Abstract

We present an experimental demonstration of an optical pattern recognition scheme based on spatial homodyne detection. Our scheme is adaptive, all-optical, utilizes a single-element photo-detector, and provides a single parameter readout to quantify the efficacy of pattern recognition, thereby allowing very fast pattern recognition speeds. The spatial homodyne detector was applied to the identification of one- and two-dimensional phase profiles.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kodate, R. Inaba, E. Watanabe, and T. Kamiya, “Facial recognition by a compact parallel optical correlator,” Meas. Sci. Technol. 13, 1756–1766 (2002).
    [CrossRef]
  2. E. Watanabe and K. Kodate, “Optical correlator for face recognition using collinear holographic system,” Jpn. J. Appl. Phys., Part 1 45, 6759–6761 (2006).
    [CrossRef]
  3. T. Ewing, S. Serati, and K. Bauchert, “Optical correlator using four kilohertz analog spatial light modulators,” Proc. SPIE 5437, 123–133 (2004).
    [CrossRef]
  4. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  5. M. T. L. Hsu, V. Delaubert, P. K. Lam, and W. P. Bowen, “Optimal optical measurement of small displacements,” J. Opt. B: Quantum Semiclassical Opt. 6, 495–501 (2004).
    [CrossRef]
  6. P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron. 24, 1685–1692 (2009).
    [CrossRef]
  7. M. Booth, T. Wilson, H.-B. Sun, T. Ota, and S. Kawata, “Methods for the characterization of deformable membrane mirrors,” Appl. Opt. 44, 5131–5139 (2005).
    [CrossRef] [PubMed]
  8. O. Albert, L. Sherman, G. Mourou, T. B. Norris, and G. Vdovin, “Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy,” Opt. Lett. 25, 52–54 (2000).
    [CrossRef]
  9. T. Muroi, N. Kinoshita, N. Ishii, K. Kamijo, and N. Shimidzu, “Optical compensation of distorted data image caused by interference fringe distortion in holographic data storage,” Appl. Opt. 48, 3681–3690 (2009).
    [CrossRef] [PubMed]
  10. J.-F. Morizur, L. Nicholls, P. Jian, S. Armstrong, N. Treps, B. Hage, M. T. L. Hsu, W. P. Bowen, J. Janousek, and H. A. Bachor, “Programmable unitary spatial modes manipulation,” preprint at http://arxiv.org/abs/1005.3366v1 (2010).

2010 (1)

J.-F. Morizur, L. Nicholls, P. Jian, S. Armstrong, N. Treps, B. Hage, M. T. L. Hsu, W. P. Bowen, J. Janousek, and H. A. Bachor, “Programmable unitary spatial modes manipulation,” preprint at http://arxiv.org/abs/1005.3366v1 (2010).

2009 (2)

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron. 24, 1685–1692 (2009).
[CrossRef]

T. Muroi, N. Kinoshita, N. Ishii, K. Kamijo, and N. Shimidzu, “Optical compensation of distorted data image caused by interference fringe distortion in holographic data storage,” Appl. Opt. 48, 3681–3690 (2009).
[CrossRef] [PubMed]

2006 (1)

E. Watanabe and K. Kodate, “Optical correlator for face recognition using collinear holographic system,” Jpn. J. Appl. Phys., Part 1 45, 6759–6761 (2006).
[CrossRef]

2005 (1)

2004 (2)

T. Ewing, S. Serati, and K. Bauchert, “Optical correlator using four kilohertz analog spatial light modulators,” Proc. SPIE 5437, 123–133 (2004).
[CrossRef]

M. T. L. Hsu, V. Delaubert, P. K. Lam, and W. P. Bowen, “Optimal optical measurement of small displacements,” J. Opt. B: Quantum Semiclassical Opt. 6, 495–501 (2004).
[CrossRef]

2002 (1)

K. Kodate, R. Inaba, E. Watanabe, and T. Kamiya, “Facial recognition by a compact parallel optical correlator,” Meas. Sci. Technol. 13, 1756–1766 (2002).
[CrossRef]

2000 (1)

1996 (1)

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Adil, A.

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron. 24, 1685–1692 (2009).
[CrossRef]

Albert, O.

Armstrong, S.

J.-F. Morizur, L. Nicholls, P. Jian, S. Armstrong, N. Treps, B. Hage, M. T. L. Hsu, W. P. Bowen, J. Janousek, and H. A. Bachor, “Programmable unitary spatial modes manipulation,” preprint at http://arxiv.org/abs/1005.3366v1 (2010).

Aroonnual, A.

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron. 24, 1685–1692 (2009).
[CrossRef]

Bachor, H. A.

J.-F. Morizur, L. Nicholls, P. Jian, S. Armstrong, N. Treps, B. Hage, M. T. L. Hsu, W. P. Bowen, J. Janousek, and H. A. Bachor, “Programmable unitary spatial modes manipulation,” preprint at http://arxiv.org/abs/1005.3366v1 (2010).

Bae, E.

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron. 24, 1685–1692 (2009).
[CrossRef]

Banada, P. P.

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron. 24, 1685–1692 (2009).
[CrossRef]

Bauchert, K.

T. Ewing, S. Serati, and K. Bauchert, “Optical correlator using four kilohertz analog spatial light modulators,” Proc. SPIE 5437, 123–133 (2004).
[CrossRef]

Bayraktar, B.

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron. 24, 1685–1692 (2009).
[CrossRef]

Bhunia, A. K.

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron. 24, 1685–1692 (2009).
[CrossRef]

Booth, M.

Bowen, W. P.

J.-F. Morizur, L. Nicholls, P. Jian, S. Armstrong, N. Treps, B. Hage, M. T. L. Hsu, W. P. Bowen, J. Janousek, and H. A. Bachor, “Programmable unitary spatial modes manipulation,” preprint at http://arxiv.org/abs/1005.3366v1 (2010).

M. T. L. Hsu, V. Delaubert, P. K. Lam, and W. P. Bowen, “Optimal optical measurement of small displacements,” J. Opt. B: Quantum Semiclassical Opt. 6, 495–501 (2004).
[CrossRef]

Delaubert, V.

M. T. L. Hsu, V. Delaubert, P. K. Lam, and W. P. Bowen, “Optimal optical measurement of small displacements,” J. Opt. B: Quantum Semiclassical Opt. 6, 495–501 (2004).
[CrossRef]

Ewing, T.

T. Ewing, S. Serati, and K. Bauchert, “Optical correlator using four kilohertz analog spatial light modulators,” Proc. SPIE 5437, 123–133 (2004).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Hage, B.

J.-F. Morizur, L. Nicholls, P. Jian, S. Armstrong, N. Treps, B. Hage, M. T. L. Hsu, W. P. Bowen, J. Janousek, and H. A. Bachor, “Programmable unitary spatial modes manipulation,” preprint at http://arxiv.org/abs/1005.3366v1 (2010).

Hirleman, E. D.

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron. 24, 1685–1692 (2009).
[CrossRef]

Hsu, M. T. L.

J.-F. Morizur, L. Nicholls, P. Jian, S. Armstrong, N. Treps, B. Hage, M. T. L. Hsu, W. P. Bowen, J. Janousek, and H. A. Bachor, “Programmable unitary spatial modes manipulation,” preprint at http://arxiv.org/abs/1005.3366v1 (2010).

M. T. L. Hsu, V. Delaubert, P. K. Lam, and W. P. Bowen, “Optimal optical measurement of small displacements,” J. Opt. B: Quantum Semiclassical Opt. 6, 495–501 (2004).
[CrossRef]

Huff, K.

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron. 24, 1685–1692 (2009).
[CrossRef]

Inaba, R.

K. Kodate, R. Inaba, E. Watanabe, and T. Kamiya, “Facial recognition by a compact parallel optical correlator,” Meas. Sci. Technol. 13, 1756–1766 (2002).
[CrossRef]

Ishii, N.

Janousek, J.

J.-F. Morizur, L. Nicholls, P. Jian, S. Armstrong, N. Treps, B. Hage, M. T. L. Hsu, W. P. Bowen, J. Janousek, and H. A. Bachor, “Programmable unitary spatial modes manipulation,” preprint at http://arxiv.org/abs/1005.3366v1 (2010).

Jian, P.

J.-F. Morizur, L. Nicholls, P. Jian, S. Armstrong, N. Treps, B. Hage, M. T. L. Hsu, W. P. Bowen, J. Janousek, and H. A. Bachor, “Programmable unitary spatial modes manipulation,” preprint at http://arxiv.org/abs/1005.3366v1 (2010).

Kamijo, K.

Kamiya, T.

K. Kodate, R. Inaba, E. Watanabe, and T. Kamiya, “Facial recognition by a compact parallel optical correlator,” Meas. Sci. Technol. 13, 1756–1766 (2002).
[CrossRef]

Kawata, S.

Kinoshita, N.

Kodate, K.

E. Watanabe and K. Kodate, “Optical correlator for face recognition using collinear holographic system,” Jpn. J. Appl. Phys., Part 1 45, 6759–6761 (2006).
[CrossRef]

K. Kodate, R. Inaba, E. Watanabe, and T. Kamiya, “Facial recognition by a compact parallel optical correlator,” Meas. Sci. Technol. 13, 1756–1766 (2002).
[CrossRef]

Lam, P. K.

M. T. L. Hsu, V. Delaubert, P. K. Lam, and W. P. Bowen, “Optimal optical measurement of small displacements,” J. Opt. B: Quantum Semiclassical Opt. 6, 495–501 (2004).
[CrossRef]

Morizur, J.-F.

J.-F. Morizur, L. Nicholls, P. Jian, S. Armstrong, N. Treps, B. Hage, M. T. L. Hsu, W. P. Bowen, J. Janousek, and H. A. Bachor, “Programmable unitary spatial modes manipulation,” preprint at http://arxiv.org/abs/1005.3366v1 (2010).

Mourou, G.

Muroi, T.

Nicholls, L.

J.-F. Morizur, L. Nicholls, P. Jian, S. Armstrong, N. Treps, B. Hage, M. T. L. Hsu, W. P. Bowen, J. Janousek, and H. A. Bachor, “Programmable unitary spatial modes manipulation,” preprint at http://arxiv.org/abs/1005.3366v1 (2010).

Norris, T. B.

Ota, T.

Rajwa, B.

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron. 24, 1685–1692 (2009).
[CrossRef]

Robinson, J. P.

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron. 24, 1685–1692 (2009).
[CrossRef]

Serati, S.

T. Ewing, S. Serati, and K. Bauchert, “Optical correlator using four kilohertz analog spatial light modulators,” Proc. SPIE 5437, 123–133 (2004).
[CrossRef]

Sherman, L.

Shimidzu, N.

Sun, H.-B.

Treps, N.

J.-F. Morizur, L. Nicholls, P. Jian, S. Armstrong, N. Treps, B. Hage, M. T. L. Hsu, W. P. Bowen, J. Janousek, and H. A. Bachor, “Programmable unitary spatial modes manipulation,” preprint at http://arxiv.org/abs/1005.3366v1 (2010).

Vdovin, G.

Watanabe, E.

E. Watanabe and K. Kodate, “Optical correlator for face recognition using collinear holographic system,” Jpn. J. Appl. Phys., Part 1 45, 6759–6761 (2006).
[CrossRef]

K. Kodate, R. Inaba, E. Watanabe, and T. Kamiya, “Facial recognition by a compact parallel optical correlator,” Meas. Sci. Technol. 13, 1756–1766 (2002).
[CrossRef]

Wilson, T.

Appl. Opt. (2)

Biosens. Bioelectron. (1)

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron. 24, 1685–1692 (2009).
[CrossRef]

J. Opt. B: Quantum Semiclassical Opt. (1)

M. T. L. Hsu, V. Delaubert, P. K. Lam, and W. P. Bowen, “Optimal optical measurement of small displacements,” J. Opt. B: Quantum Semiclassical Opt. 6, 495–501 (2004).
[CrossRef]

Jpn. J. Appl. Phys., Part 1 (1)

E. Watanabe and K. Kodate, “Optical correlator for face recognition using collinear holographic system,” Jpn. J. Appl. Phys., Part 1 45, 6759–6761 (2006).
[CrossRef]

Meas. Sci. Technol. (1)

K. Kodate, R. Inaba, E. Watanabe, and T. Kamiya, “Facial recognition by a compact parallel optical correlator,” Meas. Sci. Technol. 13, 1756–1766 (2002).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

T. Ewing, S. Serati, and K. Bauchert, “Optical correlator using four kilohertz analog spatial light modulators,” Proc. SPIE 5437, 123–133 (2004).
[CrossRef]

Other (2)

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

J.-F. Morizur, L. Nicholls, P. Jian, S. Armstrong, N. Treps, B. Hage, M. T. L. Hsu, W. P. Bowen, J. Janousek, and H. A. Bachor, “Programmable unitary spatial modes manipulation,” preprint at http://arxiv.org/abs/1005.3366v1 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(A) Experimental schematic for optical pattern recognition via adaptive spatial homodyne detection with λ 2 , half-wave-plate; λ 4 , quarter-wave-plate; PBS, polarizing beam-splitter; DM, deformable mirror; PP, phase plate; BS, 50 50 beam-splitter; and DAQ, data acquisition. (B) Typical optimization result from the genetic algorithm (GA) operation. Curves (i), (ii), and (iii) measured visibility corresponding to the best, average, and worst individuals, respectively. The GA consisted of a population of 60 individuals with each individual possessing 140 genes.

Fig. 2
Fig. 2

(A) Spatial homodyne interference visibility as the phase plate is scanned across the signal field to generate a moving signal field. (B) Profile of the phase plate. (C) R eference field mode-shape measured in the far field. The reference field was chosen to recognize the circular section of the pattern as indicated in (B). The corresponding signal field far-field mode-shapes as the phase plate is scanned across the input field are shown in (D), (E), and (F). The green arrows indicate the visibility and signal field mode-shapes corresponding to the different regions of the phase plate. The two dashed lines in (A) show the maximum visibility ± 10 σ .

Fig. 3
Fig. 3

(A), (B), (C) Spatial homodyne interference visibility as the phase plate is scanned across the signal field, with the respective reference field in the far field given by (H), (I), (J). (D) The profile of the phase plate. The corresponding signal field mode-shapes as the phase plate is scanned across the signal field are shown in (E), (F), (G). The green arrows indicate the visibility and signal field mode-shapes corresponding to different regions of the phase plate. The two dashed lines in each of (A), (B), (C) are the maximum visibility ± 10 σ .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

i ± = C D | E sig ( x , y ) ± E ref ( x , y ) e i φ | 2 d x d y ,
Δ i = i + i = 2 C cos φ D | E sig * ( x , y ) E ref ( x , y ) | d x d y .
V = P max P min P max + P min ,

Metrics