Abstract

Optical scanning holography (OSH) enables us to capture the three-dimensional information of an object, and a post-processing step known as sectional image reconstruction allows us to view its two-dimensional cross-section. Previous methods often produce reconstructed images that have blurry edges. In this paper, we argue that the hologram’s two-dimensional Fourier transform maps into a semi-spherical surface in the three-dimensional frequency domain of the object, a relationship akin to the Fourier diffraction theorem used in diffraction tomography. Thus, the sectional image reconstruction task is an ill-posed inverse problem, and here we make use of the total variation regularization with a nonnegative constraint and solve it with a gradient projection algorithm. Both simulated and experimental holograms are used to verify that edge-preserving reconstruction is achieved, and the axial distance between sections is reduced compared with previous regularization methods.

© 2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Implementation of edge-preserving regularization for frequency-domain diffuse optical tomography

Liang-Yu Chen, Min-Chun Pan, and Min-Cheng Pan
Appl. Opt. 51(1) 43-54 (2012)

Solving inverse problems for optical scanning holography using an adaptively iterative shrinkage-thresholding algorithm

Fengjun Zhao, Xiaochao Qu, Xin Zhang, Ting-Chung Poon, Taegeun Kim, You Seok Kim, and Jimin Liang
Opt. Express 20(6) 5942-5954 (2012)

Exponential filtering of singular values improves photoacoustic image reconstruction

Manish Bhatt, Sreedevi Gutta, and Phaneendra K. Yalavarthy
J. Opt. Soc. Am. A 33(9) 1785-1792 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription