Abstract

On the principle of phase-shift mask, the metal segment of a sub-wavelength Ag grating on a quartz substrate is used as a phase-shifting layer in this photolithography method. When the radiation modes of the surface plasmon polaritons (SPPs) excited on the Ag surface have optical phase opposite to that of the waves emitting from the slits, destructive interference occurs and the diffraction limit can be broken through. The SPPs excited on the surface between Ag and water can be transformed into propagation modes in the photoresist. Therefore, nanolithography can be achieved in the quasi-far field with this method.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. V. Klein, Optics (Wiley, New York, 1970).
  2. J. P. Silverman, “Challenges and progress in x-ray lithography,” J. Vac. Sci. Technol. B 16, 3137-3141 (1998).
    [CrossRef]
  3. R. H. Long, J. J. Chen, J. H. Lim, J. B. Wiley, and W. L. Zhou, “Precise voltage contrast image assisted positioning for in situ electron beam nanolithography for nanodevice fabrication with suspended nanowire structures,” Nanotechnology 20, 285306 (2009).
    [CrossRef] [PubMed]
  4. M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560-3562 (1999).
    [CrossRef]
  5. O. J. Martin, N. B. Piller, H. Schmid, H. Biebuyck, and B. Michel, “Energy flow in light-coupling masks for lensless optical lithography,” Opt. Express 3, 280-285 (1998).
    [CrossRef] [PubMed]
  6. X. Luo and T. Ishihara, “Subwavelength photolithography based on surface-plasmon polariton resonance,” Opt. Express 12, 3055-3065 (2004).
    [CrossRef] [PubMed]
  7. X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780-4782 (2004).
    [CrossRef]
  8. Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957-961 (2005).
    [CrossRef] [PubMed]
  9. X. Guo, J. Du, and Y. Guo, “Large-area surface-plasmon polariton interference lithography,” Opt. Lett. 31, 2613-2615 (2006).
    [CrossRef] [PubMed]
  10. K. V. Sreekanth, V. M. Murukeshan, and J. K. Chua, “A planar layer configuration for surface plasmon interference nanoscale lithography,” Appl. Phys. Lett. 93, 093103 (2008).
    [CrossRef]
  11. J. Q. Wang, H. M. Liang, S. Shi, and J. L. Du, “Theoretical analysis of interference nanolithography of surface plasmon polaritons without a match layer,” Chin. Phys. Lett. 26, 084208 (2009).
    [CrossRef]
  12. M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices 29, 1828-1836 (1982).
    [CrossRef]
  13. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), Chap. 2, pp. 4-39.
  14. Y. S. Jung, J. Wuenschell, T. Schmidt, and H. K. Kim, “Near- to far-field imaging of free-space and surface-bound waves emanating from a metal nanoslit,” Appl. Phys. Lett. 92, 023104 (2008).
    [CrossRef]
  15. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Approximate model for surface-plasmon generation at slit apertures,” J. Opt. Soc. Am. A 23, 1608-1615 (2006).
    [CrossRef]
  16. Stéphane Durant, Z. W. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B 24, 2383-2392 (2006).
    [CrossRef]
  17. H. F. Talbot, “Facts relating to optical science. No. IV,” Philos. Mag. 9, 401 (1836).
  18. Y. Q. Lu, C. H. Zhou, S. Q. Wang, and B. Wang, “Polarization-dependent Talbot effect,” J. Opt. Soc. Am. A 23, 2154-2160 (2006).
    [CrossRef]
  19. M. R. Dennis, N. I. Zheludev, F. Javier, and Garcia de Abajo, “The plasmon Talbot effect,” Opt. Express 15, 9692-9700 (2007).
    [CrossRef] [PubMed]
  20. S. Y. Teng, Y. G. Tan, and C. F. Cheng, “Quasi-Talbot effect of the high-density grating in near field,” J. Opt. Soc. Am. A 25, 2945-2951 (2008).
    [CrossRef]
  21. P. Maddaloni, M. Paturzo, P. Ferraro, P. Malara, P. De Natale, M. Gioffré, G. Coppola, and M. Iodice, “Mid-infrared tunable two-dimensional Talbot array illuminator,” Appl. Phys. Lett. 94, 121105 (2009).
    [CrossRef]
  22. B. J. McMorran and A. D. Cronin, “An electron Talbot interferometer,” New J. Phys. 11, 033021 (2009).
    [CrossRef]

2009

R. H. Long, J. J. Chen, J. H. Lim, J. B. Wiley, and W. L. Zhou, “Precise voltage contrast image assisted positioning for in situ electron beam nanolithography for nanodevice fabrication with suspended nanowire structures,” Nanotechnology 20, 285306 (2009).
[CrossRef] [PubMed]

J. Q. Wang, H. M. Liang, S. Shi, and J. L. Du, “Theoretical analysis of interference nanolithography of surface plasmon polaritons without a match layer,” Chin. Phys. Lett. 26, 084208 (2009).
[CrossRef]

P. Maddaloni, M. Paturzo, P. Ferraro, P. Malara, P. De Natale, M. Gioffré, G. Coppola, and M. Iodice, “Mid-infrared tunable two-dimensional Talbot array illuminator,” Appl. Phys. Lett. 94, 121105 (2009).
[CrossRef]

B. J. McMorran and A. D. Cronin, “An electron Talbot interferometer,” New J. Phys. 11, 033021 (2009).
[CrossRef]

2008

S. Y. Teng, Y. G. Tan, and C. F. Cheng, “Quasi-Talbot effect of the high-density grating in near field,” J. Opt. Soc. Am. A 25, 2945-2951 (2008).
[CrossRef]

K. V. Sreekanth, V. M. Murukeshan, and J. K. Chua, “A planar layer configuration for surface plasmon interference nanoscale lithography,” Appl. Phys. Lett. 93, 093103 (2008).
[CrossRef]

Y. S. Jung, J. Wuenschell, T. Schmidt, and H. K. Kim, “Near- to far-field imaging of free-space and surface-bound waves emanating from a metal nanoslit,” Appl. Phys. Lett. 92, 023104 (2008).
[CrossRef]

2007

2006

2005

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957-961 (2005).
[CrossRef] [PubMed]

2004

X. Luo and T. Ishihara, “Subwavelength photolithography based on surface-plasmon polariton resonance,” Opt. Express 12, 3055-3065 (2004).
[CrossRef] [PubMed]

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780-4782 (2004).
[CrossRef]

1999

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560-3562 (1999).
[CrossRef]

1998

1988

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), Chap. 2, pp. 4-39.

1982

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices 29, 1828-1836 (1982).
[CrossRef]

1970

M. V. Klein, Optics (Wiley, New York, 1970).

1836

H. F. Talbot, “Facts relating to optical science. No. IV,” Philos. Mag. 9, 401 (1836).

Alkaisi, M. M.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560-3562 (1999).
[CrossRef]

Biebuyck, H.

Blaikie, R. J.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560-3562 (1999).
[CrossRef]

Chen, J. J.

R. H. Long, J. J. Chen, J. H. Lim, J. B. Wiley, and W. L. Zhou, “Precise voltage contrast image assisted positioning for in situ electron beam nanolithography for nanodevice fabrication with suspended nanowire structures,” Nanotechnology 20, 285306 (2009).
[CrossRef] [PubMed]

Cheng, C. F.

Cheung, R.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560-3562 (1999).
[CrossRef]

Chua, J. K.

K. V. Sreekanth, V. M. Murukeshan, and J. K. Chua, “A planar layer configuration for surface plasmon interference nanoscale lithography,” Appl. Phys. Lett. 93, 093103 (2008).
[CrossRef]

Coppola, G.

P. Maddaloni, M. Paturzo, P. Ferraro, P. Malara, P. De Natale, M. Gioffré, G. Coppola, and M. Iodice, “Mid-infrared tunable two-dimensional Talbot array illuminator,” Appl. Phys. Lett. 94, 121105 (2009).
[CrossRef]

Cronin, A. D.

B. J. McMorran and A. D. Cronin, “An electron Talbot interferometer,” New J. Phys. 11, 033021 (2009).
[CrossRef]

Cumming, D. R. S.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560-3562 (1999).
[CrossRef]

de Abajo, Garcia

De Natale, P.

P. Maddaloni, M. Paturzo, P. Ferraro, P. Malara, P. De Natale, M. Gioffré, G. Coppola, and M. Iodice, “Mid-infrared tunable two-dimensional Talbot array illuminator,” Appl. Phys. Lett. 94, 121105 (2009).
[CrossRef]

Dennis, M. R.

Du, J.

Du, J. L.

J. Q. Wang, H. M. Liang, S. Shi, and J. L. Du, “Theoretical analysis of interference nanolithography of surface plasmon polaritons without a match layer,” Chin. Phys. Lett. 26, 084208 (2009).
[CrossRef]

Durant, Stéphane

Stéphane Durant, Z. W. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B 24, 2383-2392 (2006).
[CrossRef]

Ferraro, P.

P. Maddaloni, M. Paturzo, P. Ferraro, P. Malara, P. De Natale, M. Gioffré, G. Coppola, and M. Iodice, “Mid-infrared tunable two-dimensional Talbot array illuminator,” Appl. Phys. Lett. 94, 121105 (2009).
[CrossRef]

Gioffré, M.

P. Maddaloni, M. Paturzo, P. Ferraro, P. Malara, P. De Natale, M. Gioffré, G. Coppola, and M. Iodice, “Mid-infrared tunable two-dimensional Talbot array illuminator,” Appl. Phys. Lett. 94, 121105 (2009).
[CrossRef]

Guo, X.

Guo, Y.

Hugonin, J. P.

Iodice, M.

P. Maddaloni, M. Paturzo, P. Ferraro, P. Malara, P. De Natale, M. Gioffré, G. Coppola, and M. Iodice, “Mid-infrared tunable two-dimensional Talbot array illuminator,” Appl. Phys. Lett. 94, 121105 (2009).
[CrossRef]

Ishihara, T.

X. Luo and T. Ishihara, “Subwavelength photolithography based on surface-plasmon polariton resonance,” Opt. Express 12, 3055-3065 (2004).
[CrossRef] [PubMed]

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780-4782 (2004).
[CrossRef]

Javier, F.

Jung, Y. S.

Y. S. Jung, J. Wuenschell, T. Schmidt, and H. K. Kim, “Near- to far-field imaging of free-space and surface-bound waves emanating from a metal nanoslit,” Appl. Phys. Lett. 92, 023104 (2008).
[CrossRef]

Kim, H. K.

Y. S. Jung, J. Wuenschell, T. Schmidt, and H. K. Kim, “Near- to far-field imaging of free-space and surface-bound waves emanating from a metal nanoslit,” Appl. Phys. Lett. 92, 023104 (2008).
[CrossRef]

Klein, M. V.

M. V. Klein, Optics (Wiley, New York, 1970).

Lalanne, P.

Levenson, M. D.

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices 29, 1828-1836 (1982).
[CrossRef]

Liang, H. M.

J. Q. Wang, H. M. Liang, S. Shi, and J. L. Du, “Theoretical analysis of interference nanolithography of surface plasmon polaritons without a match layer,” Chin. Phys. Lett. 26, 084208 (2009).
[CrossRef]

Lim, J. H.

R. H. Long, J. J. Chen, J. H. Lim, J. B. Wiley, and W. L. Zhou, “Precise voltage contrast image assisted positioning for in situ electron beam nanolithography for nanodevice fabrication with suspended nanowire structures,” Nanotechnology 20, 285306 (2009).
[CrossRef] [PubMed]

Liu, Z. W.

Stéphane Durant, Z. W. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B 24, 2383-2392 (2006).
[CrossRef]

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957-961 (2005).
[CrossRef] [PubMed]

Long, R. H.

R. H. Long, J. J. Chen, J. H. Lim, J. B. Wiley, and W. L. Zhou, “Precise voltage contrast image assisted positioning for in situ electron beam nanolithography for nanodevice fabrication with suspended nanowire structures,” Nanotechnology 20, 285306 (2009).
[CrossRef] [PubMed]

Lu, Y. Q.

Luo, X.

X. Luo and T. Ishihara, “Subwavelength photolithography based on surface-plasmon polariton resonance,” Opt. Express 12, 3055-3065 (2004).
[CrossRef] [PubMed]

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780-4782 (2004).
[CrossRef]

Maddaloni, P.

P. Maddaloni, M. Paturzo, P. Ferraro, P. Malara, P. De Natale, M. Gioffré, G. Coppola, and M. Iodice, “Mid-infrared tunable two-dimensional Talbot array illuminator,” Appl. Phys. Lett. 94, 121105 (2009).
[CrossRef]

Malara, P.

P. Maddaloni, M. Paturzo, P. Ferraro, P. Malara, P. De Natale, M. Gioffré, G. Coppola, and M. Iodice, “Mid-infrared tunable two-dimensional Talbot array illuminator,” Appl. Phys. Lett. 94, 121105 (2009).
[CrossRef]

Martin, O. J.

McMorran, B. J.

B. J. McMorran and A. D. Cronin, “An electron Talbot interferometer,” New J. Phys. 11, 033021 (2009).
[CrossRef]

McNab, S. J.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560-3562 (1999).
[CrossRef]

Michel, B.

Murukeshan, V. M.

K. V. Sreekanth, V. M. Murukeshan, and J. K. Chua, “A planar layer configuration for surface plasmon interference nanoscale lithography,” Appl. Phys. Lett. 93, 093103 (2008).
[CrossRef]

Paturzo, M.

P. Maddaloni, M. Paturzo, P. Ferraro, P. Malara, P. De Natale, M. Gioffré, G. Coppola, and M. Iodice, “Mid-infrared tunable two-dimensional Talbot array illuminator,” Appl. Phys. Lett. 94, 121105 (2009).
[CrossRef]

Piller, N. B.

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), Chap. 2, pp. 4-39.

Rodier, J. C.

Schmid, H.

Schmidt, T.

Y. S. Jung, J. Wuenschell, T. Schmidt, and H. K. Kim, “Near- to far-field imaging of free-space and surface-bound waves emanating from a metal nanoslit,” Appl. Phys. Lett. 92, 023104 (2008).
[CrossRef]

Shi, S.

J. Q. Wang, H. M. Liang, S. Shi, and J. L. Du, “Theoretical analysis of interference nanolithography of surface plasmon polaritons without a match layer,” Chin. Phys. Lett. 26, 084208 (2009).
[CrossRef]

Silverman, J. P.

J. P. Silverman, “Challenges and progress in x-ray lithography,” J. Vac. Sci. Technol. B 16, 3137-3141 (1998).
[CrossRef]

Simpson, R. A.

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices 29, 1828-1836 (1982).
[CrossRef]

Sreekanth, K. V.

K. V. Sreekanth, V. M. Murukeshan, and J. K. Chua, “A planar layer configuration for surface plasmon interference nanoscale lithography,” Appl. Phys. Lett. 93, 093103 (2008).
[CrossRef]

Steele, J. M.

Stéphane Durant, Z. W. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B 24, 2383-2392 (2006).
[CrossRef]

Talbot, H. F.

H. F. Talbot, “Facts relating to optical science. No. IV,” Philos. Mag. 9, 401 (1836).

Tan, Y. G.

Teng, S. Y.

Viswanathan, N. S.

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices 29, 1828-1836 (1982).
[CrossRef]

Wang, B.

Wang, J. Q.

J. Q. Wang, H. M. Liang, S. Shi, and J. L. Du, “Theoretical analysis of interference nanolithography of surface plasmon polaritons without a match layer,” Chin. Phys. Lett. 26, 084208 (2009).
[CrossRef]

Wang, S. Q.

Wei, Q. H.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957-961 (2005).
[CrossRef] [PubMed]

Wiley, J. B.

R. H. Long, J. J. Chen, J. H. Lim, J. B. Wiley, and W. L. Zhou, “Precise voltage contrast image assisted positioning for in situ electron beam nanolithography for nanodevice fabrication with suspended nanowire structures,” Nanotechnology 20, 285306 (2009).
[CrossRef] [PubMed]

Wuenschell, J.

Y. S. Jung, J. Wuenschell, T. Schmidt, and H. K. Kim, “Near- to far-field imaging of free-space and surface-bound waves emanating from a metal nanoslit,” Appl. Phys. Lett. 92, 023104 (2008).
[CrossRef]

Zhang, X.

Stéphane Durant, Z. W. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B 24, 2383-2392 (2006).
[CrossRef]

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957-961 (2005).
[CrossRef] [PubMed]

Zheludev, N. I.

Zhou, C. H.

Zhou, W. L.

R. H. Long, J. J. Chen, J. H. Lim, J. B. Wiley, and W. L. Zhou, “Precise voltage contrast image assisted positioning for in situ electron beam nanolithography for nanodevice fabrication with suspended nanowire structures,” Nanotechnology 20, 285306 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560-3562 (1999).
[CrossRef]

K. V. Sreekanth, V. M. Murukeshan, and J. K. Chua, “A planar layer configuration for surface plasmon interference nanoscale lithography,” Appl. Phys. Lett. 93, 093103 (2008).
[CrossRef]

Y. S. Jung, J. Wuenschell, T. Schmidt, and H. K. Kim, “Near- to far-field imaging of free-space and surface-bound waves emanating from a metal nanoslit,” Appl. Phys. Lett. 92, 023104 (2008).
[CrossRef]

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780-4782 (2004).
[CrossRef]

P. Maddaloni, M. Paturzo, P. Ferraro, P. Malara, P. De Natale, M. Gioffré, G. Coppola, and M. Iodice, “Mid-infrared tunable two-dimensional Talbot array illuminator,” Appl. Phys. Lett. 94, 121105 (2009).
[CrossRef]

Chin. Phys. Lett.

J. Q. Wang, H. M. Liang, S. Shi, and J. L. Du, “Theoretical analysis of interference nanolithography of surface plasmon polaritons without a match layer,” Chin. Phys. Lett. 26, 084208 (2009).
[CrossRef]

IEEE Trans. Electron Devices

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices 29, 1828-1836 (1982).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Stéphane Durant, Z. W. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B 24, 2383-2392 (2006).
[CrossRef]

J. Vac. Sci. Technol. B

J. P. Silverman, “Challenges and progress in x-ray lithography,” J. Vac. Sci. Technol. B 16, 3137-3141 (1998).
[CrossRef]

Nano Lett.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957-961 (2005).
[CrossRef] [PubMed]

Nanotechnology

R. H. Long, J. J. Chen, J. H. Lim, J. B. Wiley, and W. L. Zhou, “Precise voltage contrast image assisted positioning for in situ electron beam nanolithography for nanodevice fabrication with suspended nanowire structures,” Nanotechnology 20, 285306 (2009).
[CrossRef] [PubMed]

New J. Phys.

B. J. McMorran and A. D. Cronin, “An electron Talbot interferometer,” New J. Phys. 11, 033021 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Philos. Mag.

H. F. Talbot, “Facts relating to optical science. No. IV,” Philos. Mag. 9, 401 (1836).

Other

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), Chap. 2, pp. 4-39.

M. V. Klein, Optics (Wiley, New York, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Comparison of the diffraction optics of a traditional transmission mask with the phase-shifting mask assisted in SPPs. (a) Constructive interference in the traditional transmission mask results in resolution less than λ 0 2 . (b) Destructive interference in the phase-shifting mask assisted in SPPs beyond the diffraction limit.

Fig. 2
Fig. 2

Schematic structure used for the nanolithography technique.

Fig. 3
Fig. 3

(a) Distribution of the real part of the magnetic field Re(Hy) in the water layer and the photoresist, when light is transmitting from the sub-wavelength Ag grating mask in Fig. 2. Red (top of color scale in print) corresponds to the positive value and blue (bottom of color scale in print) represents the negative value. (b) Variation of Re(Hy) with x, at z = 0.9 μ m .

Fig. 4
Fig. 4

(a) 2D map of the interference pattern in the water layer and the photoresist with the magnetic field intensity color code, when light is traveling through the Ag grating mask in Fig. 2. Red (top of color scale in print) denotes the peak of a fringe and blue (bottom of color scale in print) stands for the valley. (b) Amplitude of magnetic field |Hy| as a function of x, at z = 0.9 μ m .

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

H x = H z = E y = 0 ,
E 2 = E x 2 + E z 2 = ( μ ϵ H y ) 2 ,
k in-plane = k sp .
k in-plane = k 0 n sin θ ± m 2 π P , m = 1 , 2 , 3       ,    
k sp = k 0 ϵ d ϵ m ( ϵ d + ϵ m ) ,
( k sp ) 2 + ( k z ) 2 = ( n k 0 ) 2 ,
H y = | H y | exp [ i ( k sp x + k z z ω t ) ] ,
H y = | H y | exp ( | k z | z ) exp [ i ( k sp x ω t ) ] .

Metrics