Abstract

We measured chromatic discrimination under conditions where the target fields could be distinguished only by the ratio of excitation of the long- (L) and middle-wavelength (M) cones. The excitation level of the short-wavelength (S) cones was varied in the experiments, although for any given measurement the S-cone excitation was common to the two target fields and could not be directly used for discrimination. Adaptation was maintained by a steady neutral background metameric to Illuminant D65. Thresholds varied substantially and systematically with the S-cone level of the target probes, but in a complex way: when the ratio of LM cone excitation was low, an increase in S-cone excitation reduced the thresholds, but when the LM ratio was higher, an increase in S-cone excitation raised the thresholds. To account for the pattern of results, we postulate a neural channel that draws synergistic inputs from L and S cones and an opposed input from M cones. The proposed channel has a compressive response function and is most sensitive at the point set by the steady background.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
  2. B. B. Lee, P. R. Martin, and U. Grunert, “Retinal connectivity and primate vision,” Prog. Retin. Eye Res. 29, 622–639 (2010).
    [CrossRef]
  3. D. M. Dacey and B. B. Lee, “The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature 367, 731–735 (1994).
    [CrossRef]
  4. S. H. C. Hendry and R. C. Reid, “The koniocellular pathway in primate vision,” Ann. Rev. Neurosci. 23, 127–153 (2000).
    [CrossRef]
  5. P. R. Martin, A. J. R. White, A. K. Goodchild, H. D. Wilder, and A. E. Sefton, “Evidence that blue-on cells are part of the third geniculocortical pathway in primates,” Eur. J. Neurosci. 9, 1536–1541 (1997).
    [CrossRef]
  6. S. H. C. Hendry and T. Yoshioka, “A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus,” Science 264, 575–577 (1994).
    [CrossRef]
  7. P. Gouras, “Identification of cone mechanisms in monkey ganglion cells,” J. Physiol. 199, 533–547 (1968).
  8. J. D. Mollon, “‘Cherries among the leaves’: the evolutionary origins of colour vision,” in Colour Perception: Philosophical, Psychological, Artistic, and Computational Perspectives, B. Funt, ed. (Oxford University, 2000), pp. 10–30.
  9. D. I. A. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
    [CrossRef]
  10. J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
    [CrossRef]
  11. J. Krauskopf and K. Gegenfurtner, “Color discrimination and adaptation,” Vis. Res. 32, 2165–2175 (1992).
    [CrossRef]
  12. P. DeMarco, J. Pokorny, and V. C. Smith, “Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats,” J. Opt. Soc. Am. A 9, 1465–1476 (1992).
    [CrossRef]
  13. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
    [CrossRef]
  14. G. Wyszecki, and W. S. Stiles, Color Science, 2nd ed. (Wiley, 1982).
  15. G. B. Wetherill and H. Levitt, “Sequential estimation of points on a psychometric function,” Br. J. Math. Stat. Psychol. 18, 1–10 (1965).
    [CrossRef]
  16. B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994).
    [CrossRef]
  17. G. N. Rautian and V. P. Solov’eva, “Vlijanie svetlogo okrugenija na ostrotu cvetorazlochenija,” Dokl. Akad. Nauk SSSR 95, 513–516 (1954).
  18. J. M. Loomis and T. Berger, “Effects of chromatic adaptation on color discrimination and color appearance,” Vis. Res. 19, 891–901 (1979).
    [CrossRef]
  19. E. Miyahara, V. C. Smith, and J. Pokorny, “How surrounds affect chromaticity discrimination,” J. Opt. Soc. Am. 10, 545–553 (1993).
    [CrossRef]
  20. K. J. W. Craik, “The effect of adaptation on differential brightness discrimination,” J. Physiol. 92, 406–421 (1938).
  21. A. L. Byzov and L. P. Kusnezova, “On the mechanisms of visual adaptation,” Vis. Res. 11 (Suppl. 3), 51–63 (1971).
    [CrossRef]
  22. R. L. De Valois, I. Abramov, and W. R. Mead, “Single cell analysis of wavelength discrimination at the lateral geniculate nucleus in the macaque,” J. Neurophysiol. 30, 415–433 (1967).
  23. M. D. Danilova and J. D. Mollon, “Parafoveal color discrimination: a chromaticity locus of enhanced discrimination,” J. Vision 10, 4 (2010).
    [CrossRef]
  24. M. V. Danilova and J. D. Mollon, “Foveal color perception: minimal thresholds at a boundary between perceptual categories” (submitted).
  25. K. Knoblauch and S. K. Shevell, “Relating cone signals to color appearance: failure of monotonicity in yellow/blue,” Vis. Neurosci. 18, 901–906 (2001).
    [CrossRef]
  26. R. L. De Valois and K. K. De Valois, “A multistage color model,” Vis. Res. 33, 1053–1065 (1993).
    [CrossRef]
  27. F. M. de Monasterio, P. Gouras, and D. J. Tolhurst, “Trichromatic colour opponency in ganglion cells of the rhesus monkey retina,” J. Physiol. 251, 197–216 (1975).
  28. A. Valberg, B. B. Lee, and D. A. Tigwell, “Neurones with strong inhibitory s-cone inputs in the macaque lateral geniculate nucleus,” Vis. Res. 26, 1061–1064 (1986).
    [CrossRef]
  29. J. D. Mollon and G. Jordan, “On the nature of unique hues,” in John Dalton’s Colour Vision Legacy, C. Dickinson, I. Murray, and D. Carden, eds. (Taylor & Francis, 1997), pp. 381–392.
  30. C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying s-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
    [CrossRef]
  31. D. M. Dacey, “Origins of perception: retinal ganglion cell diversity and the creation of parallel visual pathways,” in The Cognitive Neurosciences, M. S. Gazzaniga, ed. (MIT, 2004), pp. 281–301.
  32. D. M. Dacey, “Colour coding in the primate retina: diverse cell types and cone-specific circuitry,” Curr. Opin. Neurobiol. 13, 421–427 (2003).
    [CrossRef]
  33. G. D. Field, J. L. Gauthier, A. Sher, M. Greschner, T. A. Machado, L. H. Jepson, J. Shlens, D. E. Gunning, K. Mathieson, W. Dabrowski, L. Paninski, A. M. Litke, and E. J. Chichilnisky, “Functional connectivity in the retina at the resolution of photoreceptors,” Nature 467, 673–677 (2010).
    [CrossRef]
  34. D. M. Dacey, H. R. Joo, B. B. Peterson, and T. J. Haun, “Characterization of a novel large-field cone bipolar cell type in the primate retina: evidence for selective cone connections,” Vis. Neurosci. 28, 29–37 (2011).
    [CrossRef]
  35. J. D. Mollon, “A neural basis for unique hues?” Curr. Biol. 19, R441–R442 (2009).
    [CrossRef]

2011 (1)

D. M. Dacey, H. R. Joo, B. B. Peterson, and T. J. Haun, “Characterization of a novel large-field cone bipolar cell type in the primate retina: evidence for selective cone connections,” Vis. Neurosci. 28, 29–37 (2011).
[CrossRef]

2010 (3)

G. D. Field, J. L. Gauthier, A. Sher, M. Greschner, T. A. Machado, L. H. Jepson, J. Shlens, D. E. Gunning, K. Mathieson, W. Dabrowski, L. Paninski, A. M. Litke, and E. J. Chichilnisky, “Functional connectivity in the retina at the resolution of photoreceptors,” Nature 467, 673–677 (2010).
[CrossRef]

M. D. Danilova and J. D. Mollon, “Parafoveal color discrimination: a chromaticity locus of enhanced discrimination,” J. Vision 10, 4 (2010).
[CrossRef]

B. B. Lee, P. R. Martin, and U. Grunert, “Retinal connectivity and primate vision,” Prog. Retin. Eye Res. 29, 622–639 (2010).
[CrossRef]

2009 (1)

J. D. Mollon, “A neural basis for unique hues?” Curr. Biol. 19, R441–R442 (2009).
[CrossRef]

2008 (1)

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying s-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
[CrossRef]

2003 (1)

D. M. Dacey, “Colour coding in the primate retina: diverse cell types and cone-specific circuitry,” Curr. Opin. Neurobiol. 13, 421–427 (2003).
[CrossRef]

2001 (1)

K. Knoblauch and S. K. Shevell, “Relating cone signals to color appearance: failure of monotonicity in yellow/blue,” Vis. Neurosci. 18, 901–906 (2001).
[CrossRef]

2000 (1)

S. H. C. Hendry and R. C. Reid, “The koniocellular pathway in primate vision,” Ann. Rev. Neurosci. 23, 127–153 (2000).
[CrossRef]

1997 (1)

P. R. Martin, A. J. R. White, A. K. Goodchild, H. D. Wilder, and A. E. Sefton, “Evidence that blue-on cells are part of the third geniculocortical pathway in primates,” Eur. J. Neurosci. 9, 1536–1541 (1997).
[CrossRef]

1994 (3)

S. H. C. Hendry and T. Yoshioka, “A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus,” Science 264, 575–577 (1994).
[CrossRef]

D. M. Dacey and B. B. Lee, “The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature 367, 731–735 (1994).
[CrossRef]

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994).
[CrossRef]

1993 (2)

R. L. De Valois and K. K. De Valois, “A multistage color model,” Vis. Res. 33, 1053–1065 (1993).
[CrossRef]

E. Miyahara, V. C. Smith, and J. Pokorny, “How surrounds affect chromaticity discrimination,” J. Opt. Soc. Am. 10, 545–553 (1993).
[CrossRef]

1992 (2)

1986 (1)

A. Valberg, B. B. Lee, and D. A. Tigwell, “Neurones with strong inhibitory s-cone inputs in the macaque lateral geniculate nucleus,” Vis. Res. 26, 1061–1064 (1986).
[CrossRef]

1984 (1)

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

1982 (1)

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

1979 (2)

J. M. Loomis and T. Berger, “Effects of chromatic adaptation on color discrimination and color appearance,” Vis. Res. 19, 891–901 (1979).
[CrossRef]

D. I. A. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
[CrossRef]

1975 (2)

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
[CrossRef]

F. M. de Monasterio, P. Gouras, and D. J. Tolhurst, “Trichromatic colour opponency in ganglion cells of the rhesus monkey retina,” J. Physiol. 251, 197–216 (1975).

1971 (1)

A. L. Byzov and L. P. Kusnezova, “On the mechanisms of visual adaptation,” Vis. Res. 11 (Suppl. 3), 51–63 (1971).
[CrossRef]

1968 (1)

P. Gouras, “Identification of cone mechanisms in monkey ganglion cells,” J. Physiol. 199, 533–547 (1968).

1967 (1)

R. L. De Valois, I. Abramov, and W. R. Mead, “Single cell analysis of wavelength discrimination at the lateral geniculate nucleus in the macaque,” J. Neurophysiol. 30, 415–433 (1967).

1965 (1)

G. B. Wetherill and H. Levitt, “Sequential estimation of points on a psychometric function,” Br. J. Math. Stat. Psychol. 18, 1–10 (1965).
[CrossRef]

1954 (1)

G. N. Rautian and V. P. Solov’eva, “Vlijanie svetlogo okrugenija na ostrotu cvetorazlochenija,” Dokl. Akad. Nauk SSSR 95, 513–516 (1954).

1938 (1)

K. J. W. Craik, “The effect of adaptation on differential brightness discrimination,” J. Physiol. 92, 406–421 (1938).

Abramov, I.

R. L. De Valois, I. Abramov, and W. R. Mead, “Single cell analysis of wavelength discrimination at the lateral geniculate nucleus in the macaque,” J. Neurophysiol. 30, 415–433 (1967).

Berger, T.

J. M. Loomis and T. Berger, “Effects of chromatic adaptation on color discrimination and color appearance,” Vis. Res. 19, 891–901 (1979).
[CrossRef]

Boynton, R. M.

Byzov, A. L.

A. L. Byzov and L. P. Kusnezova, “On the mechanisms of visual adaptation,” Vis. Res. 11 (Suppl. 3), 51–63 (1971).
[CrossRef]

Chichilnisky, E. J.

G. D. Field, J. L. Gauthier, A. Sher, M. Greschner, T. A. Machado, L. H. Jepson, J. Shlens, D. E. Gunning, K. Mathieson, W. Dabrowski, L. Paninski, A. M. Litke, and E. J. Chichilnisky, “Functional connectivity in the retina at the resolution of photoreceptors,” Nature 467, 673–677 (2010).
[CrossRef]

Craik, K. J. W.

K. J. W. Craik, “The effect of adaptation on differential brightness discrimination,” J. Physiol. 92, 406–421 (1938).

Dabrowski, W.

G. D. Field, J. L. Gauthier, A. Sher, M. Greschner, T. A. Machado, L. H. Jepson, J. Shlens, D. E. Gunning, K. Mathieson, W. Dabrowski, L. Paninski, A. M. Litke, and E. J. Chichilnisky, “Functional connectivity in the retina at the resolution of photoreceptors,” Nature 467, 673–677 (2010).
[CrossRef]

Dacey, D. M.

D. M. Dacey, H. R. Joo, B. B. Peterson, and T. J. Haun, “Characterization of a novel large-field cone bipolar cell type in the primate retina: evidence for selective cone connections,” Vis. Neurosci. 28, 29–37 (2011).
[CrossRef]

D. M. Dacey, “Colour coding in the primate retina: diverse cell types and cone-specific circuitry,” Curr. Opin. Neurobiol. 13, 421–427 (2003).
[CrossRef]

D. M. Dacey and B. B. Lee, “The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature 367, 731–735 (1994).
[CrossRef]

D. M. Dacey, “Origins of perception: retinal ganglion cell diversity and the creation of parallel visual pathways,” in The Cognitive Neurosciences, M. S. Gazzaniga, ed. (MIT, 2004), pp. 281–301.

Danilova, M. D.

M. D. Danilova and J. D. Mollon, “Parafoveal color discrimination: a chromaticity locus of enhanced discrimination,” J. Vision 10, 4 (2010).
[CrossRef]

Danilova, M. V.

M. V. Danilova and J. D. Mollon, “Foveal color perception: minimal thresholds at a boundary between perceptual categories” (submitted).

de Monasterio, F. M.

F. M. de Monasterio, P. Gouras, and D. J. Tolhurst, “Trichromatic colour opponency in ganglion cells of the rhesus monkey retina,” J. Physiol. 251, 197–216 (1975).

De Valois, K. K.

R. L. De Valois and K. K. De Valois, “A multistage color model,” Vis. Res. 33, 1053–1065 (1993).
[CrossRef]

De Valois, R. L.

R. L. De Valois and K. K. De Valois, “A multistage color model,” Vis. Res. 33, 1053–1065 (1993).
[CrossRef]

R. L. De Valois, I. Abramov, and W. R. Mead, “Single cell analysis of wavelength discrimination at the lateral geniculate nucleus in the macaque,” J. Neurophysiol. 30, 415–433 (1967).

DeMarco, P.

Derrington, A. M.

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

Field, G. D.

G. D. Field, J. L. Gauthier, A. Sher, M. Greschner, T. A. Machado, L. H. Jepson, J. Shlens, D. E. Gunning, K. Mathieson, W. Dabrowski, L. Paninski, A. M. Litke, and E. J. Chichilnisky, “Functional connectivity in the retina at the resolution of photoreceptors,” Nature 467, 673–677 (2010).
[CrossRef]

Gauthier, J. L.

G. D. Field, J. L. Gauthier, A. Sher, M. Greschner, T. A. Machado, L. H. Jepson, J. Shlens, D. E. Gunning, K. Mathieson, W. Dabrowski, L. Paninski, A. M. Litke, and E. J. Chichilnisky, “Functional connectivity in the retina at the resolution of photoreceptors,” Nature 467, 673–677 (2010).
[CrossRef]

Gegenfurtner, K.

J. Krauskopf and K. Gegenfurtner, “Color discrimination and adaptation,” Vis. Res. 32, 2165–2175 (1992).
[CrossRef]

Goodchild, A. K.

P. R. Martin, A. J. R. White, A. K. Goodchild, H. D. Wilder, and A. E. Sefton, “Evidence that blue-on cells are part of the third geniculocortical pathway in primates,” Eur. J. Neurosci. 9, 1536–1541 (1997).
[CrossRef]

Gouras, P.

F. M. de Monasterio, P. Gouras, and D. J. Tolhurst, “Trichromatic colour opponency in ganglion cells of the rhesus monkey retina,” J. Physiol. 251, 197–216 (1975).

P. Gouras, “Identification of cone mechanisms in monkey ganglion cells,” J. Physiol. 199, 533–547 (1968).

Greschner, M.

G. D. Field, J. L. Gauthier, A. Sher, M. Greschner, T. A. Machado, L. H. Jepson, J. Shlens, D. E. Gunning, K. Mathieson, W. Dabrowski, L. Paninski, A. M. Litke, and E. J. Chichilnisky, “Functional connectivity in the retina at the resolution of photoreceptors,” Nature 467, 673–677 (2010).
[CrossRef]

Grunert, U.

B. B. Lee, P. R. Martin, and U. Grunert, “Retinal connectivity and primate vision,” Prog. Retin. Eye Res. 29, 622–639 (2010).
[CrossRef]

Gunning, D. E.

G. D. Field, J. L. Gauthier, A. Sher, M. Greschner, T. A. Machado, L. H. Jepson, J. Shlens, D. E. Gunning, K. Mathieson, W. Dabrowski, L. Paninski, A. M. Litke, and E. J. Chichilnisky, “Functional connectivity in the retina at the resolution of photoreceptors,” Nature 467, 673–677 (2010).
[CrossRef]

Haun, T. J.

D. M. Dacey, H. R. Joo, B. B. Peterson, and T. J. Haun, “Characterization of a novel large-field cone bipolar cell type in the primate retina: evidence for selective cone connections,” Vis. Neurosci. 28, 29–37 (2011).
[CrossRef]

Heeley, D. W.

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

Hendry, S. H. C.

S. H. C. Hendry and R. C. Reid, “The koniocellular pathway in primate vision,” Ann. Rev. Neurosci. 23, 127–153 (2000).
[CrossRef]

S. H. C. Hendry and T. Yoshioka, “A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus,” Science 264, 575–577 (1994).
[CrossRef]

Jepson, L. H.

G. D. Field, J. L. Gauthier, A. Sher, M. Greschner, T. A. Machado, L. H. Jepson, J. Shlens, D. E. Gunning, K. Mathieson, W. Dabrowski, L. Paninski, A. M. Litke, and E. J. Chichilnisky, “Functional connectivity in the retina at the resolution of photoreceptors,” Nature 467, 673–677 (2010).
[CrossRef]

Joo, H. R.

D. M. Dacey, H. R. Joo, B. B. Peterson, and T. J. Haun, “Characterization of a novel large-field cone bipolar cell type in the primate retina: evidence for selective cone connections,” Vis. Neurosci. 28, 29–37 (2011).
[CrossRef]

Jordan, G.

J. D. Mollon and G. Jordan, “On the nature of unique hues,” in John Dalton’s Colour Vision Legacy, C. Dickinson, I. Murray, and D. Carden, eds. (Taylor & Francis, 1997), pp. 381–392.

Knoblauch, K.

K. Knoblauch and S. K. Shevell, “Relating cone signals to color appearance: failure of monotonicity in yellow/blue,” Vis. Neurosci. 18, 901–906 (2001).
[CrossRef]

Krauskopf, J.

J. Krauskopf and K. Gegenfurtner, “Color discrimination and adaptation,” Vis. Res. 32, 2165–2175 (1992).
[CrossRef]

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

Kusnezova, L. P.

A. L. Byzov and L. P. Kusnezova, “On the mechanisms of visual adaptation,” Vis. Res. 11 (Suppl. 3), 51–63 (1971).
[CrossRef]

Lee, B. B.

B. B. Lee, P. R. Martin, and U. Grunert, “Retinal connectivity and primate vision,” Prog. Retin. Eye Res. 29, 622–639 (2010).
[CrossRef]

D. M. Dacey and B. B. Lee, “The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature 367, 731–735 (1994).
[CrossRef]

A. Valberg, B. B. Lee, and D. A. Tigwell, “Neurones with strong inhibitory s-cone inputs in the macaque lateral geniculate nucleus,” Vis. Res. 26, 1061–1064 (1986).
[CrossRef]

Lennie, P.

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying s-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
[CrossRef]

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

Levitt, H.

G. B. Wetherill and H. Levitt, “Sequential estimation of points on a psychometric function,” Br. J. Math. Stat. Psychol. 18, 1–10 (1965).
[CrossRef]

Litke, A. M.

G. D. Field, J. L. Gauthier, A. Sher, M. Greschner, T. A. Machado, L. H. Jepson, J. Shlens, D. E. Gunning, K. Mathieson, W. Dabrowski, L. Paninski, A. M. Litke, and E. J. Chichilnisky, “Functional connectivity in the retina at the resolution of photoreceptors,” Nature 467, 673–677 (2010).
[CrossRef]

Loomis, J. M.

J. M. Loomis and T. Berger, “Effects of chromatic adaptation on color discrimination and color appearance,” Vis. Res. 19, 891–901 (1979).
[CrossRef]

Machado, T. A.

G. D. Field, J. L. Gauthier, A. Sher, M. Greschner, T. A. Machado, L. H. Jepson, J. Shlens, D. E. Gunning, K. Mathieson, W. Dabrowski, L. Paninski, A. M. Litke, and E. J. Chichilnisky, “Functional connectivity in the retina at the resolution of photoreceptors,” Nature 467, 673–677 (2010).
[CrossRef]

MacLeod, D. I. A.

Martin, P. R.

B. B. Lee, P. R. Martin, and U. Grunert, “Retinal connectivity and primate vision,” Prog. Retin. Eye Res. 29, 622–639 (2010).
[CrossRef]

P. R. Martin, A. J. R. White, A. K. Goodchild, H. D. Wilder, and A. E. Sefton, “Evidence that blue-on cells are part of the third geniculocortical pathway in primates,” Eur. J. Neurosci. 9, 1536–1541 (1997).
[CrossRef]

Mathieson, K.

G. D. Field, J. L. Gauthier, A. Sher, M. Greschner, T. A. Machado, L. H. Jepson, J. Shlens, D. E. Gunning, K. Mathieson, W. Dabrowski, L. Paninski, A. M. Litke, and E. J. Chichilnisky, “Functional connectivity in the retina at the resolution of photoreceptors,” Nature 467, 673–677 (2010).
[CrossRef]

Mead, W. R.

R. L. De Valois, I. Abramov, and W. R. Mead, “Single cell analysis of wavelength discrimination at the lateral geniculate nucleus in the macaque,” J. Neurophysiol. 30, 415–433 (1967).

Miyahara, E.

E. Miyahara, V. C. Smith, and J. Pokorny, “How surrounds affect chromaticity discrimination,” J. Opt. Soc. Am. 10, 545–553 (1993).
[CrossRef]

Mollon, J. D.

M. D. Danilova and J. D. Mollon, “Parafoveal color discrimination: a chromaticity locus of enhanced discrimination,” J. Vision 10, 4 (2010).
[CrossRef]

J. D. Mollon, “A neural basis for unique hues?” Curr. Biol. 19, R441–R442 (2009).
[CrossRef]

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994).
[CrossRef]

M. V. Danilova and J. D. Mollon, “Foveal color perception: minimal thresholds at a boundary between perceptual categories” (submitted).

J. D. Mollon and G. Jordan, “On the nature of unique hues,” in John Dalton’s Colour Vision Legacy, C. Dickinson, I. Murray, and D. Carden, eds. (Taylor & Francis, 1997), pp. 381–392.

J. D. Mollon, “‘Cherries among the leaves’: the evolutionary origins of colour vision,” in Colour Perception: Philosophical, Psychological, Artistic, and Computational Perspectives, B. Funt, ed. (Oxford University, 2000), pp. 10–30.

Paninski, L.

G. D. Field, J. L. Gauthier, A. Sher, M. Greschner, T. A. Machado, L. H. Jepson, J. Shlens, D. E. Gunning, K. Mathieson, W. Dabrowski, L. Paninski, A. M. Litke, and E. J. Chichilnisky, “Functional connectivity in the retina at the resolution of photoreceptors,” Nature 467, 673–677 (2010).
[CrossRef]

Peterson, B. B.

D. M. Dacey, H. R. Joo, B. B. Peterson, and T. J. Haun, “Characterization of a novel large-field cone bipolar cell type in the primate retina: evidence for selective cone connections,” Vis. Neurosci. 28, 29–37 (2011).
[CrossRef]

Pokorny, J.

E. Miyahara, V. C. Smith, and J. Pokorny, “How surrounds affect chromaticity discrimination,” J. Opt. Soc. Am. 10, 545–553 (1993).
[CrossRef]

P. DeMarco, J. Pokorny, and V. C. Smith, “Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats,” J. Opt. Soc. Am. A 9, 1465–1476 (1992).
[CrossRef]

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
[CrossRef]

Rautian, G. N.

G. N. Rautian and V. P. Solov’eva, “Vlijanie svetlogo okrugenija na ostrotu cvetorazlochenija,” Dokl. Akad. Nauk SSSR 95, 513–516 (1954).

Reffin, J. P.

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994).
[CrossRef]

Regan, B. C.

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994).
[CrossRef]

Reid, R. C.

S. H. C. Hendry and R. C. Reid, “The koniocellular pathway in primate vision,” Ann. Rev. Neurosci. 23, 127–153 (2000).
[CrossRef]

Sefton, A. E.

P. R. Martin, A. J. R. White, A. K. Goodchild, H. D. Wilder, and A. E. Sefton, “Evidence that blue-on cells are part of the third geniculocortical pathway in primates,” Eur. J. Neurosci. 9, 1536–1541 (1997).
[CrossRef]

Sher, A.

G. D. Field, J. L. Gauthier, A. Sher, M. Greschner, T. A. Machado, L. H. Jepson, J. Shlens, D. E. Gunning, K. Mathieson, W. Dabrowski, L. Paninski, A. M. Litke, and E. J. Chichilnisky, “Functional connectivity in the retina at the resolution of photoreceptors,” Nature 467, 673–677 (2010).
[CrossRef]

Shevell, S. K.

K. Knoblauch and S. K. Shevell, “Relating cone signals to color appearance: failure of monotonicity in yellow/blue,” Vis. Neurosci. 18, 901–906 (2001).
[CrossRef]

Shlens, J.

G. D. Field, J. L. Gauthier, A. Sher, M. Greschner, T. A. Machado, L. H. Jepson, J. Shlens, D. E. Gunning, K. Mathieson, W. Dabrowski, L. Paninski, A. M. Litke, and E. J. Chichilnisky, “Functional connectivity in the retina at the resolution of photoreceptors,” Nature 467, 673–677 (2010).
[CrossRef]

Smith, V. C.

E. Miyahara, V. C. Smith, and J. Pokorny, “How surrounds affect chromaticity discrimination,” J. Opt. Soc. Am. 10, 545–553 (1993).
[CrossRef]

P. DeMarco, J. Pokorny, and V. C. Smith, “Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats,” J. Opt. Soc. Am. A 9, 1465–1476 (1992).
[CrossRef]

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
[CrossRef]

Solomon, S. G.

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying s-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
[CrossRef]

Solov’eva, V. P.

G. N. Rautian and V. P. Solov’eva, “Vlijanie svetlogo okrugenija na ostrotu cvetorazlochenija,” Dokl. Akad. Nauk SSSR 95, 513–516 (1954).

Stiles, W. S.

G. Wyszecki, and W. S. Stiles, Color Science, 2nd ed. (Wiley, 1982).

Tailby, C.

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying s-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
[CrossRef]

Tigwell, D. A.

A. Valberg, B. B. Lee, and D. A. Tigwell, “Neurones with strong inhibitory s-cone inputs in the macaque lateral geniculate nucleus,” Vis. Res. 26, 1061–1064 (1986).
[CrossRef]

Tolhurst, D. J.

F. M. de Monasterio, P. Gouras, and D. J. Tolhurst, “Trichromatic colour opponency in ganglion cells of the rhesus monkey retina,” J. Physiol. 251, 197–216 (1975).

Valberg, A.

A. Valberg, B. B. Lee, and D. A. Tigwell, “Neurones with strong inhibitory s-cone inputs in the macaque lateral geniculate nucleus,” Vis. Res. 26, 1061–1064 (1986).
[CrossRef]

Wetherill, G. B.

G. B. Wetherill and H. Levitt, “Sequential estimation of points on a psychometric function,” Br. J. Math. Stat. Psychol. 18, 1–10 (1965).
[CrossRef]

White, A. J. R.

P. R. Martin, A. J. R. White, A. K. Goodchild, H. D. Wilder, and A. E. Sefton, “Evidence that blue-on cells are part of the third geniculocortical pathway in primates,” Eur. J. Neurosci. 9, 1536–1541 (1997).
[CrossRef]

Wilder, H. D.

P. R. Martin, A. J. R. White, A. K. Goodchild, H. D. Wilder, and A. E. Sefton, “Evidence that blue-on cells are part of the third geniculocortical pathway in primates,” Eur. J. Neurosci. 9, 1536–1541 (1997).
[CrossRef]

Williams, D. R.

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

Wyszecki, G.

G. Wyszecki, and W. S. Stiles, Color Science, 2nd ed. (Wiley, 1982).

Yoshioka, T.

S. H. C. Hendry and T. Yoshioka, “A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus,” Science 264, 575–577 (1994).
[CrossRef]

Ann. Rev. Neurosci. (1)

S. H. C. Hendry and R. C. Reid, “The koniocellular pathway in primate vision,” Ann. Rev. Neurosci. 23, 127–153 (2000).
[CrossRef]

Br. J. Math. Stat. Psychol. (1)

G. B. Wetherill and H. Levitt, “Sequential estimation of points on a psychometric function,” Br. J. Math. Stat. Psychol. 18, 1–10 (1965).
[CrossRef]

Curr. Biol. (1)

J. D. Mollon, “A neural basis for unique hues?” Curr. Biol. 19, R441–R442 (2009).
[CrossRef]

Curr. Opin. Neurobiol. (1)

D. M. Dacey, “Colour coding in the primate retina: diverse cell types and cone-specific circuitry,” Curr. Opin. Neurobiol. 13, 421–427 (2003).
[CrossRef]

Dokl. Akad. Nauk SSSR (1)

G. N. Rautian and V. P. Solov’eva, “Vlijanie svetlogo okrugenija na ostrotu cvetorazlochenija,” Dokl. Akad. Nauk SSSR 95, 513–516 (1954).

Eur. J. Neurosci. (1)

P. R. Martin, A. J. R. White, A. K. Goodchild, H. D. Wilder, and A. E. Sefton, “Evidence that blue-on cells are part of the third geniculocortical pathway in primates,” Eur. J. Neurosci. 9, 1536–1541 (1997).
[CrossRef]

J. Neurophysiol. (1)

R. L. De Valois, I. Abramov, and W. R. Mead, “Single cell analysis of wavelength discrimination at the lateral geniculate nucleus in the macaque,” J. Neurophysiol. 30, 415–433 (1967).

J. Neurosci. (1)

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying s-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
[CrossRef]

J. Opt. Soc. Am. (2)

E. Miyahara, V. C. Smith, and J. Pokorny, “How surrounds affect chromaticity discrimination,” J. Opt. Soc. Am. 10, 545–553 (1993).
[CrossRef]

D. I. A. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Physiol. (4)

P. Gouras, “Identification of cone mechanisms in monkey ganglion cells,” J. Physiol. 199, 533–547 (1968).

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

K. J. W. Craik, “The effect of adaptation on differential brightness discrimination,” J. Physiol. 92, 406–421 (1938).

F. M. de Monasterio, P. Gouras, and D. J. Tolhurst, “Trichromatic colour opponency in ganglion cells of the rhesus monkey retina,” J. Physiol. 251, 197–216 (1975).

J. Vision (1)

M. D. Danilova and J. D. Mollon, “Parafoveal color discrimination: a chromaticity locus of enhanced discrimination,” J. Vision 10, 4 (2010).
[CrossRef]

Nature (2)

G. D. Field, J. L. Gauthier, A. Sher, M. Greschner, T. A. Machado, L. H. Jepson, J. Shlens, D. E. Gunning, K. Mathieson, W. Dabrowski, L. Paninski, A. M. Litke, and E. J. Chichilnisky, “Functional connectivity in the retina at the resolution of photoreceptors,” Nature 467, 673–677 (2010).
[CrossRef]

D. M. Dacey and B. B. Lee, “The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature 367, 731–735 (1994).
[CrossRef]

Prog. Retin. Eye Res. (1)

B. B. Lee, P. R. Martin, and U. Grunert, “Retinal connectivity and primate vision,” Prog. Retin. Eye Res. 29, 622–639 (2010).
[CrossRef]

Science (1)

S. H. C. Hendry and T. Yoshioka, “A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus,” Science 264, 575–577 (1994).
[CrossRef]

Vis. Neurosci. (2)

D. M. Dacey, H. R. Joo, B. B. Peterson, and T. J. Haun, “Characterization of a novel large-field cone bipolar cell type in the primate retina: evidence for selective cone connections,” Vis. Neurosci. 28, 29–37 (2011).
[CrossRef]

K. Knoblauch and S. K. Shevell, “Relating cone signals to color appearance: failure of monotonicity in yellow/blue,” Vis. Neurosci. 18, 901–906 (2001).
[CrossRef]

Vis. Res. (8)

R. L. De Valois and K. K. De Valois, “A multistage color model,” Vis. Res. 33, 1053–1065 (1993).
[CrossRef]

A. Valberg, B. B. Lee, and D. A. Tigwell, “Neurones with strong inhibitory s-cone inputs in the macaque lateral geniculate nucleus,” Vis. Res. 26, 1061–1064 (1986).
[CrossRef]

A. L. Byzov and L. P. Kusnezova, “On the mechanisms of visual adaptation,” Vis. Res. 11 (Suppl. 3), 51–63 (1971).
[CrossRef]

J. M. Loomis and T. Berger, “Effects of chromatic adaptation on color discrimination and color appearance,” Vis. Res. 19, 891–901 (1979).
[CrossRef]

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994).
[CrossRef]

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
[CrossRef]

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

J. Krauskopf and K. Gegenfurtner, “Color discrimination and adaptation,” Vis. Res. 32, 2165–2175 (1992).
[CrossRef]

Other (5)

J. D. Mollon, “‘Cherries among the leaves’: the evolutionary origins of colour vision,” in Colour Perception: Philosophical, Psychological, Artistic, and Computational Perspectives, B. Funt, ed. (Oxford University, 2000), pp. 10–30.

G. Wyszecki, and W. S. Stiles, Color Science, 2nd ed. (Wiley, 1982).

J. D. Mollon and G. Jordan, “On the nature of unique hues,” in John Dalton’s Colour Vision Legacy, C. Dickinson, I. Murray, and D. Carden, eds. (Taylor & Francis, 1997), pp. 381–392.

D. M. Dacey, “Origins of perception: retinal ganglion cell diversity and the creation of parallel visual pathways,” in The Cognitive Neurosciences, M. S. Gazzaniga, ed. (MIT, 2004), pp. 281–301.

M. V. Danilova and J. D. Mollon, “Foveal color perception: minimal thresholds at a boundary between perceptual categories” (submitted).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Part of the MacLeod–Boynton (1979) chromaticity diagram, showing the locations of the three sets of referent stimuli used in Experiment 1. The oblique solid line represents the set of chromaticities that appear neither reddish nor greenish under the conditions of our experiments (the “yellow–blue line”) [24], and the ordinate of the diagram has been scaled so that this line lies at 45°. Each of the three sets of referents is identified by its S/(L+M) coordinate. The curved locus represents the spectrum of monochromatic lights. The inset shows the arrangement of the target field.

Fig. 2.
Fig. 2.

Magnified region of the MacLeod–Boynton diagram showing the results of Experiment 1 for one observer. Each yoked pair of data points shows directly how far the foveal half-fields have to differ in chromaticity if the observer is to discriminate them at the level of 79.4% correct. To the left of each of the three sets of data is shown the S/(L+M) coordinate of the targets. The line at 45° is the yellow–blue line—the set of chromaticities that look neither reddish nor greenish under our experimental conditions. Part of the spectrum locus is shown near the base of the diagram.

Fig. 3.
Fig. 3.

Color discrimination results for five subjects in Experiment 1; the last panel shows averages. Within each panel, each of the three sets of reference stimuli from Fig. 1 is represented by a different symbol; the inset key in last panel gives the S/(L+M) coordinate corresponding to each set. The ordinate represents the factor by which each of the discriminanda differs from the referent at threshold. These thresholds are plotted against the L/(L+M) coordinate of the referent. In each panel, a vertical line marks the L/(L+M) value of the neutral background. The functions fitted to the data sets are inverse third-order polynomials; they have no theoretical significance. Error bars for individual subjects represent ±1SEM (standard error of the mean), based on estimates from the independent experimental sessions. Error bars for the average are based on the means for individuals.

Fig. 4.
Fig. 4.

Median response times for Experiment 1, averaged across subjects. Each of the three sets of reference stimuli from Fig. 1 is represented by a different symbol; the inset key gives the S/(L+M) coordinate corresponding to each set. The curves fitted to the data are inverse third-order polynomials and have no theoretical significance. Error bars are based on between-subject variance. These results show that the observers are not gaining sensitivity at the cost of response time.

Fig. 5.
Fig. 5.

Portion of the MacLeod–Boynton chromaticity diagram showing the four sets of referent stimuli used in Experiment 2. Each set is identified by its L/(L+M) coordinate. The curved locus represents the spectrum of monochromatic lights, and the line at 45° represents the set of chromaticities that look neither reddish nor greenish under our experimental conditions.

Fig. 6.
Fig. 6.

A magnified region of the MacLeod–Boynton diagram showing the results of Experiment 2 for one observer. Each yoked pair of points shows directly how the foveal half-fields have to differ in chromaticity if the observer is to discriminate them at the level of 79.4% correct. Below each of the four sets of data is shown the L/(L+M) coordinate of the targets. The line at 45° is the yellow–blue line. Part of the spectrum locus is shown near the base of the diagram.

Fig. 7.
Fig. 7.

Color discrimination thresholds for five subjects in Experiment 2; the last panel shows averages. Within each panel, each of the four sets of reference stimuli from Fig. 5 is represented by a different symbol; the inset key in the last panel gives the L/(L+M) coordinate corresponding to each set. The ordinate represents the factor by which each of the discriminanda differs from the referent at threshold, and thresholds are plotted against the S/(L+M) coordinate of the referent. The functions fitted to the data sets are cubic splines; they have no theoretical significance. Error bars for individual subjects represent ±1SEM and are based on estimates from independent experimental sessions. Error bars for the average are based on the means for individuals.

Metrics