]
  48. M. A. Webster, “Calibrating color vision,” Curr. Biol. 19, R150–R152 (2009).
    [CrossRef]

2010 (7)

B. R. Conway, S. Chatterjee, G. D. Field, G. D. Horwitz, E. N. Johnson, K. Koida, and K. Mancuso, “Advances in color science: from retina to behavior,” J. Neurosci. 30, 14955–14963 (2010).
[CrossRef]

J. Winawer, H. Horiguchi, R. A. Sayres, K. Amano, and B. A. Wandell, “Mapping hV4 and ventral occipital cortex: the venous eclipse,” J. Vision 10(5):1, 1–22 (2010).
[CrossRef]

E. Goddard, D. J. Mannion, J. S. McDonald, S. G. Solomon, and C. W. Clifford, “Combination of subcortical color channels in human visual cortex,” J. Vision 10(5):25, 1–17 (2010).
[CrossRef]

I. Juricevic, L. Land, A. Wilkins, and M. A. Webster, “Visual discomfort and natural image statistics,” Perception 39, 884–899 (2010).
[CrossRef]

K. C. McDermott, G. Malkoc, J. B. Mulligan, and M. A. Webster, “Adaptation and visual salience,” J. Vision 10(13):17, 1–32 (2010).
[CrossRef]

M. V. Danilova and J. D. Mollon, “Parafoveal color discrimination: a chromaticity locus of enhanced discrimination,” J. Vision 10(1):4, 1–9 (2010).
[CrossRef]

D. Bimler, “Flicker between equal-luminance colors examined with multidimensional scaling,” J. Opt. Soc. Am. A 27, 523–531(2010).
[CrossRef]

2009 (4)

M. A. Webster, “Calibrating color vision,” Curr. Biol. 19, R150–R152 (2009).
[CrossRef]

B. R. Conway, “Color vision, cones, and color-coding in the cortex,” Neuroscientist 15, 274–290 (2009).
[CrossRef]

G. J. Brouwer and D. J. Heeger, “Decoding and reconstructing color from responses in human visual cortex,” J. Neurosci. 29, 13992–14003 (2009).
[CrossRef]

R. T. Eskew, “Higher order color mechanisms: a critical review,” Vis. Res. 49, 2686–2704 (2009).
[CrossRef]

2008 (2)

T. Hansen, M. Giesel, and K. R. Gegenfurtner, “Chromatic discrimination of natural objects,” J. Vision 8(1):2, 1–19 (2008).

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
[CrossRef]

2007 (3)

B. R. Conway, S. Moeller, and D. Y. Tsao, “Specialized color modules in macaque extrastriate cortex,” Neuron 56, 560–573 (2007).
[CrossRef]

G. D. Horwitz, E. J. Chichilnisky, and T. D. Albright, “Cone inputs to simple and complex cells in V1 of awake macaque,” J. Neurophysiol. 97, 3070–3081 (2007).
[CrossRef]

S. G. Solomon and P. Lennie, “The machinery of colour vision,” Nat. Rev. Neurosci. 8, 276–286 (2007).
[CrossRef]

2006 (1)

B. R. Conway and M. S. Livingstone, “Spatial and temporal properties of cone signals in alert macaque primary visual cortex,” J. Neurosci. 26, 10826–10846 (2006).
[CrossRef]

2005 (3)

S. G. Solomon and P. Lennie, “Chromatic gain controls in visual cortical neurons,” J. Neurosci. 25, 4779–4792 (2005).
[CrossRef]

B. R. Conway and D. Y. Tsao, “Color architecture in alert macaque cortex revealed by fMRI,” Cereb. Cortex 16, 1604–1613 (2005).
[CrossRef]

H. Sun, H. E. Smithson, Q. Zaidi, and B. B. Lee, “Specificity of cone inputs to macaque retinal ganglion cells,” J. Neurophysiol. 95, 837–849 (2005).
[CrossRef]

2004 (1)

A. Hurlbert and K. Wolf, “Color contrast: a contributory mechanism to color constancy,” Prog. Brain Res. 144, 147–160 (2004).
[CrossRef]

2003 (2)

D. Y. Tsao, W. Vanduffel, Y. Sasaki, D. Fize, T. A. Knutsen, J. B. Mandeville, L. L. Wald, A. M. Dale, B. R. Rosen, D. C. Van Essen, M. S. Livingstone, G. A. Orban, and R. B. Tootell, “Stereopsis activates V3A and caudal intraparietal areas in macaques and humans,” Neuron 39, 555–568 (2003).
[CrossRef]

T. Wachtler, T. J. Sejnowski, and T. D. Albright, “Representation of color stimuli in awake macaque primary visual cortex,” Neuron 37, 681–691 (2003).
[CrossRef]

2002 (1)

B. R. Conway, D. H. Hubel, and M. S. Livingstone, “Color contrast in macaque V1,” Cereb. Cortex 12, 915–925 (2002).
[CrossRef]

2001 (2)

B. R. Conway, “Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1),” J. Neurosci. 21, 2768–2783 (2001).

J. Hernandez-Andres, J. Romero, J. L. Nieves, and R. L. Lee, “Color and spectral analysis of daylight in southern Europe,” J. Opt. Soc. Am. A 18, 1325–1335 (2001).
[CrossRef]

2000 (2)

A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vis. Res. 40, 1711–1737 (2000).
[CrossRef]

D. J. Heeger, A. C. Huk, W. S. Geisler, and D. G. Albrecht, “Spikes versus BOLD: what does neuroimaging tell us about neuronal activity?” Nat. Neurosci. 3, 631–633 (2000).
[CrossRef]

1997 (2)

M. A. Webster and J. D. Mollon, “Adaptation and the color statistics of natural images,” Vis. Res. 37, 3283–3298 (1997).
[CrossRef]

R. W. Cox and J. S. Hyde, “Software tools for analysis and visualization of fMRI data,” NMR Biomed. 10, 171–178 (1997).
[CrossRef]

1992 (1)

J. Krauskopf and K. Gegenfurtner, “Color discrimination and adaptation,” Vis. Res. 32, 2165–2175 (1992).
[CrossRef]

1987 (2)

D. A. Baylor, B. J. Nunn, and J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. 390, 145–160 (1987).

A. L. Nagy, R. T. Eskew, and R. M. Boynton, “Analysis of color-matching ellipses in a cone-excitation space,” J. Opt. Soc. Am. A 4, 756–768 (1987).
[CrossRef]

1984 (2)

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

D. M. Snodderly, J. D. Auran, and F. C. Delori, “The macular pigment. II. Spatial distribution in primate retinas,” Investig. Ophthalmol. Vis. Sci. 25, 674–685 (1984).

1982 (1)

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

1979 (1)

1977 (1)

C. R. Ingling, “The spectral sensitivity of the opponent-color channels,” Vis. Res. 17, 1083–1089 (1977).
[CrossRef]

1975 (1)

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
[CrossRef]

1974 (1)

R. L. De Valois, H. C. Morgan, M. C. Polson, W. R. Mead, and E. M. Hull, “Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests,” Vis. Res. 14, 53–67(1974).
[CrossRef]

1968 (1)

D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. 195, 215–243 (1968).

1967 (1)

N. W. Daw, “Goldfish retina: organization for simultaneous color contrast,” Science 158, 942–944 (1967).
[CrossRef]

Albrecht, D. G.

D. J. Heeger, A. C. Huk, W. S. Geisler, and D. G. Albrecht, “Spikes versus BOLD: what does neuroimaging tell us about neuronal activity?” Nat. Neurosci. 3, 631–633 (2000).
[CrossRef]

Albright, T. D.

G. D. Horwitz, E. J. Chichilnisky, and T. D. Albright, “Cone inputs to simple and complex cells in V1 of awake macaque,” J. Neurophysiol. 97, 3070–3081 (2007).
[CrossRef]

T. Wachtler, T. J. Sejnowski, and T. D. Albright, “Representation of color stimuli in awake macaque primary visual cortex,” Neuron 37, 681–691 (2003).
[CrossRef]

Amano, K.

J. Winawer, H. Horiguchi, R. A. Sayres, K. Amano, and B. A. Wandell, “Mapping hV4 and ventral occipital cortex: the venous eclipse,” J. Vision 10(5):1, 1–22 (2010).
[CrossRef]

Auran, J. D.

D. M. Snodderly, J. D. Auran, and F. C. Delori, “The macular pigment. II. Spatial distribution in primate retinas,” Investig. Ophthalmol. Vis. Sci. 25, 674–685 (1984).

Baylor, D. A.

D. A. Baylor, B. J. Nunn, and J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. 390, 145–160 (1987).

Bimler, D.

Boynton, R. M.

Brouwer, G. J.

G. J. Brouwer and D. J. Heeger, “Decoding and reconstructing color from responses in human visual cortex,” J. Neurosci. 29, 13992–14003 (2009).
[CrossRef]

Chatterjee, S.

B. R. Conway, S. Chatterjee, G. D. Field, G. D. Horwitz, E. N. Johnson, K. Koida, and K. Mancuso, “Advances in color science: from retina to behavior,” J. Neurosci. 30, 14955–14963 (2010).
[CrossRef]

Chichilnisky, E. J.

G. D. Horwitz, E. J. Chichilnisky, and T. D. Albright, “Cone inputs to simple and complex cells in V1 of awake macaque,” J. Neurophysiol. 97, 3070–3081 (2007).
[CrossRef]

Clifford, C. W.

E. Goddard, D. J. Mannion, J. S. McDonald, S. G. Solomon, and C. W. Clifford, “Combination of subcortical color channels in human visual cortex,” J. Vision 10(5):25, 1–17 (2010).
[CrossRef]

Conway, B. R.

B. R. Conway, S. Chatterjee, G. D. Field, G. D. Horwitz, E. N. Johnson, K. Koida, and K. Mancuso, “Advances in color science: from retina to behavior,” J. Neurosci. 30, 14955–14963 (2010).
[CrossRef]

B. R. Conway, “Color vision, cones, and color-coding in the cortex,” Neuroscientist 15, 274–290 (2009).
[CrossRef]

B. R. Conway, S. Moeller, and D. Y. Tsao, “Specialized color modules in macaque extrastriate cortex,” Neuron 56, 560–573 (2007).
[CrossRef]

B. R. Conway and M. S. Livingstone, “Spatial and temporal properties of cone signals in alert macaque primary visual cortex,” J. Neurosci. 26, 10826–10846 (2006).
[CrossRef]

B. R. Conway and D. Y. Tsao, “Color architecture in alert macaque cortex revealed by fMRI,” Cereb. Cortex 16, 1604–1613 (2005).
[CrossRef]

B. R. Conway, D. H. Hubel, and M. S. Livingstone, “Color contrast in macaque V1,” Cereb. Cortex 12, 915–925 (2002).
[CrossRef]

B. R. Conway, “Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1),” J. Neurosci. 21, 2768–2783 (2001).

Cox, R. W.

R. W. Cox and J. S. Hyde, “Software tools for analysis and visualization of fMRI data,” NMR Biomed. 10, 171–178 (1997).
[CrossRef]

Dale, A. M.

D. Y. Tsao, W. Vanduffel, Y. Sasaki, D. Fize, T. A. Knutsen, J. B. Mandeville, L. L. Wald, A. M. Dale, B. R. Rosen, D. C. Van Essen, M. S. Livingstone, G. A. Orban, and R. B. Tootell, “Stereopsis activates V3A and caudal intraparietal areas in macaques and humans,” Neuron 39, 555–568 (2003).
[CrossRef]

Danilova, M. V.

M. V. Danilova and J. D. Mollon, “Parafoveal color discrimination: a chromaticity locus of enhanced discrimination,” J. Vision 10(1):4, 1–9 (2010).
[CrossRef]

Daw, N. W.

N. W. Daw, “Goldfish retina: organization for simultaneous color contrast,” Science 158, 942–944 (1967).
[CrossRef]

De Valois, R. L.

R. L. De Valois, H. C. Morgan, M. C. Polson, W. R. Mead, and E. M. Hull, “Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests,” Vis. Res. 14, 53–67(1974).
[CrossRef]

Delori, F. C.

D. M. Snodderly, J. D. Auran, and F. C. Delori, “The macular pigment. II. Spatial distribution in primate retinas,” Investig. Ophthalmol. Vis. Sci. 25, 674–685 (1984).

Derrington, A. M.

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

Eskew, R. T.

Field, G. D.

B. R. Conway, S. Chatterjee, G. D. Field, G. D. Horwitz, E. N. Johnson, K. Koida, and K. Mancuso, “Advances in color science: from retina to behavior,” J. Neurosci. 30, 14955–14963 (2010).
[CrossRef]

Fize, D.

D. Y. Tsao, W. Vanduffel, Y. Sasaki, D. Fize, T. A. Knutsen, J. B. Mandeville, L. L. Wald, A. M. Dale, B. R. Rosen, D. C. Van Essen, M. S. Livingstone, G. A. Orban, and R. B. Tootell, “Stereopsis activates V3A and caudal intraparietal areas in macaques and humans,” Neuron 39, 555–568 (2003).
[CrossRef]

Gegenfurtner, K.

J. Krauskopf and K. Gegenfurtner, “Color discrimination and adaptation,” Vis. Res. 32, 2165–2175 (1992).
[CrossRef]

Gegenfurtner, K. R.

T. Hansen, M. Giesel, and K. R. Gegenfurtner, “Chromatic discrimination of natural objects,” J. Vision 8(1):2, 1–19 (2008).

Geisler, W. S.

D. J. Heeger, A. C. Huk, W. S. Geisler, and D. G. Albrecht, “Spikes versus BOLD: what does neuroimaging tell us about neuronal activity?” Nat. Neurosci. 3, 631–633 (2000).
[CrossRef]

Giesel, M.

T. Hansen, M. Giesel, and K. R. Gegenfurtner, “Chromatic discrimination of natural objects,” J. Vision 8(1):2, 1–19 (2008).

Goddard, E.

E. Goddard, D. J. Mannion, J. S. McDonald, S. G. Solomon, and C. W. Clifford, “Combination of subcortical color channels in human visual cortex,” J. Vision 10(5):25, 1–17 (2010).
[CrossRef]

Hansen, T.

T. Hansen, M. Giesel, and K. R. Gegenfurtner, “Chromatic discrimination of natural objects,” J. Vision 8(1):2, 1–19 (2008).

T. Hansen, Department of General and Experimental Psychology, Justus Liebig University Giessen, Otto-Behaghel-Strasse 10 F1, Giessen 35394 (personal communication, 2011).

Heeger, D. J.

G. J. Brouwer and D. J. Heeger, “Decoding and reconstructing color from responses in human visual cortex,” J. Neurosci. 29, 13992–14003 (2009).
[CrossRef]

D. J. Heeger, A. C. Huk, W. S. Geisler, and D. G. Albrecht, “Spikes versus BOLD: what does neuroimaging tell us about neuronal activity?” Nat. Neurosci. 3, 631–633 (2000).
[CrossRef]

Heeley, D. W.

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

Hernandez-Andres, J.

Horiguchi, H.

J. Winawer, H. Horiguchi, R. A. Sayres, K. Amano, and B. A. Wandell, “Mapping hV4 and ventral occipital cortex: the venous eclipse,” J. Vision 10(5):1, 1–22 (2010).
[CrossRef]

Horwitz, G. D.

B. R. Conway, S. Chatterjee, G. D. Field, G. D. Horwitz, E. N. Johnson, K. Koida, and K. Mancuso, “Advances in color science: from retina to behavior,” J. Neurosci. 30, 14955–14963 (2010).
[CrossRef]

G. D. Horwitz, E. J. Chichilnisky, and T. D. Albright, “Cone inputs to simple and complex cells in V1 of awake macaque,” J. Neurophysiol. 97, 3070–3081 (2007).
[CrossRef]

Hubel, D. H.

B. R. Conway, D. H. Hubel, and M. S. Livingstone, “Color contrast in macaque V1,” Cereb. Cortex 12, 915–925 (2002).
[CrossRef]

D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. 195, 215–243 (1968).

Huk, A. C.

D. J. Heeger, A. C. Huk, W. S. Geisler, and D. G. Albrecht, “Spikes versus BOLD: what does neuroimaging tell us about neuronal activity?” Nat. Neurosci. 3, 631–633 (2000).
[CrossRef]

Hull, E. M.

R. L. De Valois, H. C. Morgan, M. C. Polson, W. R. Mead, and E. M. Hull, “Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests,” Vis. Res. 14, 53–67(1974).
[CrossRef]

Hurlbert, A.

A. Hurlbert and K. Wolf, “Color contrast: a contributory mechanism to color constancy,” Prog. Brain Res. 144, 147–160 (2004).
[CrossRef]

Hyde, J. S.

R. W. Cox and J. S. Hyde, “Software tools for analysis and visualization of fMRI data,” NMR Biomed. 10, 171–178 (1997).
[CrossRef]

Ingling, C. R.

C. R. Ingling, “The spectral sensitivity of the opponent-color channels,” Vis. Res. 17, 1083–1089 (1977).
[CrossRef]

Johnson, E. N.

B. R. Conway, S. Chatterjee, G. D. Field, G. D. Horwitz, E. N. Johnson, K. Koida, and K. Mancuso, “Advances in color science: from retina to behavior,” J. Neurosci. 30, 14955–14963 (2010).
[CrossRef]

Judd, D. B.

D. B. Judd, “Report of U. S. secretariat committee on colorimetry and artificial daylight,” in Vol. 1 of Proceedings of the Twelfth Session of the CIE (Bureau Central de la CIE, 1951), p. 11.

Juricevic, I.

I. Juricevic, L. Land, A. Wilkins, and M. A. Webster, “Visual discomfort and natural image statistics,” Perception 39, 884–899 (2010).
[CrossRef]

Knutsen, T. A.

D. Y. Tsao, W. Vanduffel, Y. Sasaki, D. Fize, T. A. Knutsen, J. B. Mandeville, L. L. Wald, A. M. Dale, B. R. Rosen, D. C. Van Essen, M. S. Livingstone, G. A. Orban, and R. B. Tootell, “Stereopsis activates V3A and caudal intraparietal areas in macaques and humans,” Neuron 39, 555–568 (2003).
[CrossRef]

Koida, K.

B. R. Conway, S. Chatterjee, G. D. Field, G. D. Horwitz, E. N. Johnson, K. Koida, and K. Mancuso, “Advances in color science: from retina to behavior,” J. Neurosci. 30, 14955–14963 (2010).
[CrossRef]

Krauskopf, J.

J. Krauskopf and K. Gegenfurtner, “Color discrimination and adaptation,” Vis. Res. 32, 2165–2175 (1992).
[CrossRef]

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

Land, L.

I. Juricevic, L. Land, A. Wilkins, and M. A. Webster, “Visual discomfort and natural image statistics,” Perception 39, 884–899 (2010).
[CrossRef]

Lee, B. B.

H. Sun, H. E. Smithson, Q. Zaidi, and B. B. Lee, “Specificity of cone inputs to macaque retinal ganglion cells,” J. Neurophysiol. 95, 837–849 (2005).
[CrossRef]

Lee, R. L.

Lennie, P.

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
[CrossRef]

S. G. Solomon and P. Lennie, “The machinery of colour vision,” Nat. Rev. Neurosci. 8, 276–286 (2007).
[CrossRef]

S. G. Solomon and P. Lennie, “Chromatic gain controls in visual cortical neurons,” J. Neurosci. 25, 4779–4792 (2005).
[CrossRef]

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

Livingstone, M. S.

B. R. Conway and M. S. Livingstone, “Spatial and temporal properties of cone signals in alert macaque primary visual cortex,” J. Neurosci. 26, 10826–10846 (2006).
[CrossRef]

D. Y. Tsao, W. Vanduffel, Y. Sasaki, D. Fize, T. A. Knutsen, J. B. Mandeville, L. L. Wald, A. M. Dale, B. R. Rosen, D. C. Van Essen, M. S. Livingstone, G. A. Orban, and R. B. Tootell, “Stereopsis activates V3A and caudal intraparietal areas in macaques and humans,” Neuron 39, 555–568 (2003).
[CrossRef]

B. R. Conway, D. H. Hubel, and M. S. Livingstone, “Color contrast in macaque V1,” Cereb. Cortex 12, 915–925 (2002).
[CrossRef]

MacLeod, D. I.

Malkoc, G.

K. C. McDermott, G. Malkoc, J. B. Mulligan, and M. A. Webster, “Adaptation and visual salience,” J. Vision 10(13):17, 1–32 (2010).
[CrossRef]

Mancuso, K.

B. R. Conway, S. Chatterjee, G. D. Field, G. D. Horwitz, E. N. Johnson, K. Koida, and K. Mancuso, “Advances in color science: from retina to behavior,” J. Neurosci. 30, 14955–14963 (2010).
[CrossRef]

Mandeville, J. B.

D. Y. Tsao, W. Vanduffel, Y. Sasaki, D. Fize, T. A. Knutsen, J. B. Mandeville, L. L. Wald, A. M. Dale, B. R. Rosen, D. C. Van Essen, M. S. Livingstone, G. A. Orban, and R. B. Tootell, “Stereopsis activates V3A and caudal intraparietal areas in macaques and humans,” Neuron 39, 555–568 (2003).
[CrossRef]

Mannion, D. J.

E. Goddard, D. J. Mannion, J. S. McDonald, S. G. Solomon, and C. W. Clifford, “Combination of subcortical color channels in human visual cortex,” J. Vision 10(5):25, 1–17 (2010).
[CrossRef]

McDermott, K. C.

K. C. McDermott, G. Malkoc, J. B. Mulligan, and M. A. Webster, “Adaptation and visual salience,” J. Vision 10(13):17, 1–32 (2010).
[CrossRef]

McDonald, J. S.

E. Goddard, D. J. Mannion, J. S. McDonald, S. G. Solomon, and C. W. Clifford, “Combination of subcortical color channels in human visual cortex,” J. Vision 10(5):25, 1–17 (2010).
[CrossRef]

Mead, W. R.

R. L. De Valois, H. C. Morgan, M. C. Polson, W. R. Mead, and E. M. Hull, “Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests,” Vis. Res. 14, 53–67(1974).
[CrossRef]

Moeller, S.

B. R. Conway, S. Moeller, and D. Y. Tsao, “Specialized color modules in macaque extrastriate cortex,” Neuron 56, 560–573 (2007).
[CrossRef]

Mollon, J. D.

M. V. Danilova and J. D. Mollon, “Parafoveal color discrimination: a chromaticity locus of enhanced discrimination,” J. Vision 10(1):4, 1–9 (2010).
[CrossRef]

M. A. Webster and J. D. Mollon, “Adaptation and the color statistics of natural images,” Vis. Res. 37, 3283–3298 (1997).
[CrossRef]

Morgan, H. C.

R. L. De Valois, H. C. Morgan, M. C. Polson, W. R. Mead, and E. M. Hull, “Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests,” Vis. Res. 14, 53–67(1974).
[CrossRef]

Mulligan, J. B.

K. C. McDermott, G. Malkoc, J. B. Mulligan, and M. A. Webster, “Adaptation and visual salience,” J. Vision 10(13):17, 1–32 (2010).
[CrossRef]

Nagy, A. L.

Nieves, J. L.

Nunn, B. J.

D. A. Baylor, B. J. Nunn, and J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. 390, 145–160 (1987).

Orban, G. A.

D. Y. Tsao, W. Vanduffel, Y. Sasaki, D. Fize, T. A. Knutsen, J. B. Mandeville, L. L. Wald, A. M. Dale, B. R. Rosen, D. C. Van Essen, M. S. Livingstone, G. A. Orban, and R. B. Tootell, “Stereopsis activates V3A and caudal intraparietal areas in macaques and humans,” Neuron 39, 555–568 (2003).
[CrossRef]

Paxinos, G.

G. Paxinos, Huang X-F, and A. W. Toga, The Rhesus Monkey Brain In Stereotaxic Coordinates (Academic, 2000).

Pokorny, J.

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
[CrossRef]

Polson, M. C.

R. L. De Valois, H. C. Morgan, M. C. Polson, W. R. Mead, and E. M. Hull, “Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests,” Vis. Res. 14, 53–67(1974).
[CrossRef]

Romero, J.

Rosen, B. R.

D. Y. Tsao, W. Vanduffel, Y. Sasaki, D. Fize, T. A. Knutsen, J. B. Mandeville, L. L. Wald, A. M. Dale, B. R. Rosen, D. C. Van Essen, M. S. Livingstone, G. A. Orban, and R. B. Tootell, “Stereopsis activates V3A and caudal intraparietal areas in macaques and humans,” Neuron 39, 555–568 (2003).
[CrossRef]

Sasaki, Y.

D. Y. Tsao, W. Vanduffel, Y. Sasaki, D. Fize, T. A. Knutsen, J. B. Mandeville, L. L. Wald, A. M. Dale, B. R. Rosen, D. C. Van Essen, M. S. Livingstone, G. A. Orban, and R. B. Tootell, “Stereopsis activates V3A and caudal intraparietal areas in macaques and humans,” Neuron 39, 555–568 (2003).
[CrossRef]

Sayres, R. A.

J. Winawer, H. Horiguchi, R. A. Sayres, K. Amano, and B. A. Wandell, “Mapping hV4 and ventral occipital cortex: the venous eclipse,” J. Vision 10(5):1, 1–22 (2010).
[CrossRef]

Schnapf, J. L.

D. A. Baylor, B. J. Nunn, and J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. 390, 145–160 (1987).

Sejnowski, T. J.

T. Wachtler, T. J. Sejnowski, and T. D. Albright, “Representation of color stimuli in awake macaque primary visual cortex,” Neuron 37, 681–691 (2003).
[CrossRef]

Sharpe, L. T.

A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vis. Res. 40, 1711–1737 (2000).
[CrossRef]

Smith, V. C.

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
[CrossRef]

Smithson, H. E.

H. Sun, H. E. Smithson, Q. Zaidi, and B. B. Lee, “Specificity of cone inputs to macaque retinal ganglion cells,” J. Neurophysiol. 95, 837–849 (2005).
[CrossRef]

Snodderly, D. M.

D. M. Snodderly, J. D. Auran, and F. C. Delori, “The macular pigment. II. Spatial distribution in primate retinas,” Investig. Ophthalmol. Vis. Sci. 25, 674–685 (1984).

Solomon, S. G.

E. Goddard, D. J. Mannion, J. S. McDonald, S. G. Solomon, and C. W. Clifford, “Combination of subcortical color channels in human visual cortex,” J. Vision 10(5):25, 1–17 (2010).
[CrossRef]

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
[CrossRef]

S. G. Solomon and P. Lennie, “The machinery of colour vision,” Nat. Rev. Neurosci. 8, 276–286 (2007).
[CrossRef]

S. G. Solomon and P. Lennie, “Chromatic gain controls in visual cortical neurons,” J. Neurosci. 25, 4779–4792 (2005).
[CrossRef]

Stiles, W. S.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, 1982).

Stockman, A.

A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vis. Res. 40, 1711–1737 (2000).
[CrossRef]

Sun, H.

H. Sun, H. E. Smithson, Q. Zaidi, and B. B. Lee, “Specificity of cone inputs to macaque retinal ganglion cells,” J. Neurophysiol. 95, 837–849 (2005).
[CrossRef]

Tailby, C.

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
[CrossRef]

Toga, A. W.

G. Paxinos, Huang X-F, and A. W. Toga, The Rhesus Monkey Brain In Stereotaxic Coordinates (Academic, 2000).

Tootell, R. B.

D. Y. Tsao, W. Vanduffel, Y. Sasaki, D. Fize, T. A. Knutsen, J. B. Mandeville, L. L. Wald, A. M. Dale, B. R. Rosen, D. C. Van Essen, M. S. Livingstone, G. A. Orban, and R. B. Tootell, “Stereopsis activates V3A and caudal intraparietal areas in macaques and humans,” Neuron 39, 555–568 (2003).
[CrossRef]

Tsao, D. Y.

B. R. Conway, S. Moeller, and D. Y. Tsao, “Specialized color modules in macaque extrastriate cortex,” Neuron 56, 560–573 (2007).
[CrossRef]

B. R. Conway and D. Y. Tsao, “Color architecture in alert macaque cortex revealed by fMRI,” Cereb. Cortex 16, 1604–1613 (2005).
[CrossRef]

D. Y. Tsao, W. Vanduffel, Y. Sasaki, D. Fize, T. A. Knutsen, J. B. Mandeville, L. L. Wald, A. M. Dale, B. R. Rosen, D. C. Van Essen, M. S. Livingstone, G. A. Orban, and R. B. Tootell, “Stereopsis activates V3A and caudal intraparietal areas in macaques and humans,” Neuron 39, 555–568 (2003).
[CrossRef]

Van Essen, D. C.

D. Y. Tsao, W. Vanduffel, Y. Sasaki, D. Fize, T. A. Knutsen, J. B. Mandeville, L. L. Wald, A. M. Dale, B. R. Rosen, D. C. Van Essen, M. S. Livingstone, G. A. Orban, and R. B. Tootell, “Stereopsis activates V3A and caudal intraparietal areas in macaques and humans,” Neuron 39, 555–568 (2003).
[CrossRef]

Vanduffel, W.

D. Y. Tsao, W. Vanduffel, Y. Sasaki, D. Fize, T. A. Knutsen, J. B. Mandeville, L. L. Wald, A. M. Dale, B. R. Rosen, D. C. Van Essen, M. S. Livingstone, G. A. Orban, and R. B. Tootell, “Stereopsis activates V3A and caudal intraparietal areas in macaques and humans,” Neuron 39, 555–568 (2003).
[CrossRef]

Wachtler, T.

T. Wachtler, T. J. Sejnowski, and T. D. Albright, “Representation of color stimuli in awake macaque primary visual cortex,” Neuron 37, 681–691 (2003).
[CrossRef]

Wald, L. L.

D. Y. Tsao, W. Vanduffel, Y. Sasaki, D. Fize, T. A. Knutsen, J. B. Mandeville, L. L. Wald, A. M. Dale, B. R. Rosen, D. C. Van Essen, M. S. Livingstone, G. A. Orban, and R. B. Tootell, “Stereopsis activates V3A and caudal intraparietal areas in macaques and humans,” Neuron 39, 555–568 (2003).
[CrossRef]

Wandell, B. A.

J. Winawer, H. Horiguchi, R. A. Sayres, K. Amano, and B. A. Wandell, “Mapping hV4 and ventral occipital cortex: the venous eclipse,” J. Vision 10(5):1, 1–22 (2010).
[CrossRef]

Webster, M. A.

I. Juricevic, L. Land, A. Wilkins, and M. A. Webster, “Visual discomfort and natural image statistics,” Perception 39, 884–899 (2010).
[CrossRef]

K. C. McDermott, G. Malkoc, J. B. Mulligan, and M. A. Webster, “Adaptation and visual salience,” J. Vision 10(13):17, 1–32 (2010).
[CrossRef]

M. A. Webster, “Calibrating color vision,” Curr. Biol. 19, R150–R152 (2009).
[CrossRef]

M. A. Webster and J. D. Mollon, “Adaptation and the color statistics of natural images,” Vis. Res. 37, 3283–3298 (1997).
[CrossRef]

Wiesel, T. N.

D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. 195, 215–243 (1968).

Wilkins, A.

I. Juricevic, L. Land, A. Wilkins, and M. A. Webster, “Visual discomfort and natural image statistics,” Perception 39, 884–899 (2010).
[CrossRef]

Williams, D. R.

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

Winawer, J.

J. Winawer, H. Horiguchi, R. A. Sayres, K. Amano, and B. A. Wandell, “Mapping hV4 and ventral occipital cortex: the venous eclipse,” J. Vision 10(5):1, 1–22 (2010).
[CrossRef]

Wolf, K.

A. Hurlbert and K. Wolf, “Color contrast: a contributory mechanism to color constancy,” Prog. Brain Res. 144, 147–160 (2004).
[CrossRef]

Wyszecki, G.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, 1982).

X-F, Huang

G. Paxinos, Huang X-F, and A. W. Toga, The Rhesus Monkey Brain In Stereotaxic Coordinates (Academic, 2000).

Zaidi, Q.

H. Sun, H. E. Smithson, Q. Zaidi, and B. B. Lee, “Specificity of cone inputs to macaque retinal ganglion cells,” J. Neurophysiol. 95, 837–849 (2005).
[CrossRef]

Q. Zaidi, Graduate Center for Vision Research, State University of New York, College of Optometry, 33 West 42nd Street, New York, New York 10036 (personal communication, 2011).

Cereb. Cortex (2)

B. R. Conway and D. Y. Tsao, “Color architecture in alert macaque cortex revealed by fMRI,” Cereb. Cortex 16, 1604–1613 (2005).
[CrossRef]

B. R. Conway, D. H. Hubel, and M. S. Livingstone, “Color contrast in macaque V1,” Cereb. Cortex 12, 915–925 (2002).
[CrossRef]

Curr. Biol. (1)

M. A. Webster, “Calibrating color vision,” Curr. Biol. 19, R150–R152 (2009).
[CrossRef]

Investig. Ophthalmol. Vis. Sci. (1)

D. M. Snodderly, J. D. Auran, and F. C. Delori, “The macular pigment. II. Spatial distribution in primate retinas,” Investig. Ophthalmol. Vis. Sci. 25, 674–685 (1984).

J. Neurophysiol. (2)

H. Sun, H. E. Smithson, Q. Zaidi, and B. B. Lee, “Specificity of cone inputs to macaque retinal ganglion cells,” J. Neurophysiol. 95, 837–849 (2005).
[CrossRef]

G. D. Horwitz, E. J. Chichilnisky, and T. D. Albright, “Cone inputs to simple and complex cells in V1 of awake macaque,” J. Neurophysiol. 97, 3070–3081 (2007).
[CrossRef]

J. Neurosci. (6)

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
[CrossRef]

S. G. Solomon and P. Lennie, “Chromatic gain controls in visual cortical neurons,” J. Neurosci. 25, 4779–4792 (2005).
[CrossRef]

G. J. Brouwer and D. J. Heeger, “Decoding and reconstructing color from responses in human visual cortex,” J. Neurosci. 29, 13992–14003 (2009).
[CrossRef]

B. R. Conway, “Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1),” J. Neurosci. 21, 2768–2783 (2001).

B. R. Conway and M. S. Livingstone, “Spatial and temporal properties of cone signals in alert macaque primary visual cortex,” J. Neurosci. 26, 10826–10846 (2006).
[CrossRef]

B. R. Conway, S. Chatterjee, G. D. Field, G. D. Horwitz, E. N. Johnson, K. Koida, and K. Mancuso, “Advances in color science: from retina to behavior,” J. Neurosci. 30, 14955–14963 (2010).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

J. Physiol. (3)

D. A. Baylor, B. J. Nunn, and J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. 390, 145–160 (1987).

D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. 195, 215–243 (1968).

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

J. Vision (5)

E. Goddard, D. J. Mannion, J. S. McDonald, S. G. Solomon, and C. W. Clifford, “Combination of subcortical color channels in human visual cortex,” J. Vision 10(5):25, 1–17 (2010).
[CrossRef]

J. Winawer, H. Horiguchi, R. A. Sayres, K. Amano, and B. A. Wandell, “Mapping hV4 and ventral occipital cortex: the venous eclipse,” J. Vision 10(5):1, 1–22 (2010).
[CrossRef]

T. Hansen, M. Giesel, and K. R. Gegenfurtner, “Chromatic discrimination of natural objects,” J. Vision 8(1):2, 1–19 (2008).

K. C. McDermott, G. Malkoc, J. B. Mulligan, and M. A. Webster, “Adaptation and visual salience,” J. Vision 10(13):17, 1–32 (2010).
[CrossRef]

M. V. Danilova and J. D. Mollon, “Parafoveal color discrimination: a chromaticity locus of enhanced discrimination,” J. Vision 10(1):4, 1–9 (2010).
[CrossRef]

Nat. Neurosci. (1)

D. J. Heeger, A. C. Huk, W. S. Geisler, and D. G. Albrecht, “Spikes versus BOLD: what does neuroimaging tell us about neuronal activity?” Nat. Neurosci. 3, 631–633 (2000).
[CrossRef]

Nat. Rev. Neurosci. (1)

S. G. Solomon and P. Lennie, “The machinery of colour vision,” Nat. Rev. Neurosci. 8, 276–286 (2007).
[CrossRef]

Neuron (3)

T. Wachtler, T. J. Sejnowski, and T. D. Albright, “Representation of color stimuli in awake macaque primary visual cortex,” Neuron 37, 681–691 (2003).
[CrossRef]

B. R. Conway, S. Moeller, and D. Y. Tsao, “Specialized color modules in macaque extrastriate cortex,” Neuron 56, 560–573 (2007).
[CrossRef]

D. Y. Tsao, W. Vanduffel, Y. Sasaki, D. Fize, T. A. Knutsen, J. B. Mandeville, L. L. Wald, A. M. Dale, B. R. Rosen, D. C. Van Essen, M. S. Livingstone, G. A. Orban, and R. B. Tootell, “Stereopsis activates V3A and caudal intraparietal areas in macaques and humans,” Neuron 39, 555–568 (2003).
[CrossRef]

Neuroscientist (1)

B. R. Conway, “Color vision, cones, and color-coding in the cortex,” Neuroscientist 15, 274–290 (2009).
[CrossRef]

NMR Biomed. (1)

R. W. Cox and J. S. Hyde, “Software tools for analysis and visualization of fMRI data,” NMR Biomed. 10, 171–178 (1997).
[CrossRef]

Perception (1)

I. Juricevic, L. Land, A. Wilkins, and M. A. Webster, “Visual discomfort and natural image statistics,” Perception 39, 884–899 (2010).
[CrossRef]

Prog. Brain Res. (1)

A. Hurlbert and K. Wolf, “Color contrast: a contributory mechanism to color constancy,” Prog. Brain Res. 144, 147–160 (2004).
[CrossRef]

Science (1)

N. W. Daw, “Goldfish retina: organization for simultaneous color contrast,” Science 158, 942–944 (1967).
[CrossRef]

Vis. Res. (8)

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

M. A. Webster and J. D. Mollon, “Adaptation and the color statistics of natural images,” Vis. Res. 37, 3283–3298 (1997).
[CrossRef]

J. Krauskopf and K. Gegenfurtner, “Color discrimination and adaptation,” Vis. Res. 32, 2165–2175 (1992).
[CrossRef]

R. L. De Valois, H. C. Morgan, M. C. Polson, W. R. Mead, and E. M. Hull, “Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests,” Vis. Res. 14, 53–67(1974).
[CrossRef]

C. R. Ingling, “The spectral sensitivity of the opponent-color channels,” Vis. Res. 17, 1083–1089 (1977).
[CrossRef]

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
[CrossRef]

R. T. Eskew, “Higher order color mechanisms: a critical review,” Vis. Res. 49, 2686–2704 (2009).
[CrossRef]

A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vis. Res. 40, 1711–1737 (2000).
[CrossRef]

Other (6)

T. Hansen, Department of General and Experimental Psychology, Justus Liebig University Giessen, Otto-Behaghel-Strasse 10 F1, Giessen 35394 (personal communication, 2011).

Q. Zaidi, Graduate Center for Vision Research, State University of New York, College of Optometry, 33 West 42nd Street, New York, New York 10036 (personal communication, 2011).

D. B. Judd, “Report of U. S. secretariat committee on colorimetry and artificial daylight,” in Vol. 1 of Proceedings of the Twelfth Session of the CIE (Bureau Central de la CIE, 1951), p. 11.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, 1982).

G. Paxinos, Huang X-F, and A. W. Toga, The Rhesus Monkey Brain In Stereotaxic Coordinates (Academic, 2000).

P. Sciretta, “Orange/blue contrast in movie posters,” 2009, http://ohnotheydidnt.livejournal.com/41879586.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Experimental design for the fMRI experiments. A. Stimuli were heterochromatic gratings composed of eight colors defined by the isoluminant plane of DKL color space, plotted here in Macleod–Boynton coordinates [2, 4]. Insets show windows from each stimulus condition, with the stimuli of interest to this paper highlighted in black (cyan–orange and lime–magenta). B. Experimental fixation task and fMRI experimental block design. Each frame represents the display presented to the animal. Chromatic stimuli were drifting heterochromatic gratings (2.9  cycles/deg; 0.75 cycle/s) spanning the central ~20° of visual field. Two experiments were run, which differed in the sequence of the stimuli and in the contrast of the achromatic gratings (see text for details).

Fig. 2.
Fig. 2.

Identification of ROIs used in fMRI experiments. A. Meridian mapping stimulus used to define retinotopic area boundaries of V1. Vertically (60° wedge) and horizontally (30° wedge) oriented achromatic checkered wedges that flickered in phase every 1 s and spanned the central 20° of visual field were displayed on a screen 49 cm in front of the animal during recording. The resultant fMRI signals were contrasted to reveal the vertical and horizontal meridians of visual areas. B. Contrast significance maps (horizontal meridians shown in cyan, vertical in yellow) have been painted on inflated volumes, left and right hemispheres for each animal, M1 and M2. The black dashed line marks the boundary of V1. The black dotted line indicates the central 3° visual field representation determined in a separate set of experiments (see Fig. 8); the asterisk represents the fovea. C. ROIs defined for analysis in fMRI experiments shown on high-resolution MR images of each monkey: LGN in blue, V1 in red. Horizontal sections are shown in upper panel; sagittal sections are shown in lower panel. All scale bars indicate 1 cm.

Fig. 3.
Fig. 3.

Macaque V1 shows stronger fMRI responses to orange–cyan over lime–magenta contrasts. A. fMRI results for M1 in LGN and V1. B. fMRI results for M2 in LGN and V1. The left panels show the percentage deviation of the average detrended (second-order polynomial) time courses of response during Experiment 1. Percentage deviation is calculated for each time point as described in Subsection 2.E. For M1, the traces represent the average activity from 24 stimulus presentations (n=24) across 2340 voxels comprising V1 and 97 voxels comprising the LGN. For M2, the traces represent the average activity from 19 stimulus presentations (n=19) across 1404 voxels for V1 and 56 voxels for the LGN. Cyan–orange and lime–magenta responses are highlighted with gray bars. fMRI was conducted using an intravenous MION contrast agent; a decrease in MION signal corresponds to an increase in BOLD. MION signals have been inverted to facilitate comparison with BOLD. Upward deflections in the traces indicate an increase in neural activity. The dips in the traces indicate the baseline response to the neutral-adapting gray. The responses are quantified in the bar plots, which show mean percentage signal changes in each hemisphere (“left,” “right”) in response to the intermediate colors during Experiments 1 and 2 (the results for Experiment 2 represent the average activity from 13 stimulus presentations (n=13) for M1 and 28 (n=28) for M2; see Table 3 for left- and right-hemisphere ROI voxel numbers). The percent signal change is computed as described in Subsection 2.E. Asterisks represent a significant difference in the magnitude of the response between the conditions (p<0.05, t-test). Error bars indicate 95% confidence intervals.

Fig. 4.
Fig. 4.

Average LGN and V1 fMRI responses to orange–cyan and lime–magenta, across both fMRI experiments and both monkeys. Error bars show 95% confidence intervals. V1, p=0.02 (t-test); LGN, p=0.27 (t-test).

Fig. 5.
Fig. 5.

Mean fMRI signal changes in V1 show elongation along the orange–cyan axis. Left panels show the percentage deviation (calculation described in Fig. 3, left panel) of the mean fMRI time course within V1 (both hemispheres) averaged across animals for each experiment (n=43 stimulus presentations for Experiment 1 and n=41 stimulus presentations for Experiment 2). Right panels show the absolute value of mean fMRI percent signal change (see Subsection 2.E) of V1 to the four colored blocks, which correspond to the four DKL chromatic axes depicted in Fig. 1. Distance from the origin in the polar plots indicates the absolute magnitude of the percent signal change calculated as in the bar plots shown in Fig. 3. A. Results of Experiment 1. B. Results of Experiment 2, which was conducted with two orders consisting of different temporal sequences of colored blocks (see Fig. 1).

Fig. 6.
Fig. 6.

Histograms of fMRI responses in V1 during orange–cyan and lime–magenta stimulation, combining responses from two recording sessions (Experiment 1 and Experiment 2) for each animal. Each count in the histogram represents the response of the entire V1 ROI during a given sample (one 2 s TR) during stimulus presentation; to avoid confounds attributed to the hemodynamic delay, only samples 7 to16 of each stimulus block were used in the analysis. A total of 370 samples were included for M1, and 470 samples for M2. Increasingly negative MION signals are plotted to the right to facilitate comparison with conventional BOLD responses. A. Response histograms for M1. B. Response histograms for M2. In both animals, the distribution of responses was more negative (corresponding to higher neural activity with MION) to orange–cyan than to lime–magenta (t-test, M1, p=2.2×109; M2, p=0.004).

Fig. 7.
Fig. 7.

Single-trial orange–cyan versus lime–magenta classification performance, by brain region, for univariate classification conducted on the basis of the voxel-averaged signal in each area, averaged over both hemispheres and two recording sessions in each of two monkeys (i.e., n=8 data sets for each area). Each bar represents the mean percent of stimulus blocks that were correctly classified; error bars denote the standard error. The dashed line represents chance performance (50% correct). The asterisk indicates a p<0.05 of achieving that classification performance by chance (unpaired t-test).

Fig. 8.
Fig. 8.

Both central and peripheral V1 show larger fMRI responses to orange–cyan than lime–magenta. Central and peripheral representations were determined in an experiment during which a block of flickering checker dartboards (1 Hz) restricted to the central 3° of the visual field was alternated with a block of flickering checker dartboards restricted to peripheral regions outside of this central region. Higher functional activation elicited during the 3° stimulus was used to define the central 3° representation. Magnitude of fMRI responses to lime–magenta and orange–cyan were evaluated in both the central ROI and the peripheral ROI. Bar plots show the mean fMRI percent signal change (see Subsection 2.E) averaged across both animals, both hemispheres, and both experiments (1 and 2) (n=84 stimulus presentations), with error bars representing one standard error (p=0.05 for the central 3° and p=0.005 for the peripheral). See Table 3 for voxel and presentation numbers.

Fig. 9.
Fig. 9.

The combination of cone inputs to cone-opponent cells in macaque V1 is predicted by the color of daylight. A. Each row shows for a single cell the spatial receptive-field response, at the peak time-to-response, to selective modulation of each cone class by itself. Receptive fields were in the near parafovea (5°). The panels for cells 4–6 are reproduced from Conway and Livingstone [21]. B. Receptive-field center responses of the population of recorded cone-opponent cells (N=57) plotted in cardinal chromatic coordinates; the receptive-field center was defined as the receptive-field subregion with the largest magnitude response. L minus M values were significantly negatively correlated with S values (p<0.0001; r2=0.25). For each cell we measured the response to six cone-isolating stimuli. These stimuli resulted in a selective increase or decrease in the activity of a single cone type. To determine each cone’s response, the responses to stimuli that decreased the cone’s activity were subtracted from the response to stimuli that increased the cone’s activity. The values plotted on the x axis (LM) were determined by subtracting the M-cone response from the L-cone response. Inset shows the DKL color space. C. The standard 1931 CIE color diagram showing the daylight axis (left) and a standard color space defined in cardinal retinal chromatic coordinates (right).

Tables (3)

Tables Icon

Table 1. Judd-Corrected CIE xyY Values of Stimuli Used in the fMRI Experiments

Tables Icon

Table 2. Cone Contrasts of the Stimuli Used in the fMRI Experiments

Tables Icon

Table 3. For fMRI Experiments, Number of Voxels in Each Brain Structure and Number of Stimulus Presentations in Each Experiment

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

CL=(LlimeLmagenta)/(LLime+Lmagenta),CM=(MlimeMmagenta)/(Mlime+Mmagenta),CS=(SlimeSmagenta)/(Slime+Smagenta),
x(t)=s(t)+at2+bt+c,
s(t)=100×(s(t)s¯)/s¯,
RS=100×(RkRk1+Rk+12)/(Rk1+Rk+12).
[(L+)(Lbk)]/[(L+)+(Lbk)]×100%,

Metrics