M. Soleimani, P. K. Yalavarthy, and H. Dehghani, “Helmholtz-type regularization method for permittivity reconstruction using experimental phantom data of electrical capacitance tomography,” IEEE Trans. Instrum. Meas. 59, 78–83 (2010).

[CrossRef]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithms for numerical model and image reconstruction algorithms,” Commun. Numer. Methods Eng. 25, 711–732 (2009).

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Phil. Trans. R. Soc. A 367, 3055–3072 (2009).

[CrossRef]

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Phil. Trans. R. Soc. A 367, 3073–3093 (2009).

[CrossRef]

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13, 041302 (2008).

[CrossRef]

M. E. Eames and H. Dehghani, “Wavelength dependence of sensitivity in spectral diffuse optical imaging: effect of normalization on image reconstruction,” Opt. Express 16, 17780–17791 (2008).

[CrossRef]

H. Niu, P. Guo, L. Ji, Q. Zhao, and T. Jiang, “Improving image quality of diffuse optical tomography with a projection-error-based adaptive regularization method,” Opt. Express 16, 12423–12434 (2008).

[CrossRef]

S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography,” Phys. Med. Biol. 53, 3921–3942 (2008).

[CrossRef]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066–4082, (2007).

[CrossRef]

N. Cao, A. Nehorai, and M. Jacob, “Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm,” Opt. Express 15, 13695–13708 (2007).

[CrossRef]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34, 2085–2098 (2007).

[CrossRef]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15, 8043–8058 (2007).

[CrossRef]

M. Schweiger, S. R. Arridge, and I. Nissila, “Gauss-Newton method for image reconstruction in diffuse optical tomography,” Phys. Med. Biol. 50, 2365–2386 (2005).

[CrossRef]

A. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical tomography,” Phys. Med. Biol. 50, R1–R43 (2005).

[CrossRef]

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50, 2837–2858 (2005).

[CrossRef]

X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49, N155–N163 (2004).

[CrossRef]

L. Borcea, “Electrical impedance tomography,” Inverse Probl. 18, R99–R136 (2002).

[CrossRef]

T. O. Mcbride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).

[CrossRef]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).

[CrossRef]

B. W. Pogue, T. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).

[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).

[CrossRef]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).

[CrossRef]

S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography,” Phys. Med. Biol. 53, 3921–3942 (2008).

[CrossRef]

A. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical tomography,” Phys. Med. Biol. 50, R1–R43 (2005).

[CrossRef]

M. Schweiger, S. R. Arridge, and I. Nissila, “Gauss-Newton method for image reconstruction in diffuse optical tomography,” Phys. Med. Biol. 50, 2365–2386 (2005).

[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).

[CrossRef]

M. Schweiger and S. R. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419–7428 (1998).

[CrossRef]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).

[CrossRef]

S. R. Arridge and M. Schweiger, “Photon-measurement density functions. Part 2: Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiroaka, and D. T. Delpy, “The finite element model for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).

[CrossRef]

L. Borcea, “Electrical impedance tomography,” Inverse Probl. 18, R99–R136 (2002).

[CrossRef]

S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography,” Phys. Med. Biol. 53, 3921–3942 (2008).

[CrossRef]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).

[CrossRef]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithms for numerical model and image reconstruction algorithms,” Commun. Numer. Methods Eng. 25, 711–732 (2009).

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15, 8043–8058 (2007).

[CrossRef]

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50, 2837–2858 (2005).

[CrossRef]

X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49, N155–N163 (2004).

[CrossRef]

S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography,” Phys. Med. Biol. 53, 3921–3942 (2008).

[CrossRef]

S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography,” Phys. Med. Biol. 53, 3921–3942 (2008).

[CrossRef]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithms for numerical model and image reconstruction algorithms,” Commun. Numer. Methods Eng. 25, 711–732 (2009).

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066–4082, (2007).

[CrossRef]

M. Soleimani, P. K. Yalavarthy, and H. Dehghani, “Helmholtz-type regularization method for permittivity reconstruction using experimental phantom data of electrical capacitance tomography,” IEEE Trans. Instrum. Meas. 59, 78–83 (2010).

[CrossRef]

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Phil. Trans. R. Soc. A 367, 3055–3072 (2009).

[CrossRef]

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Phil. Trans. R. Soc. A 367, 3073–3093 (2009).

[CrossRef]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithms for numerical model and image reconstruction algorithms,” Commun. Numer. Methods Eng. 25, 711–732 (2009).

M. E. Eames and H. Dehghani, “Wavelength dependence of sensitivity in spectral diffuse optical imaging: effect of normalization on image reconstruction,” Opt. Express 16, 17780–17791 (2008).

[CrossRef]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34, 2085–2098 (2007).

[CrossRef]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15, 8043–8058 (2007).

[CrossRef]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066–4082, (2007).

[CrossRef]

P. K. Yalavarthy, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Critical computational aspects of near infrared circular tomographic imaging: Analysis of measurement number, mesh resolution and reconstruction basis,” Opt. Express 14, 6113–6127 (2006).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiroaka, and D. T. Delpy, “The finite element model for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).

[CrossRef]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithms for numerical model and image reconstruction algorithms,” Commun. Numer. Methods Eng. 25, 711–732 (2009).

M. E. Eames and H. Dehghani, “Wavelength dependence of sensitivity in spectral diffuse optical imaging: effect of normalization on image reconstruction,” Opt. Express 16, 17780–17791 (2008).

[CrossRef]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).

[CrossRef]

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Phil. Trans. R. Soc. A 367, 3055–3072 (2009).

[CrossRef]

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Phil. Trans. R. Soc. A 367, 3073–3093 (2009).

[CrossRef]

A. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical tomography,” Phys. Med. Biol. 50, R1–R43 (2005).

[CrossRef]

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50, 2837–2858 (2005).

[CrossRef]

X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49, N155–N163 (2004).

[CrossRef]

A. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical tomography,” Phys. Med. Biol. 50, R1–R43 (2005).

[CrossRef]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiroaka, and D. T. Delpy, “The finite element model for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50, 2837–2858 (2005).

[CrossRef]

X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49, N155–N163 (2004).

[CrossRef]

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13, 041302 (2008).

[CrossRef]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15, 8043–8058 (2007).

[CrossRef]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066–4082, (2007).

[CrossRef]

T. O. Mcbride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).

[CrossRef]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).

[CrossRef]

S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography,” Phys. Med. Biol. 53, 3921–3942 (2008).

[CrossRef]

X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49, N155–N163 (2004).

[CrossRef]

T. O. Mcbride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).

[CrossRef]

F. Larusson, S. Fantini, and E. L. Miller, “Hyperspectral image reconstruction for diffuse optical tomography,” Biomed. Opt. Express 2, 946–965 (2011).

[CrossRef]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).

[CrossRef]

M. Schweiger, S. R. Arridge, and I. Nissila, “Gauss-Newton method for image reconstruction in diffuse optical tomography,” Phys. Med. Biol. 50, 2365–2386 (2005).

[CrossRef]

T. O. Mcbride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).

[CrossRef]

B. W. Pogue, T. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).

[CrossRef]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithms for numerical model and image reconstruction algorithms,” Commun. Numer. Methods Eng. 25, 711–732 (2009).

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066–4082, (2007).

[CrossRef]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15, 8043–8058 (2007).

[CrossRef]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34, 2085–2098 (2007).

[CrossRef]

P. K. Yalavarthy, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Critical computational aspects of near infrared circular tomographic imaging: Analysis of measurement number, mesh resolution and reconstruction basis,” Opt. Express 14, 6113–6127 (2006).

[CrossRef]

T. O. Mcbride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).

[CrossRef]

B. W. Pogue, T. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).

[CrossRef]

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Phil. Trans. R. Soc. A 367, 3073–3093 (2009).

[CrossRef]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithms for numerical model and image reconstruction algorithms,” Commun. Numer. Methods Eng. 25, 711–732 (2009).

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13, 041302 (2008).

[CrossRef]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15, 8043–8058 (2007).

[CrossRef]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34, 2085–2098 (2007).

[CrossRef]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066–4082, (2007).

[CrossRef]

P. K. Yalavarthy, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Critical computational aspects of near infrared circular tomographic imaging: Analysis of measurement number, mesh resolution and reconstruction basis,” Opt. Express 14, 6113–6127 (2006).

[CrossRef]

T. O. Mcbride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).

[CrossRef]

B. W. Pogue, T. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).

[CrossRef]

M. Schweiger, S. R. Arridge, and I. Nissila, “Gauss-Newton method for image reconstruction in diffuse optical tomography,” Phys. Med. Biol. 50, 2365–2386 (2005).

[CrossRef]

M. Schweiger and S. R. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419–7428 (1998).

[CrossRef]

S. R. Arridge and M. Schweiger, “Photon-measurement density functions. Part 2: Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiroaka, and D. T. Delpy, “The finite element model for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

M. Soleimani, P. K. Yalavarthy, and H. Dehghani, “Helmholtz-type regularization method for permittivity reconstruction using experimental phantom data of electrical capacitance tomography,” IEEE Trans. Instrum. Meas. 59, 78–83 (2010).

[CrossRef]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithms for numerical model and image reconstruction algorithms,” Commun. Numer. Methods Eng. 25, 711–732 (2009).

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Phil. Trans. R. Soc. A 367, 3073–3093 (2009).

[CrossRef]

M. Soleimani, P. K. Yalavarthy, and H. Dehghani, “Helmholtz-type regularization method for permittivity reconstruction using experimental phantom data of electrical capacitance tomography,” IEEE Trans. Instrum. Meas. 59, 78–83 (2010).

[CrossRef]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithms for numerical model and image reconstruction algorithms,” Commun. Numer. Methods Eng. 25, 711–732 (2009).

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34, 2085–2098 (2007).

[CrossRef]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15, 8043–8058 (2007).

[CrossRef]

P. K. Yalavarthy, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Critical computational aspects of near infrared circular tomographic imaging: Analysis of measurement number, mesh resolution and reconstruction basis,” Opt. Express 14, 6113–6127 (2006).

[CrossRef]

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50, 2837–2858 (2005).

[CrossRef]

X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49, N155–N163 (2004).

[CrossRef]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).

[CrossRef]

M. S. Zhdanov, Geophysical Inverse Theory and Regularization Problems1st ed. (Elsevier Science, 2002).

B. W. Pogue, T. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).

[CrossRef]

S. R. Arridge and M. Schweiger, “Photon-measurement density functions. Part 2: Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).

[CrossRef]

M. Schweiger and S. R. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419–7428 (1998).

[CrossRef]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithms for numerical model and image reconstruction algorithms,” Commun. Numer. Methods Eng. 25, 711–732 (2009).

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).

[CrossRef]

M. Soleimani, P. K. Yalavarthy, and H. Dehghani, “Helmholtz-type regularization method for permittivity reconstruction using experimental phantom data of electrical capacitance tomography,” IEEE Trans. Instrum. Meas. 59, 78–83 (2010).

[CrossRef]

L. Borcea, “Electrical impedance tomography,” Inverse Probl. 18, R99–R136 (2002).

[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).

[CrossRef]

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13, 041302 (2008).

[CrossRef]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34, 2085–2098 (2007).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiroaka, and D. T. Delpy, “The finite element model for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15, 8043–8058 (2007).

[CrossRef]

M. E. Eames and H. Dehghani, “Wavelength dependence of sensitivity in spectral diffuse optical imaging: effect of normalization on image reconstruction,” Opt. Express 16, 17780–17791 (2008).

[CrossRef]

H. Niu, P. Guo, L. Ji, Q. Zhao, and T. Jiang, “Improving image quality of diffuse optical tomography with a projection-error-based adaptive regularization method,” Opt. Express 16, 12423–12434 (2008).

[CrossRef]

N. Cao, A. Nehorai, and M. Jacob, “Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm,” Opt. Express 15, 13695–13708 (2007).

[CrossRef]

P. K. Yalavarthy, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Critical computational aspects of near infrared circular tomographic imaging: Analysis of measurement number, mesh resolution and reconstruction basis,” Opt. Express 14, 6113–6127 (2006).

[CrossRef]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066–4082, (2007).

[CrossRef]

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Phil. Trans. R. Soc. A 367, 3073–3093 (2009).

[CrossRef]

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Phil. Trans. R. Soc. A 367, 3055–3072 (2009).

[CrossRef]

M. Schweiger, S. R. Arridge, and I. Nissila, “Gauss-Newton method for image reconstruction in diffuse optical tomography,” Phys. Med. Biol. 50, 2365–2386 (2005).

[CrossRef]

X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49, N155–N163 (2004).

[CrossRef]

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50, 2837–2858 (2005).

[CrossRef]

A. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical tomography,” Phys. Med. Biol. 50, R1–R43 (2005).

[CrossRef]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).

[CrossRef]

S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography,” Phys. Med. Biol. 53, 3921–3942 (2008).

[CrossRef]

T. O. Mcbride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).

[CrossRef]

M. S. Zhdanov, Geophysical Inverse Theory and Regularization Problems1st ed. (Elsevier Science, 2002).