Abstract

Retroreflective free-space optical (RFSO) communication is a new concept of optical communication; it consists of an optical transceiver and a retromodulator and has advantages such as light weight, small volume, and low power consumption. The power captured by the receiver consists of two parts: retroreflective and scattering. The retroreflective characteristics are obtained using an analytical formula, the scattering characteristics using a Monte Carlo model. Results show that the scattering power plays an important role in a RFSO communication link, especially when the communication range is long or the meteorological range is short. Some rules are also obtained for the sake of system design, which include increasing the range from the transmitter and the receiver properly, increasing the area of the retromodulator, limiting the field of view of the receiver, and limiting the beam divergence of the transmitter.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Sjöqvist, S. Hård, S. Junique, B. Noharet, and P. Rudquist, “Retroreflective free-space optical communication: system analysis and performance” (Swedish Defence Research Agency, 2001).
  2. L. Sjöqvist, E. Hällstig, J. Öhgren, and L. Allard, “Retrocommunication—final report” (Swedish Defence Research Agency, 2004).
  3. G. C. Gilbreath and W. S. Rabinovich, Research in Free Space Optical Data Transfer at the U.S. Naval Research Laboratory (SPIE, 2004).
  4. W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, and C. I. Moore, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44, 056001 (2005).
    [CrossRef]
  5. W. S. Rabinovich, R. Mahon, P. G. Goetz, L. Swingen, J. Murphy, and M. Ferraro, “45 Mbps cat’s eye modulating retro-reflector 243 link over 7 Km,” in Free-Space Laser Communications VI, Vol. 244 (SPIE, 2007).
  6. A. M. Scott, K. D. Ridley, D. C. Jones, M. E. McNie, G. W. Smith, K. M. Brunson, A. Lewin, and K. L. Lewis, “Retro-reflective communications over a kilometre range using a MEMS-based optical tag,” in Unmanned/Unattended Sensors and Sensor Networks, Vol. 249 (SPIE, 2009), pp. 74801–74810.
  7. P. G. Goetz, W. S. Rabinovich, R. Mahon, J. L. Murphy, and M. S. Ferraro, “Modulating retro-reflector lasercom systems at the Naval Research Laboratory,” in The 2010 Military Communications Conference (IEEE, 2010), pp. 1601–1606.
  8. Y. Gil, N. Rotter, and S. Arnon, “Feasibility of retroreflective transdermal optical wireless communication,” Appl. Opt. 51, 4232–4239 (2012).
    [CrossRef]
  9. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  10. H. C. v. d. Hulst, Light Scattering by Small Particles (Dover, 1981).
  11. M. H. Kalos and P. A. Whitlock, Monte Carlo Methods(Wiley-VCH, 2008).
  12. H. W. Yin, S. L. Chang, H. H. Jia, J. K. Yang, and J. C. Yang, “Non-line-of-sight multiscatter propagation model,” J. Opt. Soc. Am. A 26, 2466–2469 (2009).
    [CrossRef]
  13. H. P. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Y. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
    [CrossRef]
  14. F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, and A. Berk, “The MODTRAN 2/3 report and LOWTRAN 7 MODEL,” (Ontar Corporation, 1996).

2012

2009

H. W. Yin, S. L. Chang, H. H. Jia, J. K. Yang, and J. C. Yang, “Non-line-of-sight multiscatter propagation model,” J. Opt. Soc. Am. A 26, 2466–2469 (2009).
[CrossRef]

H. P. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Y. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
[CrossRef]

2005

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, and C. I. Moore, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44, 056001 (2005).
[CrossRef]

Abreu, L. W.

F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, and A. Berk, “The MODTRAN 2/3 report and LOWTRAN 7 MODEL,” (Ontar Corporation, 1996).

Allard, L.

L. Sjöqvist, E. Hällstig, J. Öhgren, and L. Allard, “Retrocommunication—final report” (Swedish Defence Research Agency, 2004).

Anderson, G. P.

F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, and A. Berk, “The MODTRAN 2/3 report and LOWTRAN 7 MODEL,” (Ontar Corporation, 1996).

Arnon, S.

Berk, A.

F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, and A. Berk, “The MODTRAN 2/3 report and LOWTRAN 7 MODEL,” (Ontar Corporation, 1996).

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Brunson, K. M.

A. M. Scott, K. D. Ridley, D. C. Jones, M. E. McNie, G. W. Smith, K. M. Brunson, A. Lewin, and K. L. Lewis, “Retro-reflective communications over a kilometre range using a MEMS-based optical tag,” in Unmanned/Unattended Sensors and Sensor Networks, Vol. 249 (SPIE, 2009), pp. 74801–74810.

Burris, H. R.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, and C. I. Moore, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44, 056001 (2005).
[CrossRef]

Chang, S. L.

Chen, G.

H. P. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Y. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
[CrossRef]

Chetwynd, J. H.

F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, and A. Berk, “The MODTRAN 2/3 report and LOWTRAN 7 MODEL,” (Ontar Corporation, 1996).

Ding, H. P.

H. P. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Y. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
[CrossRef]

Ferraro, M.

W. S. Rabinovich, R. Mahon, P. G. Goetz, L. Swingen, J. Murphy, and M. Ferraro, “45 Mbps cat’s eye modulating retro-reflector 243 link over 7 Km,” in Free-Space Laser Communications VI, Vol. 244 (SPIE, 2007).

Ferraro, M. S.

P. G. Goetz, W. S. Rabinovich, R. Mahon, J. L. Murphy, and M. S. Ferraro, “Modulating retro-reflector lasercom systems at the Naval Research Laboratory,” in The 2010 Military Communications Conference (IEEE, 2010), pp. 1601–1606.

Gil, Y.

Gilbreath, G. C.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, and C. I. Moore, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44, 056001 (2005).
[CrossRef]

G. C. Gilbreath and W. S. Rabinovich, Research in Free Space Optical Data Transfer at the U.S. Naval Research Laboratory (SPIE, 2004).

Goetz, P. G.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, and C. I. Moore, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44, 056001 (2005).
[CrossRef]

P. G. Goetz, W. S. Rabinovich, R. Mahon, J. L. Murphy, and M. S. Ferraro, “Modulating retro-reflector lasercom systems at the Naval Research Laboratory,” in The 2010 Military Communications Conference (IEEE, 2010), pp. 1601–1606.

W. S. Rabinovich, R. Mahon, P. G. Goetz, L. Swingen, J. Murphy, and M. Ferraro, “45 Mbps cat’s eye modulating retro-reflector 243 link over 7 Km,” in Free-Space Laser Communications VI, Vol. 244 (SPIE, 2007).

Hällstig, E.

L. Sjöqvist, E. Hällstig, J. Öhgren, and L. Allard, “Retrocommunication—final report” (Swedish Defence Research Agency, 2004).

Hård, S.

L. Sjöqvist, S. Hård, S. Junique, B. Noharet, and P. Rudquist, “Retroreflective free-space optical communication: system analysis and performance” (Swedish Defence Research Agency, 2001).

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Hulst, H. C. v. d.

H. C. v. d. Hulst, Light Scattering by Small Particles (Dover, 1981).

Jia, H. H.

Jones, D. C.

A. M. Scott, K. D. Ridley, D. C. Jones, M. E. McNie, G. W. Smith, K. M. Brunson, A. Lewin, and K. L. Lewis, “Retro-reflective communications over a kilometre range using a MEMS-based optical tag,” in Unmanned/Unattended Sensors and Sensor Networks, Vol. 249 (SPIE, 2009), pp. 74801–74810.

Junique, S.

L. Sjöqvist, S. Hård, S. Junique, B. Noharet, and P. Rudquist, “Retroreflective free-space optical communication: system analysis and performance” (Swedish Defence Research Agency, 2001).

Kalos, M. H.

M. H. Kalos and P. A. Whitlock, Monte Carlo Methods(Wiley-VCH, 2008).

Kneizys, F. X.

F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, and A. Berk, “The MODTRAN 2/3 report and LOWTRAN 7 MODEL,” (Ontar Corporation, 1996).

Lewin, A.

A. M. Scott, K. D. Ridley, D. C. Jones, M. E. McNie, G. W. Smith, K. M. Brunson, A. Lewin, and K. L. Lewis, “Retro-reflective communications over a kilometre range using a MEMS-based optical tag,” in Unmanned/Unattended Sensors and Sensor Networks, Vol. 249 (SPIE, 2009), pp. 74801–74810.

Lewis, K. L.

A. M. Scott, K. D. Ridley, D. C. Jones, M. E. McNie, G. W. Smith, K. M. Brunson, A. Lewin, and K. L. Lewis, “Retro-reflective communications over a kilometre range using a MEMS-based optical tag,” in Unmanned/Unattended Sensors and Sensor Networks, Vol. 249 (SPIE, 2009), pp. 74801–74810.

Mahon, R.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, and C. I. Moore, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44, 056001 (2005).
[CrossRef]

W. S. Rabinovich, R. Mahon, P. G. Goetz, L. Swingen, J. Murphy, and M. Ferraro, “45 Mbps cat’s eye modulating retro-reflector 243 link over 7 Km,” in Free-Space Laser Communications VI, Vol. 244 (SPIE, 2007).

P. G. Goetz, W. S. Rabinovich, R. Mahon, J. L. Murphy, and M. S. Ferraro, “Modulating retro-reflector lasercom systems at the Naval Research Laboratory,” in The 2010 Military Communications Conference (IEEE, 2010), pp. 1601–1606.

Majumdar, A. K.

H. P. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Y. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
[CrossRef]

McNie, M. E.

A. M. Scott, K. D. Ridley, D. C. Jones, M. E. McNie, G. W. Smith, K. M. Brunson, A. Lewin, and K. L. Lewis, “Retro-reflective communications over a kilometre range using a MEMS-based optical tag,” in Unmanned/Unattended Sensors and Sensor Networks, Vol. 249 (SPIE, 2009), pp. 74801–74810.

Moore, C. I.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, and C. I. Moore, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44, 056001 (2005).
[CrossRef]

Murphy, J.

W. S. Rabinovich, R. Mahon, P. G. Goetz, L. Swingen, J. Murphy, and M. Ferraro, “45 Mbps cat’s eye modulating retro-reflector 243 link over 7 Km,” in Free-Space Laser Communications VI, Vol. 244 (SPIE, 2007).

Murphy, J. L.

P. G. Goetz, W. S. Rabinovich, R. Mahon, J. L. Murphy, and M. S. Ferraro, “Modulating retro-reflector lasercom systems at the Naval Research Laboratory,” in The 2010 Military Communications Conference (IEEE, 2010), pp. 1601–1606.

Noharet, B.

L. Sjöqvist, S. Hård, S. Junique, B. Noharet, and P. Rudquist, “Retroreflective free-space optical communication: system analysis and performance” (Swedish Defence Research Agency, 2001).

Öhgren, J.

L. Sjöqvist, E. Hällstig, J. Öhgren, and L. Allard, “Retrocommunication—final report” (Swedish Defence Research Agency, 2004).

Rabinovich, W. S.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, and C. I. Moore, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44, 056001 (2005).
[CrossRef]

W. S. Rabinovich, R. Mahon, P. G. Goetz, L. Swingen, J. Murphy, and M. Ferraro, “45 Mbps cat’s eye modulating retro-reflector 243 link over 7 Km,” in Free-Space Laser Communications VI, Vol. 244 (SPIE, 2007).

G. C. Gilbreath and W. S. Rabinovich, Research in Free Space Optical Data Transfer at the U.S. Naval Research Laboratory (SPIE, 2004).

P. G. Goetz, W. S. Rabinovich, R. Mahon, J. L. Murphy, and M. S. Ferraro, “Modulating retro-reflector lasercom systems at the Naval Research Laboratory,” in The 2010 Military Communications Conference (IEEE, 2010), pp. 1601–1606.

Ridley, K. D.

A. M. Scott, K. D. Ridley, D. C. Jones, M. E. McNie, G. W. Smith, K. M. Brunson, A. Lewin, and K. L. Lewis, “Retro-reflective communications over a kilometre range using a MEMS-based optical tag,” in Unmanned/Unattended Sensors and Sensor Networks, Vol. 249 (SPIE, 2009), pp. 74801–74810.

Rotter, N.

Rudquist, P.

L. Sjöqvist, S. Hård, S. Junique, B. Noharet, and P. Rudquist, “Retroreflective free-space optical communication: system analysis and performance” (Swedish Defence Research Agency, 2001).

Sadler, B. M.

H. P. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Y. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
[CrossRef]

Scott, A. M.

A. M. Scott, K. D. Ridley, D. C. Jones, M. E. McNie, G. W. Smith, K. M. Brunson, A. Lewin, and K. L. Lewis, “Retro-reflective communications over a kilometre range using a MEMS-based optical tag,” in Unmanned/Unattended Sensors and Sensor Networks, Vol. 249 (SPIE, 2009), pp. 74801–74810.

Shettle, E. P.

F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, and A. Berk, “The MODTRAN 2/3 report and LOWTRAN 7 MODEL,” (Ontar Corporation, 1996).

Sjöqvist, L.

L. Sjöqvist, E. Hällstig, J. Öhgren, and L. Allard, “Retrocommunication—final report” (Swedish Defence Research Agency, 2004).

L. Sjöqvist, S. Hård, S. Junique, B. Noharet, and P. Rudquist, “Retroreflective free-space optical communication: system analysis and performance” (Swedish Defence Research Agency, 2001).

Smith, G. W.

A. M. Scott, K. D. Ridley, D. C. Jones, M. E. McNie, G. W. Smith, K. M. Brunson, A. Lewin, and K. L. Lewis, “Retro-reflective communications over a kilometre range using a MEMS-based optical tag,” in Unmanned/Unattended Sensors and Sensor Networks, Vol. 249 (SPIE, 2009), pp. 74801–74810.

Swingen, L.

W. S. Rabinovich, R. Mahon, P. G. Goetz, L. Swingen, J. Murphy, and M. Ferraro, “45 Mbps cat’s eye modulating retro-reflector 243 link over 7 Km,” in Free-Space Laser Communications VI, Vol. 244 (SPIE, 2007).

Whitlock, P. A.

M. H. Kalos and P. A. Whitlock, Monte Carlo Methods(Wiley-VCH, 2008).

Xu, Z. Y.

H. P. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Y. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
[CrossRef]

Yang, J. C.

Yang, J. K.

Yin, H. W.

Appl. Opt.

IEEE J. Sel. Areas Commun.

H. P. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Y. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Eng.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, and C. I. Moore, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44, 056001 (2005).
[CrossRef]

Other

W. S. Rabinovich, R. Mahon, P. G. Goetz, L. Swingen, J. Murphy, and M. Ferraro, “45 Mbps cat’s eye modulating retro-reflector 243 link over 7 Km,” in Free-Space Laser Communications VI, Vol. 244 (SPIE, 2007).

A. M. Scott, K. D. Ridley, D. C. Jones, M. E. McNie, G. W. Smith, K. M. Brunson, A. Lewin, and K. L. Lewis, “Retro-reflective communications over a kilometre range using a MEMS-based optical tag,” in Unmanned/Unattended Sensors and Sensor Networks, Vol. 249 (SPIE, 2009), pp. 74801–74810.

P. G. Goetz, W. S. Rabinovich, R. Mahon, J. L. Murphy, and M. S. Ferraro, “Modulating retro-reflector lasercom systems at the Naval Research Laboratory,” in The 2010 Military Communications Conference (IEEE, 2010), pp. 1601–1606.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

H. C. v. d. Hulst, Light Scattering by Small Particles (Dover, 1981).

M. H. Kalos and P. A. Whitlock, Monte Carlo Methods(Wiley-VCH, 2008).

F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, and A. Berk, “The MODTRAN 2/3 report and LOWTRAN 7 MODEL,” (Ontar Corporation, 1996).

L. Sjöqvist, S. Hård, S. Junique, B. Noharet, and P. Rudquist, “Retroreflective free-space optical communication: system analysis and performance” (Swedish Defence Research Agency, 2001).

L. Sjöqvist, E. Hällstig, J. Öhgren, and L. Allard, “Retrocommunication—final report” (Swedish Defence Research Agency, 2004).

G. C. Gilbreath and W. S. Rabinovich, Research in Free Space Optical Data Transfer at the U.S. Naval Research Laboratory (SPIE, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

RFSO communication link.

Fig. 2.
Fig. 2.

Atmospheric coefficients versus the meteorological range.

Fig. 3.
Fig. 3.

Retroreflective and scattering powers versus the communication range.

Fig. 4.
Fig. 4.

Retroreflective and scattering powers versus the meteorological range.

Fig. 5.
Fig. 5.

Retroreflective and scattering powers versus the range between the transmitter and the receiver.

Fig. 6.
Fig. 6.

Retroreflective and scattering powers versus the field of view of the receiver.

Fig. 7.
Fig. 7.

Retroreflective and scattering powers versus the beam divergence of the transmitter.

Fig. 8.
Fig. 8.

Retroreflective and scattering powers versus the area of the retromodulator.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

{ke=keair+keaerks=ksair+ksaerka=kaair+kaaer.
Pr=Ptηtexp(keL)AretrocosϕL2Ωtηretroexp(keL)ArL2Ωretroηr=Ptηtηretroηrcosϕexp(2keL)AretroArL4ΩtΩretro.
P(θs)=1ks[ksairPair(θs)+ksaerPaer(θs)].

Metrics