Abstract

High-resolution retinal imaging requires dilating the pupil, and therefore exposing more aberrations that blur the image. We developed an image processing technique that takes advantage of the natural movement of the eye to average out some of the high-order aberrations and to oversample the retina. This method was implemented on a long sequence of retinal images of subjects with normal vision. We were able to resolve the structures of the size of single cells in the living human retina. The improvement of resolution is independent of the acquisition method, as long as the image is not warped during scanning. Consequently, even better results can be expected by implementing this technique on higher-resolution images.

© 2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Supernormal vision and high-resolution retinal imaging through adaptive optics

Junzhong Liang, David R. Williams, and Donald T. Miller
J. Opt. Soc. Am. A 14(11) 2884-2892 (1997)

Improving high resolution retinal image quality using speckle illumination HiLo imaging

Xiaolin Zhou, Phillip Bedggood, and Andrew Metha
Biomed. Opt. Express 5(8) 2563-2579 (2014)

Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging

Robert J. Zawadzki, Steven M. Jones, Scot S. Olivier, Mingtao Zhao, Bradley A. Bower, Joseph A. Izatt, Stacey Choi, Sophie Laut, and John S. Werner
Opt. Express 13(21) 8532-8546 (2005)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription