Abstract

A computational tool, based on the source-model technique (SMT), for analysis of electromagnetic wave scattering by surface grooves and slits is presented. The idea is to use a superposition of the solution of the unperturbed problem and local corrections in the groove/slit region (the grooves and slits are treated as perturbations). In this manner, the solution is obtained in a much faster way than solving the original problem. The proposed solution is applied to problems of grooves and slits in otherwise planar or periodic surfaces. Grooves and slits of various shapes, both smooth ones as well as ones with edges, empty or filled with dielectric material, are considered. The obtained results are verified against previously published data.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Alavikia and O. M. Ramahi, “Finite-element solution of the problem of scattering from cavities in metallic screens using the surface integral equation as a boundary constraint,” J. Opt. Soc. Am. A 26, 1915–1925 (2009).
    [CrossRef]
  2. O. T. Janssen, H. P. Urbach, and G. W. ’t Hooft, “On the phase of plasmons excited by slits in a metal film,” Opt. Express 14, 11823–11832 (2006).
    [CrossRef] [PubMed]
  3. Y. Xie, A. Zakharian, J. Moloney, and M. Mansuripur, “Transmission of light through slit apertures in metallic films,” Opt. Express 12, 61066121 (2004).
    [CrossRef] [PubMed]
  4. D. A. Thomas and H. P. Hughes, “Enhanced optical transmission through a subwavelength 1D aperture,” Solid State Commun. 129, 519–524 (2004).
    [CrossRef]
  5. L. Yu, D. Lin, Y. Chen, Y. Chang, K. Huang, J. Liaw, J. Yeh, J. Liu, C. Yeh, and C. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 41405(2005).
    [CrossRef]
  6. S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies,” J. Opt. A Pure Appl. Opt. 7, S159–S164 (2005).
    [CrossRef]
  7. Y. Shifman and Y. Leviatan, “Scattering by a groove in a conducting plane-a PO-MoM hybrid formulation and wavelet analysis,” IEEE Trans. Antennas Propag. 49, 1807–1811 (2001).
    [CrossRef]
  8. Y. Tretiakov and G. W. Pan, “Coifman wavelets in electromagnetic wave scattering by a groove in conducting plane,” Prog. Electromagn. Res. PIER. 45, 1–20 (2004).
    [CrossRef]
  9. J. Bravo-Abad, L. Martín-Moreno, and F. García-Vidal, “Transmission properties of a single metallic slit: from the subwavelength regime to the geometrical-optics limit,” Phys. Rev. E 69 (2004).
    [CrossRef]
  10. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001).
    [CrossRef] [PubMed]
  11. S. H. Kang, H. J. Eom, and T. J. Park, “TM scattering from a slit in a thick conducting screen: revisited,” IEEE Trans. Microwave Theory Tech. 41, 895–899 (1993).
    [CrossRef]
  12. F. García-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A Pure Appl. Opt. 7, S97–S101 (2005).
    [CrossRef]
  13. Y. Liu, H. Shi, C. Wang, C. Du, and X. Luo, “Multiple directional beaming effect of metallic subwavelength slit surrounded by periodically corrugated grooves,” Opt. Express 16, 4487–4493(2008).
    [CrossRef] [PubMed]
  14. L. Martín-Moreno, F. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
    [CrossRef] [PubMed]
  15. M. A. Basha, S. K. Chaudhuri, S. Safavi-Naeini, and H. J. Eom, “Rigorous formulation for electromagnetic plane-wave scattering from a general-shaped groove in a perfectly conducting plane: reply to comment,” J. Opt. Soc. Am. A 25, 1167–1168(2008).
    [CrossRef]
  16. Y. Leviatan and A. Boag, “Generalized formulations for electromagnetic scattering from perfectly conducting and homogeneous material bodies-theory and numerical solution,” IEEE Trans. Antennas Propag. 36, 1722–1734 (1988).
    [CrossRef]
  17. C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech, 1990).
  18. D. I. Kaklamani and H. T. Anastassiu, “Aspects of the method of auxiliary sources (MAS) in computational electromagnetics,” IEEE Antennas Propag. Mag. 44, 48–64 (2002).
    [CrossRef]
  19. O. M. Bucci, G. D’Elia, and M. Santojanni, “Non-redundant implementation of method of auxiliary sources for smooth 2D geometries,” Electron. Lett. 41, 1203–1205 (2005).
    [CrossRef]
  20. G. Tayeb and S. Enoch, “Combined fictitious-sources-scattering-matrix method,” J. Opt. Soc. Am. A 21, 1417–1423(2004).
    [CrossRef]
  21. D. Maystre, M. Saillard, and G. Tayeb, “Special methods of wave diffraction,” in Scattering: Scattering and Inverse Scattering in Pure and Applied Science, E.R.Pike and P.C.Sabatier, eds. (Academic, 2001), Chap. 1.5.6.
  22. G. Fairweather and A. Karageorghis, “The method of fundamental solutions for elliptic boundary value problems,” Adv. Comput. Math. 9, 69–95 (1998).
    [CrossRef]
  23. Y. Leviatan, A. Boag, and A. Boag, “Analysis of TE scattering from dielectric cylinders using a multifilament magnetic current model,” IEEE Trans. Antennas Propag. 36, 1026–1031 (1988).
    [CrossRef]
  24. A. Boag and Y. Leviatan, “Analysis of two-dimensional electromagnetic scattering from nonplanar periodic surfaces using a strip current model,” IEEE Trans. Antennas Propag. 37, 1437–1446 (1989).
    [CrossRef]
  25. S. Eisler and Y. Leviatan, “Analysis of electromagnetic scattering from metallic and penetrable cylinders with edges using a multifilament current model,” IEE Proc. H: Microwaves, Antennas Propag. 136, 431–438 (1989).
    [CrossRef]
  26. E. Erez and Y. Leviatan, “Current-model analysis of electromagnetic scattering from objects containing a variety of length-scales,” J. Opt. Soc. Am. A 11, 1500–1504 (1994).
    [CrossRef]
  27. Y. Leviatan, Z. Baharav, and E. Heyman, “Analysis of electromagnetic scattering using arrays of fictitious sources,” IEEE Trans. Antennas Propag. 43, 1091–1098 (1995).
    [CrossRef]
  28. A. Ludwig and Y. Leviatan, “Analysis of band-gap characteristics of two-dimensional periodic structures using the source-model technique,” J. Opt. Soc. Am. A 20, 1553–1562(2003).
    [CrossRef]
  29. A. Ludwig and Y. Leviatan, “Analysis of arbitrary defects in photonic crystals by use of the source-model technique,” J. Opt. Soc. Am. A 21, 1334–1343 (2004).
    [CrossRef]
  30. A. Ludwig and Y. Leviatan, “Time-domain analysis of band-gap characteristics of two-dimensional periodic structures by use of a source-model technique,” J. Opt. Soc. Am. A 25, 437–451(2008).
    [CrossRef]
  31. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972–1974 (2001).
    [CrossRef]
  32. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
    [CrossRef] [PubMed]
  33. J. Jin and J. L. Volakis, “TM scattering by an inhomogeneously filled aperture in a thick conducting plane,” IEE Proc. H: Microwaves, Antennas Propag. 137, 153–159 (1990).
    [CrossRef]

2009 (1)

2008 (3)

2006 (1)

2005 (4)

L. Yu, D. Lin, Y. Chen, Y. Chang, K. Huang, J. Liaw, J. Yeh, J. Liu, C. Yeh, and C. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 41405(2005).
[CrossRef]

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies,” J. Opt. A Pure Appl. Opt. 7, S159–S164 (2005).
[CrossRef]

F. García-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A Pure Appl. Opt. 7, S97–S101 (2005).
[CrossRef]

O. M. Bucci, G. D’Elia, and M. Santojanni, “Non-redundant implementation of method of auxiliary sources for smooth 2D geometries,” Electron. Lett. 41, 1203–1205 (2005).
[CrossRef]

2004 (6)

D. A. Thomas and H. P. Hughes, “Enhanced optical transmission through a subwavelength 1D aperture,” Solid State Commun. 129, 519–524 (2004).
[CrossRef]

Y. Tretiakov and G. W. Pan, “Coifman wavelets in electromagnetic wave scattering by a groove in conducting plane,” Prog. Electromagn. Res. PIER. 45, 1–20 (2004).
[CrossRef]

J. Bravo-Abad, L. Martín-Moreno, and F. García-Vidal, “Transmission properties of a single metallic slit: from the subwavelength regime to the geometrical-optics limit,” Phys. Rev. E 69 (2004).
[CrossRef]

A. Ludwig and Y. Leviatan, “Analysis of arbitrary defects in photonic crystals by use of the source-model technique,” J. Opt. Soc. Am. A 21, 1334–1343 (2004).
[CrossRef]

G. Tayeb and S. Enoch, “Combined fictitious-sources-scattering-matrix method,” J. Opt. Soc. Am. A 21, 1417–1423(2004).
[CrossRef]

Y. Xie, A. Zakharian, J. Moloney, and M. Mansuripur, “Transmission of light through slit apertures in metallic films,” Opt. Express 12, 61066121 (2004).
[CrossRef] [PubMed]

2003 (2)

A. Ludwig and Y. Leviatan, “Analysis of band-gap characteristics of two-dimensional periodic structures using the source-model technique,” J. Opt. Soc. Am. A 20, 1553–1562(2003).
[CrossRef]

L. Martín-Moreno, F. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

2002 (2)

D. I. Kaklamani and H. T. Anastassiu, “Aspects of the method of auxiliary sources (MAS) in computational electromagnetics,” IEEE Antennas Propag. Mag. 44, 48–64 (2002).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

2001 (3)

Y. Shifman and Y. Leviatan, “Scattering by a groove in a conducting plane-a PO-MoM hybrid formulation and wavelet analysis,” IEEE Trans. Antennas Propag. 49, 1807–1811 (2001).
[CrossRef]

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001).
[CrossRef] [PubMed]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972–1974 (2001).
[CrossRef]

1998 (1)

G. Fairweather and A. Karageorghis, “The method of fundamental solutions for elliptic boundary value problems,” Adv. Comput. Math. 9, 69–95 (1998).
[CrossRef]

1995 (1)

Y. Leviatan, Z. Baharav, and E. Heyman, “Analysis of electromagnetic scattering using arrays of fictitious sources,” IEEE Trans. Antennas Propag. 43, 1091–1098 (1995).
[CrossRef]

1994 (1)

1993 (1)

S. H. Kang, H. J. Eom, and T. J. Park, “TM scattering from a slit in a thick conducting screen: revisited,” IEEE Trans. Microwave Theory Tech. 41, 895–899 (1993).
[CrossRef]

1990 (1)

J. Jin and J. L. Volakis, “TM scattering by an inhomogeneously filled aperture in a thick conducting plane,” IEE Proc. H: Microwaves, Antennas Propag. 137, 153–159 (1990).
[CrossRef]

1989 (2)

A. Boag and Y. Leviatan, “Analysis of two-dimensional electromagnetic scattering from nonplanar periodic surfaces using a strip current model,” IEEE Trans. Antennas Propag. 37, 1437–1446 (1989).
[CrossRef]

S. Eisler and Y. Leviatan, “Analysis of electromagnetic scattering from metallic and penetrable cylinders with edges using a multifilament current model,” IEE Proc. H: Microwaves, Antennas Propag. 136, 431–438 (1989).
[CrossRef]

1988 (2)

Y. Leviatan, A. Boag, and A. Boag, “Analysis of TE scattering from dielectric cylinders using a multifilament magnetic current model,” IEEE Trans. Antennas Propag. 36, 1026–1031 (1988).
[CrossRef]

Y. Leviatan and A. Boag, “Generalized formulations for electromagnetic scattering from perfectly conducting and homogeneous material bodies-theory and numerical solution,” IEEE Trans. Antennas Propag. 36, 1722–1734 (1988).
[CrossRef]

’t Hooft, G. W.

Akarca-Biyikli, S. S.

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies,” J. Opt. A Pure Appl. Opt. 7, S159–S164 (2005).
[CrossRef]

Alavikia, B.

Anastassiu, H. T.

D. I. Kaklamani and H. T. Anastassiu, “Aspects of the method of auxiliary sources (MAS) in computational electromagnetics,” IEEE Antennas Propag. Mag. 44, 48–64 (2002).
[CrossRef]

Baharav, Z.

Y. Leviatan, Z. Baharav, and E. Heyman, “Analysis of electromagnetic scattering using arrays of fictitious sources,” IEEE Trans. Antennas Propag. 43, 1091–1098 (1995).
[CrossRef]

Basha, M. A.

Boag, A.

A. Boag and Y. Leviatan, “Analysis of two-dimensional electromagnetic scattering from nonplanar periodic surfaces using a strip current model,” IEEE Trans. Antennas Propag. 37, 1437–1446 (1989).
[CrossRef]

Y. Leviatan and A. Boag, “Generalized formulations for electromagnetic scattering from perfectly conducting and homogeneous material bodies-theory and numerical solution,” IEEE Trans. Antennas Propag. 36, 1722–1734 (1988).
[CrossRef]

Y. Leviatan, A. Boag, and A. Boag, “Analysis of TE scattering from dielectric cylinders using a multifilament magnetic current model,” IEEE Trans. Antennas Propag. 36, 1026–1031 (1988).
[CrossRef]

Y. Leviatan, A. Boag, and A. Boag, “Analysis of TE scattering from dielectric cylinders using a multifilament magnetic current model,” IEEE Trans. Antennas Propag. 36, 1026–1031 (1988).
[CrossRef]

Bravo-Abad, J.

J. Bravo-Abad, L. Martín-Moreno, and F. García-Vidal, “Transmission properties of a single metallic slit: from the subwavelength regime to the geometrical-optics limit,” Phys. Rev. E 69 (2004).
[CrossRef]

Bucci, O. M.

O. M. Bucci, G. D’Elia, and M. Santojanni, “Non-redundant implementation of method of auxiliary sources for smooth 2D geometries,” Electron. Lett. 41, 1203–1205 (2005).
[CrossRef]

Bulu, I.

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies,” J. Opt. A Pure Appl. Opt. 7, S159–S164 (2005).
[CrossRef]

Chang, Y.

L. Yu, D. Lin, Y. Chen, Y. Chang, K. Huang, J. Liaw, J. Yeh, J. Liu, C. Yeh, and C. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 41405(2005).
[CrossRef]

Chaudhuri, S. K.

Chen, Y.

L. Yu, D. Lin, Y. Chen, Y. Chang, K. Huang, J. Liaw, J. Yeh, J. Liu, C. Yeh, and C. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 41405(2005).
[CrossRef]

D’Elia, G.

O. M. Bucci, G. D’Elia, and M. Santojanni, “Non-redundant implementation of method of auxiliary sources for smooth 2D geometries,” Electron. Lett. 41, 1203–1205 (2005).
[CrossRef]

Degiron, A.

L. Martín-Moreno, F. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Du, C.

Ebbesen, T. W.

L. Martín-Moreno, F. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972–1974 (2001).
[CrossRef]

Eisler, S.

S. Eisler and Y. Leviatan, “Analysis of electromagnetic scattering from metallic and penetrable cylinders with edges using a multifilament current model,” IEE Proc. H: Microwaves, Antennas Propag. 136, 431–438 (1989).
[CrossRef]

Enoch, S.

Eom, H. J.

Erez, E.

Fairweather, G.

G. Fairweather and A. Karageorghis, “The method of fundamental solutions for elliptic boundary value problems,” Adv. Comput. Math. 9, 69–95 (1998).
[CrossRef]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

García-Vidal, F.

F. García-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A Pure Appl. Opt. 7, S97–S101 (2005).
[CrossRef]

J. Bravo-Abad, L. Martín-Moreno, and F. García-Vidal, “Transmission properties of a single metallic slit: from the subwavelength regime to the geometrical-optics limit,” Phys. Rev. E 69 (2004).
[CrossRef]

L. Martín-Moreno, F. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

Hafner, C.

C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech, 1990).

Heyman, E.

Y. Leviatan, Z. Baharav, and E. Heyman, “Analysis of electromagnetic scattering using arrays of fictitious sources,” IEEE Trans. Antennas Propag. 43, 1091–1098 (1995).
[CrossRef]

Huang, K.

L. Yu, D. Lin, Y. Chen, Y. Chang, K. Huang, J. Liaw, J. Yeh, J. Liu, C. Yeh, and C. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 41405(2005).
[CrossRef]

Hughes, H. P.

D. A. Thomas and H. P. Hughes, “Enhanced optical transmission through a subwavelength 1D aperture,” Solid State Commun. 129, 519–524 (2004).
[CrossRef]

Janssen, O. T.

Jin, J.

J. Jin and J. L. Volakis, “TM scattering by an inhomogeneously filled aperture in a thick conducting plane,” IEE Proc. H: Microwaves, Antennas Propag. 137, 153–159 (1990).
[CrossRef]

Kaklamani, D. I.

D. I. Kaklamani and H. T. Anastassiu, “Aspects of the method of auxiliary sources (MAS) in computational electromagnetics,” IEEE Antennas Propag. Mag. 44, 48–64 (2002).
[CrossRef]

Kang, S. H.

S. H. Kang, H. J. Eom, and T. J. Park, “TM scattering from a slit in a thick conducting screen: revisited,” IEEE Trans. Microwave Theory Tech. 41, 895–899 (1993).
[CrossRef]

Karageorghis, A.

G. Fairweather and A. Karageorghis, “The method of fundamental solutions for elliptic boundary value problems,” Adv. Comput. Math. 9, 69–95 (1998).
[CrossRef]

Lee, C.

L. Yu, D. Lin, Y. Chen, Y. Chang, K. Huang, J. Liaw, J. Yeh, J. Liu, C. Yeh, and C. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 41405(2005).
[CrossRef]

Leviatan, Y.

A. Ludwig and Y. Leviatan, “Time-domain analysis of band-gap characteristics of two-dimensional periodic structures by use of a source-model technique,” J. Opt. Soc. Am. A 25, 437–451(2008).
[CrossRef]

A. Ludwig and Y. Leviatan, “Analysis of arbitrary defects in photonic crystals by use of the source-model technique,” J. Opt. Soc. Am. A 21, 1334–1343 (2004).
[CrossRef]

A. Ludwig and Y. Leviatan, “Analysis of band-gap characteristics of two-dimensional periodic structures using the source-model technique,” J. Opt. Soc. Am. A 20, 1553–1562(2003).
[CrossRef]

Y. Shifman and Y. Leviatan, “Scattering by a groove in a conducting plane-a PO-MoM hybrid formulation and wavelet analysis,” IEEE Trans. Antennas Propag. 49, 1807–1811 (2001).
[CrossRef]

Y. Leviatan, Z. Baharav, and E. Heyman, “Analysis of electromagnetic scattering using arrays of fictitious sources,” IEEE Trans. Antennas Propag. 43, 1091–1098 (1995).
[CrossRef]

E. Erez and Y. Leviatan, “Current-model analysis of electromagnetic scattering from objects containing a variety of length-scales,” J. Opt. Soc. Am. A 11, 1500–1504 (1994).
[CrossRef]

S. Eisler and Y. Leviatan, “Analysis of electromagnetic scattering from metallic and penetrable cylinders with edges using a multifilament current model,” IEE Proc. H: Microwaves, Antennas Propag. 136, 431–438 (1989).
[CrossRef]

A. Boag and Y. Leviatan, “Analysis of two-dimensional electromagnetic scattering from nonplanar periodic surfaces using a strip current model,” IEEE Trans. Antennas Propag. 37, 1437–1446 (1989).
[CrossRef]

Y. Leviatan, A. Boag, and A. Boag, “Analysis of TE scattering from dielectric cylinders using a multifilament magnetic current model,” IEEE Trans. Antennas Propag. 36, 1026–1031 (1988).
[CrossRef]

Y. Leviatan and A. Boag, “Generalized formulations for electromagnetic scattering from perfectly conducting and homogeneous material bodies-theory and numerical solution,” IEEE Trans. Antennas Propag. 36, 1722–1734 (1988).
[CrossRef]

Lezec, H. J.

L. Martín-Moreno, F. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972–1974 (2001).
[CrossRef]

Liaw, J.

L. Yu, D. Lin, Y. Chen, Y. Chang, K. Huang, J. Liaw, J. Yeh, J. Liu, C. Yeh, and C. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 41405(2005).
[CrossRef]

Lin, D.

L. Yu, D. Lin, Y. Chen, Y. Chang, K. Huang, J. Liaw, J. Yeh, J. Liu, C. Yeh, and C. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 41405(2005).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972–1974 (2001).
[CrossRef]

Liu, J.

L. Yu, D. Lin, Y. Chen, Y. Chang, K. Huang, J. Liaw, J. Yeh, J. Liu, C. Yeh, and C. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 41405(2005).
[CrossRef]

Liu, Y.

Ludwig, A.

Luo, X.

Mansuripur, M.

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Martín-Moreno, L.

F. García-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A Pure Appl. Opt. 7, S97–S101 (2005).
[CrossRef]

J. Bravo-Abad, L. Martín-Moreno, and F. García-Vidal, “Transmission properties of a single metallic slit: from the subwavelength regime to the geometrical-optics limit,” Phys. Rev. E 69 (2004).
[CrossRef]

L. Martín-Moreno, F. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

Maystre, D.

D. Maystre, M. Saillard, and G. Tayeb, “Special methods of wave diffraction,” in Scattering: Scattering and Inverse Scattering in Pure and Applied Science, E.R.Pike and P.C.Sabatier, eds. (Academic, 2001), Chap. 1.5.6.

Moloney, J.

Ozbay, E.

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies,” J. Opt. A Pure Appl. Opt. 7, S159–S164 (2005).
[CrossRef]

Pan, G. W.

Y. Tretiakov and G. W. Pan, “Coifman wavelets in electromagnetic wave scattering by a groove in conducting plane,” Prog. Electromagn. Res. PIER. 45, 1–20 (2004).
[CrossRef]

Park, T. J.

S. H. Kang, H. J. Eom, and T. J. Park, “TM scattering from a slit in a thick conducting screen: revisited,” IEEE Trans. Microwave Theory Tech. 41, 895–899 (1993).
[CrossRef]

Pellerin, K. M.

Pendry, J. B.

F. García-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A Pure Appl. Opt. 7, S97–S101 (2005).
[CrossRef]

Ramahi, O. M.

Safavi-Naeini, S.

Saillard, M.

D. Maystre, M. Saillard, and G. Tayeb, “Special methods of wave diffraction,” in Scattering: Scattering and Inverse Scattering in Pure and Applied Science, E.R.Pike and P.C.Sabatier, eds. (Academic, 2001), Chap. 1.5.6.

Santojanni, M.

O. M. Bucci, G. D’Elia, and M. Santojanni, “Non-redundant implementation of method of auxiliary sources for smooth 2D geometries,” Electron. Lett. 41, 1203–1205 (2005).
[CrossRef]

Shi, H.

Shifman, Y.

Y. Shifman and Y. Leviatan, “Scattering by a groove in a conducting plane-a PO-MoM hybrid formulation and wavelet analysis,” IEEE Trans. Antennas Propag. 49, 1807–1811 (2001).
[CrossRef]

Takakura, Y.

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001).
[CrossRef] [PubMed]

Tayeb, G.

G. Tayeb and S. Enoch, “Combined fictitious-sources-scattering-matrix method,” J. Opt. Soc. Am. A 21, 1417–1423(2004).
[CrossRef]

D. Maystre, M. Saillard, and G. Tayeb, “Special methods of wave diffraction,” in Scattering: Scattering and Inverse Scattering in Pure and Applied Science, E.R.Pike and P.C.Sabatier, eds. (Academic, 2001), Chap. 1.5.6.

Thio, T.

Thomas, D. A.

D. A. Thomas and H. P. Hughes, “Enhanced optical transmission through a subwavelength 1D aperture,” Solid State Commun. 129, 519–524 (2004).
[CrossRef]

Tretiakov, Y.

Y. Tretiakov and G. W. Pan, “Coifman wavelets in electromagnetic wave scattering by a groove in conducting plane,” Prog. Electromagn. Res. PIER. 45, 1–20 (2004).
[CrossRef]

Urbach, H. P.

Volakis, J. L.

J. Jin and J. L. Volakis, “TM scattering by an inhomogeneously filled aperture in a thick conducting plane,” IEE Proc. H: Microwaves, Antennas Propag. 137, 153–159 (1990).
[CrossRef]

Wang, C.

Xie, Y.

Yeh, C.

L. Yu, D. Lin, Y. Chen, Y. Chang, K. Huang, J. Liaw, J. Yeh, J. Liu, C. Yeh, and C. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 41405(2005).
[CrossRef]

Yeh, J.

L. Yu, D. Lin, Y. Chen, Y. Chang, K. Huang, J. Liaw, J. Yeh, J. Liu, C. Yeh, and C. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 41405(2005).
[CrossRef]

Yu, L.

L. Yu, D. Lin, Y. Chen, Y. Chang, K. Huang, J. Liaw, J. Yeh, J. Liu, C. Yeh, and C. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 41405(2005).
[CrossRef]

Zakharian, A.

Adv. Comput. Math. (1)

G. Fairweather and A. Karageorghis, “The method of fundamental solutions for elliptic boundary value problems,” Adv. Comput. Math. 9, 69–95 (1998).
[CrossRef]

Electron. Lett. (1)

O. M. Bucci, G. D’Elia, and M. Santojanni, “Non-redundant implementation of method of auxiliary sources for smooth 2D geometries,” Electron. Lett. 41, 1203–1205 (2005).
[CrossRef]

IEE Proc. H: Microwaves, Antennas Propag. (2)

S. Eisler and Y. Leviatan, “Analysis of electromagnetic scattering from metallic and penetrable cylinders with edges using a multifilament current model,” IEE Proc. H: Microwaves, Antennas Propag. 136, 431–438 (1989).
[CrossRef]

J. Jin and J. L. Volakis, “TM scattering by an inhomogeneously filled aperture in a thick conducting plane,” IEE Proc. H: Microwaves, Antennas Propag. 137, 153–159 (1990).
[CrossRef]

IEEE Antennas Propag. Mag. (1)

D. I. Kaklamani and H. T. Anastassiu, “Aspects of the method of auxiliary sources (MAS) in computational electromagnetics,” IEEE Antennas Propag. Mag. 44, 48–64 (2002).
[CrossRef]

IEEE Trans. Antennas Propag. (5)

Y. Leviatan and A. Boag, “Generalized formulations for electromagnetic scattering from perfectly conducting and homogeneous material bodies-theory and numerical solution,” IEEE Trans. Antennas Propag. 36, 1722–1734 (1988).
[CrossRef]

Y. Leviatan, A. Boag, and A. Boag, “Analysis of TE scattering from dielectric cylinders using a multifilament magnetic current model,” IEEE Trans. Antennas Propag. 36, 1026–1031 (1988).
[CrossRef]

A. Boag and Y. Leviatan, “Analysis of two-dimensional electromagnetic scattering from nonplanar periodic surfaces using a strip current model,” IEEE Trans. Antennas Propag. 37, 1437–1446 (1989).
[CrossRef]

Y. Shifman and Y. Leviatan, “Scattering by a groove in a conducting plane-a PO-MoM hybrid formulation and wavelet analysis,” IEEE Trans. Antennas Propag. 49, 1807–1811 (2001).
[CrossRef]

Y. Leviatan, Z. Baharav, and E. Heyman, “Analysis of electromagnetic scattering using arrays of fictitious sources,” IEEE Trans. Antennas Propag. 43, 1091–1098 (1995).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

S. H. Kang, H. J. Eom, and T. J. Park, “TM scattering from a slit in a thick conducting screen: revisited,” IEEE Trans. Microwave Theory Tech. 41, 895–899 (1993).
[CrossRef]

J. Opt. A Pure Appl. Opt. (2)

F. García-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A Pure Appl. Opt. 7, S97–S101 (2005).
[CrossRef]

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies,” J. Opt. A Pure Appl. Opt. 7, S159–S164 (2005).
[CrossRef]

J. Opt. Soc. Am. A (7)

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

L. Yu, D. Lin, Y. Chen, Y. Chang, K. Huang, J. Liaw, J. Yeh, J. Liu, C. Yeh, and C. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 41405(2005).
[CrossRef]

Phys. Rev. E (1)

J. Bravo-Abad, L. Martín-Moreno, and F. García-Vidal, “Transmission properties of a single metallic slit: from the subwavelength regime to the geometrical-optics limit,” Phys. Rev. E 69 (2004).
[CrossRef]

Phys. Rev. Lett. (2)

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001).
[CrossRef] [PubMed]

L. Martín-Moreno, F. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

Prog. Electromagn. Res. PIER. (1)

Y. Tretiakov and G. W. Pan, “Coifman wavelets in electromagnetic wave scattering by a groove in conducting plane,” Prog. Electromagn. Res. PIER. 45, 1–20 (2004).
[CrossRef]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Solid State Commun. (1)

D. A. Thomas and H. P. Hughes, “Enhanced optical transmission through a subwavelength 1D aperture,” Solid State Commun. 129, 519–524 (2004).
[CrossRef]

Other (2)

C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech, 1990).

D. Maystre, M. Saillard, and G. Tayeb, “Special methods of wave diffraction,” in Scattering: Scattering and Inverse Scattering in Pure and Applied Science, E.R.Pike and P.C.Sabatier, eds. (Academic, 2001), Chap. 1.5.6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Scheme of a two-dimensional scattering problem involving two dielectric regions. (a) Original problem. (b) Equivalence for region I, with the scattered filed being produced by fictitious filamentary sources located in region II. (c) Equivalence for region II, with the total field being produced by fictitious filamentary sources located in region I.

Fig. 2
Fig. 2

Scattering by a dielectric-filled rectangular groove in a planar perfectly conducting metal surface. (a) Geometry of the original (perturbed) problem. (b) Geometry of the auxiliary (unperturbed) problem of scattering by a planar perfectly conducting metal surface. (c) Sources producing the fields that simulate the perturbation to the fields in region I, caused by the dielectric-filled grooves and the corresponding MPs. (d) Sources producing the fields that simulate the total fields in region II, and the corresponding MPs. Here, A designates the interface between region I and the PEC, B designates the interface between region II and the PEC, and C designates the interface between regions I and region II.

Fig. 3
Fig. 3

Sources and MPs near an edge.

Fig. 4
Fig. 4

Transmission through a slit in a perfectly conducting corrugated metal screen. (a) Geometry of the original (perturbed) problem. (b) Geometry of the auxiliary (unperturbed) problem of scattering by a periodically corrugated perfectly conducting metal surface. (c) Sources producing the fields that simulate the fields in region I in the unperturbed case, and the corresponding MPs. (d) Sources producing the fields that simulate the perturbation to the fields in region I caused by the slit, and the corresponding MPs. (e) Sources producing the fields that simulate the actual fields in region II, and the corresponding MPs. Here, A designates the interface between region I and the PEC, B designates the interface between region II and the PEC, and C designates the interface between region I and region II.

Fig. 5
Fig. 5

Scattering by a dielectric-filled rectangular groove ( d = 0.25 λ , w = λ , ε r = 4 1 j ) in a planar perfectly conducting metal surface illuminated by a normally incident TE plane wave. (a) Layout view of the sources and MPs. (b) Plot of the boundary condition error on A and B. (c) Plot of the electric field continuity condition error on C. (d) Zoomed-in layout view of the sources and MPs. (e) Zoomed-in plot of the boundary condition error on A and B. (f) Plot of the magnetic field continuity condition error on C.

Fig. 6
Fig. 6

Error versus number of edge sources in the SMT solution of the scattering by a dielectric-filled rectangular groove ( d = 0.25 λ , w = λ , ε r = 4 1 j ) in a planar perfectly conducting metal surface illuminated by a by normally incident TE plane wave.

Fig. 7
Fig. 7

Magnitude of equivalent surface magnetic current (tangential electric field) in the groove aperture for the case of scattering by a dielectric-filled rectangular groove ( d = 0.25 λ , w = λ ) in a planar perfectly conducting metal surface illuminated by a normally incident TE plane wave and for the cases of ε r = 1 (empty groove) and ε r = 4 1 j . The SMT results are shown by curves and the results from Fig. 3 of [33] are depicted by circles.

Fig. 8
Fig. 8

Transmission through a narrow slit ( d = 0.4 λ , w = 0.1 λ ) in a two-sided sinusoidally corrugated perfectly conducting metal screen ( p = 0.8 λ , σ = 0.1 λ ) illuminated by a normally incident TM plane wave. (a) Layout view of the sources and MPs. (b) Plot of the boundary condition error on A and B. (c) Plot of the electric field continuity condition error on C. (d) Zoomed-in layout view of the sources and MPs. (e) Zoomed-in plot of the boundary condition error on A and B.(f) Plot of the magnetic field continuity condition error on C.

Fig. 9
Fig. 9

Slit in three different sinusoidally corrugated perfectly conducting metal screens. Cases considered are (a) one-sided corrugations, with the incident wave impinging on the planar side; (b) one-sided corrugations, with the incident wave impinging on the corrugated side; and (c) two-sided corrugations.

Fig. 10
Fig. 10

Transmission angular spectra versus wavelength for a narrow slit ( d = 0.4 λ , w = 0.1 λ ) in a sinusoidally corrugated ( p = 0.8 λ , σ = 0.1 λ ) perfectly conducting metal screen illuminated by a normally incident TM plane wave. (a) One-sided corrugations, with the incident wave impinging on the planar side. (b) One-sided corrugations, with the incident wave impinging from the corrugated side. (c) Two-sided corrugations.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E I = E inc + E I s + E I s , p ( S I p ) , H I = H inc + H I s + H I s , p ( S I p ) , E II = E II s , p ( S II p ) , H II = H II s , p ( S II p ) .
n ^ × ( E inc + E I s + E I s , p ( S I p ) ) = 0 on A , n ^ × E II s , p ( S II p ) = 0 on B , n ^ × ( E inc + E I s + E I s , p ( S I p ) ) = n ^ × E II s , p ( S II p ) on C , n ^ × ( H inc + H I s + H I s , p ( S I p ) ) = n ^ × H II s , p ( S II p ) on C .
Δ E bc | n ^ × ( E inc + E I s + E I s , p ( S I p ) ) | | E inc | on A , Δ E bc = | n ^ × E II s , p ( S II p ) | | E inc | on B , Δ E cc = | n ^ × ( E inc + E I s + E I s , p ( S I p ) E II s , p ( S II p ) ) | | 1 2 n ^ × ( E inc + E I s + E I s , p ( S I p ) + E II s , p ( S II p ) ) | on C , Δ H cc = | n ^ × ( H inc + H I s + H I s , p ( S I p ) - H II s , p ( S II p ) ) | | 1 2 n ^ × ( H inc + H I s + H I s , p ( S I p ) + H II s , p ( S II p ) ) | on C .
E I = E inc + E I s + E I s , p ( S I p ) , H I = H inc + H I s + H I s , p ( S I p ) , E II = E II s , p ( S II p ) , H II = H II s , p ( S II p ) .
n ^ × ( E inc + E I s + E I s , p ( S I p ) ) = 0 on A , n ^ × E II s , p ( S II p ) = 0 on B , n ^ × ( E inc + E I s + E I s , p ( S I p ) ) = n ^ × E II s , p ( S II p ) on C , n ^ × ( H inc + H I s + H I s , p ( S I p ) ) = n ^ × H II s , p ( S II p ) on C .
T = R | H z t H z inc | 2 ,
sin θ m t = m λ p ± k SP k 0 ,
0 = m λ p ± k SP k 0 ,

Metrics