Abstract

The slowly varying envelope approximation is applied to the radiation problems of the Helmholtz equation with a planar single-layer and dipolar sources. The analyses of such problems provide procedures to recover solutions of the Helmholtz equation based on the evaluation of solutions of the parabolic wave equation at a given plane. Furthermore, the conditions that must be fulfilled to apply each procedure are also discussed. The relations to previous work are given as well.

© 2011 Optical Society of America

Full Article  |  PDF Article
Related Articles
Higher-order corrections to the electric field vector of a Gaussian beam

Hyo-Chang Kim and Yeon H. Lee
J. Opt. Soc. Am. A 16(9) 2232-2238 (1999)

Corrections to the paraxial approximation of an arbitrary free-propagation beam

Qing Cao and Ximing Deng
J. Opt. Soc. Am. A 15(5) 1144-1148 (1998)

Maximum far-field divergence angle of a plane source

Xiaodong Zeng and Changhong Liang
Appl. Opt. 35(16) 3068-3071 (1996)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (43)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription