Abstract

The boundary-value problem for a Dyakonov–Tamm wave guided by a twist defect in a structurally chiral material and propagating along the bisector of the twist defect was formulated. The resulting dispersion equation was numerically solved. Detailed analysis showed that either two or three different Dyakonov–Tamm waves can propagate, depending on the value of the twist angle. These waves have different phase speeds and degrees of localization to the twist–defect interface.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Zenneck, “Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Lieterfläche und ihre Beziehung zur drahtlosen Telegraphie,” Ann. Phys. 23, 846-866 (1907).
    [CrossRef]
  2. A. Sommerfeld, “Über die Ausbreitlung der Wellen in der drahtlosen Telegraphie,” Ann. Phys. 28, 665-736 (1909).
    [CrossRef]
  3. H. M. Barlow, Radio Surface Waves (Clarendon Press, 1962).
  4. A.D.Boardman, ed. Electromagnetic Surface Modes (Wiley, 1982).
  5. M. I. D'yakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP 67, 714-716 (1988).
  6. L. Torner, J. P. Torres, and D. Mihalache, “New type of guided waves in birefringent media,” IEEE Photon. Technol. Lett. 5, 201-203 (1993).
    [CrossRef]
  7. L. Torner, J. P. Torres, C. Ojeda, and D. Mihalache, “Hybrid waves guided by ultrathin films,” J. Lightwave Technol. 13, 2027-2033 (1995).
    [CrossRef]
  8. D. B. Walker, E. N. Glytsis, and T. K. Gaylord, “Surface mode at isotropic-uniaxial andisotropic-biaxial interfaces,” J. Opt. Soc. Am. A 15, 248-260 (1998).
    [CrossRef]
  9. A. N. Darinskii, “Dispersionless polaritons on a twist boundary in optically uniaxial crystals,” Crystallogr. Rep. 46, 842-844 (2001).
    [CrossRef]
  10. D. Artigas and L. Torner, “Dyakonov surface waves in photonic metamaterials,” Phys. Rev. Lett. 94, 013901 (2005).
    [CrossRef] [PubMed]
  11. L. C. Crasovan, D. Artigas, D. Mihalache, and L. Torner, “Optical Dyakonov surface wave at magnetic interfaces,” Opt. Lett. 30, 3075-3077 (2005).
    [CrossRef] [PubMed]
  12. J. A. Polo, Jr., S. Nelatury, and A. Lakhtakia, “Surface electromagnetic wave at tilted uniaxial bicrystalline interface,” Electromagnetics 26, 629-642 (2006).
    [CrossRef]
  13. J. A. Polo, Jr., S. R. Nelatury, and A. Lakhtakia, “Propagation of surface waves at the planar interface of a columnar thin film and an isotropic substrate,” J. Nanophotonics 1, 013501 (2007).
    [CrossRef]
  14. J. A. Polo, Jr., S. R. Nelatury, and A. Lakhtakia, “Surface waves at a biaxial bicrystalline interface,” J. Opt. Soc. Am. A 24, 2974-2979 (2007).
    [CrossRef]
  15. A. M. Furs and L. M. Barkovsky, “Surface polaritons at the planar interface of twinned gyrotropic dielectric media,” Electromagnetics 28, 146-161 (2008).
    [CrossRef]
  16. S. R. Nelatury, J. A. Polo Jr., and A. Lakhtakia, “Electrical control of surface-wave propagation at the planar interface of a linear electro-optic material and an isotropic dielectric material,” Electromagnetics 28, 162-174 (2008).
    [CrossRef]
  17. O. Takayama, L. C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: A review,” Electromagnetics 28, 126-145 (2008).
    [CrossRef]
  18. S. R. Nelatury, J. A. Polo, Jr., and A. Lakhtakia, “On widening the angular existence domain for Dyakonov surface waves using the Pockels effect,” Microwave Opt. Technol. Lett. 50, 2360-2362 (2008).
    [CrossRef]
  19. O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett. 102, 043903 (2009).
    [CrossRef] [PubMed]
  20. A. Lakhtakia and J. A. Polo, Jr., “Dyakonov-Tamm wave at the planar interface of a chiral sculptured thin film and an isotropic dielectric material,” J. Eur. Opt. Soc. Rapid Publ. 2, 07021 (2007).
    [CrossRef]
  21. I. Tamm, “Über eine mögliche Art der Elektronenbindung an Kristalloberflächen,” Z. Phys. 76, 849-850 (1932).
    [CrossRef]
  22. C. Kittel, Introduction to Solid State Physics (Wiley Eastern, New Delhi, India, 1974).
  23. H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agulló-Rueda, L. L. Chang, and L. Esaki, “Observation of 'Tamm states' in superlattices,” Phys. Rev. Lett. 64, 2555-2558 (1990).
    [CrossRef] [PubMed]
  24. J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A, Pure Appl. Opt. 8, 630-638 (2006).
    [CrossRef]
  25. A. Namdar, I. V. Shadrivov, and Y. S. Kivshar, “Backward Tamm states in left-handed metamaterials,” Appl. Phys. Lett. 89, 114104 (2006).
    [CrossRef]
  26. A. M. Merzlikin, A. P. Vinogradov, A. V. Dorofeenko, M. Inoue, M. Levy, and A. B. Granovsky, “Controllable Tamm states in magnetophotonic crystal,” Physica B 394, 277-280 (2007).
    [CrossRef]
  27. K. Agarwal, J. A. Polo, Jr., and A. Lakhtakia, “Theory of Dyakonov-Tamm waves at the planar interface of a sculptured nematic thin film and an isotropic dielectric material,” J. Opt. A, Pure Appl. Opt. 11, 074003 (2009).
    [CrossRef]
  28. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, 1993).
  29. A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, 2005).
    [CrossRef]
  30. I. Abdulhalim, L. Benguigui, and R. Weil, “Selective reflection by helicoidal liquid crystals: Results of an exact calculation using the 4×4 characteristic matrix method,” J. Phys. (France) 46, 815-825 (1985).
    [CrossRef]
  31. V. C. Venugopal and A. Lakhtakia, “Electromagnetic plane-wave response characteristics of non-axially excited slabs of dielectric thin-film helicoidal bianisotropic media,” Proc. R. Soc. London, Ser. A 456, 125-161 (2000).
    [CrossRef]
  32. J. B. Geddes III and A. Lakhtakia, “Numerical investigation of reflection, refraction, and diffraction of pulsed optical beams by chiral sculptured thin films,” Opt. Commun. 252, 307-320 (2005).
    [CrossRef]
  33. V. I. Kopp and A. Z. Genack, “Twist defect in chiral photonic structures,” Phys. Rev. Lett. 89, 033901 (2002).
    [CrossRef] [PubMed]
  34. F. Wang and A. Lakhtakia, “Specular and nonspecular, thickness-dependent, spectral holes in a slanted chiral sculptured thin film with a central twist defect,” Opt. Commun. 215, 79-92 (2003).
    [CrossRef]
  35. M. Becchi, S. Ponti, J. A. Reyes, and C. Oldano, “Defect modes in helical photonic crystals: an analytic approach,” Phys. Rev. B 70, 033103 (2004).
    [CrossRef]
  36. F. Wang and A. Lakhtakia, “Optical crossover phenomenon due to a central 90°-twist defect in a chiral sculptured thin film or chiral liquid crystal,” Proc. R. Soc. London, Ser. A 461, 2985-3004 (2005).
    [CrossRef]
  37. A. Lakhtakia, “Electrically tunable, ultranarrowband, circular-polarization rejection filters with electro-optic structurally chiral materials,” J. Eur. Opt. Soc. Rapid Publ. 1, 06006 (2006).
    [CrossRef]
  38. A. Lakhtakia, “Narrowband and ultranarrowband filters with electro-optic structurally chiral materials,” Asian J. Phys. 15, 275-282 (2006).
  39. N. S. Averkiev and M. I. Dyakonov, “Electromagnetic waves localized at the interface of transparent anisotropic media,” Opt. Spectrosc. 68, 653-655 (1990).
  40. S. R. Nelatury, J. A. Polo, Jr., and A. Lakhtakia, “Surface waves with simple exponential transverse decay at a biaxial bicrystalline interface,” J. Opt. Soc. Am. A 24, 856-865 (2007).
    [CrossRef]
  41. S. R. Nelatury, J. A. Polo, Jr., and A. Lakhtakia, “Surface waves with simple exponential transverse decay at a biaxial bicrystalline interface: errata,” J. Opt. Soc. Am. A 24, 2012 (2007).
  42. M. Schubert and C. M. Herzinger, “Ellipsometry on anisotropic materials: Bragg conditions and phonons in dielectric helical thin films,” Phys. Status Solidi A 188, 1563-1575 (2001).
    [CrossRef]
  43. J. A. Polo, Jr., and A. Lakhtakia, “Comparison of two methods for oblique propagation in helicoidal bianisotropic media,” Opt. Commun. 230, 369-386 (2004).
    [CrossRef]
  44. V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975).
  45. Given the symmetries in the problem addressed here, a matrix [N͇(γ,κ)] can be defined such that [N͇+]=[N͇(γ,κ)] and [N͇−]=[N͇(−γ,κ)]−1. The matrices [N͇+] and [N͇−] share the same set of eigenvalues but do not have the same set of eigenvectors.
  46. I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun. 184, 57-66 (2000).
    [CrossRef]
  47. A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33-46 (2001).
    [CrossRef]
  48. A. Lakhtakia and W. S. Weiglhofer, “Further results on light propagation in helicoidal bianisotropic media: oblique propagation,” Proc. R. Soc. London, Ser. A 453, 93-105 (1997).
    [CrossRef]
  49. Y. Jaluria, Computer Methods for Engineering (Brunner-Routledge, 1996).

2009 (2)

O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett. 102, 043903 (2009).
[CrossRef] [PubMed]

K. Agarwal, J. A. Polo, Jr., and A. Lakhtakia, “Theory of Dyakonov-Tamm waves at the planar interface of a sculptured nematic thin film and an isotropic dielectric material,” J. Opt. A, Pure Appl. Opt. 11, 074003 (2009).
[CrossRef]

2008 (4)

A. M. Furs and L. M. Barkovsky, “Surface polaritons at the planar interface of twinned gyrotropic dielectric media,” Electromagnetics 28, 146-161 (2008).
[CrossRef]

S. R. Nelatury, J. A. Polo Jr., and A. Lakhtakia, “Electrical control of surface-wave propagation at the planar interface of a linear electro-optic material and an isotropic dielectric material,” Electromagnetics 28, 162-174 (2008).
[CrossRef]

O. Takayama, L. C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: A review,” Electromagnetics 28, 126-145 (2008).
[CrossRef]

S. R. Nelatury, J. A. Polo, Jr., and A. Lakhtakia, “On widening the angular existence domain for Dyakonov surface waves using the Pockels effect,” Microwave Opt. Technol. Lett. 50, 2360-2362 (2008).
[CrossRef]

2007 (6)

A. Lakhtakia and J. A. Polo, Jr., “Dyakonov-Tamm wave at the planar interface of a chiral sculptured thin film and an isotropic dielectric material,” J. Eur. Opt. Soc. Rapid Publ. 2, 07021 (2007).
[CrossRef]

A. M. Merzlikin, A. P. Vinogradov, A. V. Dorofeenko, M. Inoue, M. Levy, and A. B. Granovsky, “Controllable Tamm states in magnetophotonic crystal,” Physica B 394, 277-280 (2007).
[CrossRef]

J. A. Polo, Jr., S. R. Nelatury, and A. Lakhtakia, “Propagation of surface waves at the planar interface of a columnar thin film and an isotropic substrate,” J. Nanophotonics 1, 013501 (2007).
[CrossRef]

S. R. Nelatury, J. A. Polo, Jr., and A. Lakhtakia, “Surface waves with simple exponential transverse decay at a biaxial bicrystalline interface: errata,” J. Opt. Soc. Am. A 24, 2012 (2007).

S. R. Nelatury, J. A. Polo, Jr., and A. Lakhtakia, “Surface waves with simple exponential transverse decay at a biaxial bicrystalline interface,” J. Opt. Soc. Am. A 24, 856-865 (2007).
[CrossRef]

J. A. Polo, Jr., S. R. Nelatury, and A. Lakhtakia, “Surface waves at a biaxial bicrystalline interface,” J. Opt. Soc. Am. A 24, 2974-2979 (2007).
[CrossRef]

2006 (5)

J. A. Polo, Jr., S. Nelatury, and A. Lakhtakia, “Surface electromagnetic wave at tilted uniaxial bicrystalline interface,” Electromagnetics 26, 629-642 (2006).
[CrossRef]

A. Lakhtakia, “Electrically tunable, ultranarrowband, circular-polarization rejection filters with electro-optic structurally chiral materials,” J. Eur. Opt. Soc. Rapid Publ. 1, 06006 (2006).
[CrossRef]

A. Lakhtakia, “Narrowband and ultranarrowband filters with electro-optic structurally chiral materials,” Asian J. Phys. 15, 275-282 (2006).

J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A, Pure Appl. Opt. 8, 630-638 (2006).
[CrossRef]

A. Namdar, I. V. Shadrivov, and Y. S. Kivshar, “Backward Tamm states in left-handed metamaterials,” Appl. Phys. Lett. 89, 114104 (2006).
[CrossRef]

2005 (4)

J. B. Geddes III and A. Lakhtakia, “Numerical investigation of reflection, refraction, and diffraction of pulsed optical beams by chiral sculptured thin films,” Opt. Commun. 252, 307-320 (2005).
[CrossRef]

F. Wang and A. Lakhtakia, “Optical crossover phenomenon due to a central 90°-twist defect in a chiral sculptured thin film or chiral liquid crystal,” Proc. R. Soc. London, Ser. A 461, 2985-3004 (2005).
[CrossRef]

D. Artigas and L. Torner, “Dyakonov surface waves in photonic metamaterials,” Phys. Rev. Lett. 94, 013901 (2005).
[CrossRef] [PubMed]

L. C. Crasovan, D. Artigas, D. Mihalache, and L. Torner, “Optical Dyakonov surface wave at magnetic interfaces,” Opt. Lett. 30, 3075-3077 (2005).
[CrossRef] [PubMed]

2004 (2)

J. A. Polo, Jr., and A. Lakhtakia, “Comparison of two methods for oblique propagation in helicoidal bianisotropic media,” Opt. Commun. 230, 369-386 (2004).
[CrossRef]

M. Becchi, S. Ponti, J. A. Reyes, and C. Oldano, “Defect modes in helical photonic crystals: an analytic approach,” Phys. Rev. B 70, 033103 (2004).
[CrossRef]

2003 (1)

F. Wang and A. Lakhtakia, “Specular and nonspecular, thickness-dependent, spectral holes in a slanted chiral sculptured thin film with a central twist defect,” Opt. Commun. 215, 79-92 (2003).
[CrossRef]

2002 (1)

V. I. Kopp and A. Z. Genack, “Twist defect in chiral photonic structures,” Phys. Rev. Lett. 89, 033901 (2002).
[CrossRef] [PubMed]

2001 (3)

M. Schubert and C. M. Herzinger, “Ellipsometry on anisotropic materials: Bragg conditions and phonons in dielectric helical thin films,” Phys. Status Solidi A 188, 1563-1575 (2001).
[CrossRef]

A. N. Darinskii, “Dispersionless polaritons on a twist boundary in optically uniaxial crystals,” Crystallogr. Rep. 46, 842-844 (2001).
[CrossRef]

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33-46 (2001).
[CrossRef]

2000 (2)

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun. 184, 57-66 (2000).
[CrossRef]

V. C. Venugopal and A. Lakhtakia, “Electromagnetic plane-wave response characteristics of non-axially excited slabs of dielectric thin-film helicoidal bianisotropic media,” Proc. R. Soc. London, Ser. A 456, 125-161 (2000).
[CrossRef]

1998 (1)

1997 (1)

A. Lakhtakia and W. S. Weiglhofer, “Further results on light propagation in helicoidal bianisotropic media: oblique propagation,” Proc. R. Soc. London, Ser. A 453, 93-105 (1997).
[CrossRef]

1995 (1)

L. Torner, J. P. Torres, C. Ojeda, and D. Mihalache, “Hybrid waves guided by ultrathin films,” J. Lightwave Technol. 13, 2027-2033 (1995).
[CrossRef]

1993 (1)

L. Torner, J. P. Torres, and D. Mihalache, “New type of guided waves in birefringent media,” IEEE Photon. Technol. Lett. 5, 201-203 (1993).
[CrossRef]

1990 (2)

N. S. Averkiev and M. I. Dyakonov, “Electromagnetic waves localized at the interface of transparent anisotropic media,” Opt. Spectrosc. 68, 653-655 (1990).

H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agulló-Rueda, L. L. Chang, and L. Esaki, “Observation of 'Tamm states' in superlattices,” Phys. Rev. Lett. 64, 2555-2558 (1990).
[CrossRef] [PubMed]

1988 (1)

M. I. D'yakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP 67, 714-716 (1988).

1985 (1)

I. Abdulhalim, L. Benguigui, and R. Weil, “Selective reflection by helicoidal liquid crystals: Results of an exact calculation using the 4×4 characteristic matrix method,” J. Phys. (France) 46, 815-825 (1985).
[CrossRef]

1932 (1)

I. Tamm, “Über eine mögliche Art der Elektronenbindung an Kristalloberflächen,” Z. Phys. 76, 849-850 (1932).
[CrossRef]

1909 (1)

A. Sommerfeld, “Über die Ausbreitlung der Wellen in der drahtlosen Telegraphie,” Ann. Phys. 28, 665-736 (1909).
[CrossRef]

1907 (1)

J. Zenneck, “Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Lieterfläche und ihre Beziehung zur drahtlosen Telegraphie,” Ann. Phys. 23, 846-866 (1907).
[CrossRef]

Abdulhalim, I.

I. Abdulhalim, L. Benguigui, and R. Weil, “Selective reflection by helicoidal liquid crystals: Results of an exact calculation using the 4×4 characteristic matrix method,” J. Phys. (France) 46, 815-825 (1985).
[CrossRef]

Agarwal, K.

K. Agarwal, J. A. Polo, Jr., and A. Lakhtakia, “Theory of Dyakonov-Tamm waves at the planar interface of a sculptured nematic thin film and an isotropic dielectric material,” J. Opt. A, Pure Appl. Opt. 11, 074003 (2009).
[CrossRef]

Agulló-Rueda, F.

H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agulló-Rueda, L. L. Chang, and L. Esaki, “Observation of 'Tamm states' in superlattices,” Phys. Rev. Lett. 64, 2555-2558 (1990).
[CrossRef] [PubMed]

Artigas, D.

O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett. 102, 043903 (2009).
[CrossRef] [PubMed]

O. Takayama, L. C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: A review,” Electromagnetics 28, 126-145 (2008).
[CrossRef]

D. Artigas and L. Torner, “Dyakonov surface waves in photonic metamaterials,” Phys. Rev. Lett. 94, 013901 (2005).
[CrossRef] [PubMed]

L. C. Crasovan, D. Artigas, D. Mihalache, and L. Torner, “Optical Dyakonov surface wave at magnetic interfaces,” Opt. Lett. 30, 3075-3077 (2005).
[CrossRef] [PubMed]

Averkiev, N. S.

N. S. Averkiev and M. I. Dyakonov, “Electromagnetic waves localized at the interface of transparent anisotropic media,” Opt. Spectrosc. 68, 653-655 (1990).

Barkovsky, L. M.

A. M. Furs and L. M. Barkovsky, “Surface polaritons at the planar interface of twinned gyrotropic dielectric media,” Electromagnetics 28, 146-161 (2008).
[CrossRef]

Barlow, H. M.

H. M. Barlow, Radio Surface Waves (Clarendon Press, 1962).

Becchi, M.

M. Becchi, S. Ponti, J. A. Reyes, and C. Oldano, “Defect modes in helical photonic crystals: an analytic approach,” Phys. Rev. B 70, 033103 (2004).
[CrossRef]

Benguigui, L.

I. Abdulhalim, L. Benguigui, and R. Weil, “Selective reflection by helicoidal liquid crystals: Results of an exact calculation using the 4×4 characteristic matrix method,” J. Phys. (France) 46, 815-825 (1985).
[CrossRef]

Brum, J. A.

H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agulló-Rueda, L. L. Chang, and L. Esaki, “Observation of 'Tamm states' in superlattices,” Phys. Rev. Lett. 64, 2555-2558 (1990).
[CrossRef] [PubMed]

Chang, L. L.

H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agulló-Rueda, L. L. Chang, and L. Esaki, “Observation of 'Tamm states' in superlattices,” Phys. Rev. Lett. 64, 2555-2558 (1990).
[CrossRef] [PubMed]

Crasovan, L.

O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett. 102, 043903 (2009).
[CrossRef] [PubMed]

Crasovan, L. C.

O. Takayama, L. C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: A review,” Electromagnetics 28, 126-145 (2008).
[CrossRef]

L. C. Crasovan, D. Artigas, D. Mihalache, and L. Torner, “Optical Dyakonov surface wave at magnetic interfaces,” Opt. Lett. 30, 3075-3077 (2005).
[CrossRef] [PubMed]

Darinskii, A. N.

A. N. Darinskii, “Dispersionless polaritons on a twist boundary in optically uniaxial crystals,” Crystallogr. Rep. 46, 842-844 (2001).
[CrossRef]

de Gennes, P. G.

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, 1993).

Dorofeenko, A. V.

A. M. Merzlikin, A. P. Vinogradov, A. V. Dorofeenko, M. Inoue, M. Levy, and A. B. Granovsky, “Controllable Tamm states in magnetophotonic crystal,” Physica B 394, 277-280 (2007).
[CrossRef]

Dyakonov, M. I.

N. S. Averkiev and M. I. Dyakonov, “Electromagnetic waves localized at the interface of transparent anisotropic media,” Opt. Spectrosc. 68, 653-655 (1990).

D'yakonov, M. I.

M. I. D'yakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP 67, 714-716 (1988).

Esaki, L.

H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agulló-Rueda, L. L. Chang, and L. Esaki, “Observation of 'Tamm states' in superlattices,” Phys. Rev. Lett. 64, 2555-2558 (1990).
[CrossRef] [PubMed]

Furs, A. M.

A. M. Furs and L. M. Barkovsky, “Surface polaritons at the planar interface of twinned gyrotropic dielectric media,” Electromagnetics 28, 146-161 (2008).
[CrossRef]

Gaylord, T. K.

Geddes, J. B.

J. B. Geddes III and A. Lakhtakia, “Numerical investigation of reflection, refraction, and diffraction of pulsed optical beams by chiral sculptured thin films,” Opt. Commun. 252, 307-320 (2005).
[CrossRef]

Genack, A. Z.

V. I. Kopp and A. Z. Genack, “Twist defect in chiral photonic structures,” Phys. Rev. Lett. 89, 033901 (2002).
[CrossRef] [PubMed]

Glytsis, E. N.

Granovsky, A. B.

A. M. Merzlikin, A. P. Vinogradov, A. V. Dorofeenko, M. Inoue, M. Levy, and A. B. Granovsky, “Controllable Tamm states in magnetophotonic crystal,” Physica B 394, 277-280 (2007).
[CrossRef]

Herzinger, C. M.

M. Schubert and C. M. Herzinger, “Ellipsometry on anisotropic materials: Bragg conditions and phonons in dielectric helical thin films,” Phys. Status Solidi A 188, 1563-1575 (2001).
[CrossRef]

Hodgkinson, I. J.

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33-46 (2001).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun. 184, 57-66 (2000).
[CrossRef]

Hong, J. M.

H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agulló-Rueda, L. L. Chang, and L. Esaki, “Observation of 'Tamm states' in superlattices,” Phys. Rev. Lett. 64, 2555-2558 (1990).
[CrossRef] [PubMed]

Inoue, M.

A. M. Merzlikin, A. P. Vinogradov, A. V. Dorofeenko, M. Inoue, M. Levy, and A. B. Granovsky, “Controllable Tamm states in magnetophotonic crystal,” Physica B 394, 277-280 (2007).
[CrossRef]

Jaluria, Y.

Y. Jaluria, Computer Methods for Engineering (Brunner-Routledge, 1996).

Johansen, S. K.

O. Takayama, L. C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: A review,” Electromagnetics 28, 126-145 (2008).
[CrossRef]

Kittel, C.

C. Kittel, Introduction to Solid State Physics (Wiley Eastern, New Delhi, India, 1974).

Kivshar, Y. S.

A. Namdar, I. V. Shadrivov, and Y. S. Kivshar, “Backward Tamm states in left-handed metamaterials,” Appl. Phys. Lett. 89, 114104 (2006).
[CrossRef]

Kopp, V. I.

V. I. Kopp and A. Z. Genack, “Twist defect in chiral photonic structures,” Phys. Rev. Lett. 89, 033901 (2002).
[CrossRef] [PubMed]

Lakhtakia, A.

K. Agarwal, J. A. Polo, Jr., and A. Lakhtakia, “Theory of Dyakonov-Tamm waves at the planar interface of a sculptured nematic thin film and an isotropic dielectric material,” J. Opt. A, Pure Appl. Opt. 11, 074003 (2009).
[CrossRef]

S. R. Nelatury, J. A. Polo Jr., and A. Lakhtakia, “Electrical control of surface-wave propagation at the planar interface of a linear electro-optic material and an isotropic dielectric material,” Electromagnetics 28, 162-174 (2008).
[CrossRef]

S. R. Nelatury, J. A. Polo, Jr., and A. Lakhtakia, “On widening the angular existence domain for Dyakonov surface waves using the Pockels effect,” Microwave Opt. Technol. Lett. 50, 2360-2362 (2008).
[CrossRef]

A. Lakhtakia and J. A. Polo, Jr., “Dyakonov-Tamm wave at the planar interface of a chiral sculptured thin film and an isotropic dielectric material,” J. Eur. Opt. Soc. Rapid Publ. 2, 07021 (2007).
[CrossRef]

J. A. Polo, Jr., S. R. Nelatury, and A. Lakhtakia, “Propagation of surface waves at the planar interface of a columnar thin film and an isotropic substrate,” J. Nanophotonics 1, 013501 (2007).
[CrossRef]

S. R. Nelatury, J. A. Polo, Jr., and A. Lakhtakia, “Surface waves with simple exponential transverse decay at a biaxial bicrystalline interface: errata,” J. Opt. Soc. Am. A 24, 2012 (2007).

J. A. Polo, Jr., S. R. Nelatury, and A. Lakhtakia, “Surface waves at a biaxial bicrystalline interface,” J. Opt. Soc. Am. A 24, 2974-2979 (2007).
[CrossRef]

S. R. Nelatury, J. A. Polo, Jr., and A. Lakhtakia, “Surface waves with simple exponential transverse decay at a biaxial bicrystalline interface,” J. Opt. Soc. Am. A 24, 856-865 (2007).
[CrossRef]

A. Lakhtakia, “Narrowband and ultranarrowband filters with electro-optic structurally chiral materials,” Asian J. Phys. 15, 275-282 (2006).

A. Lakhtakia, “Electrically tunable, ultranarrowband, circular-polarization rejection filters with electro-optic structurally chiral materials,” J. Eur. Opt. Soc. Rapid Publ. 1, 06006 (2006).
[CrossRef]

J. A. Polo, Jr., S. Nelatury, and A. Lakhtakia, “Surface electromagnetic wave at tilted uniaxial bicrystalline interface,” Electromagnetics 26, 629-642 (2006).
[CrossRef]

F. Wang and A. Lakhtakia, “Optical crossover phenomenon due to a central 90°-twist defect in a chiral sculptured thin film or chiral liquid crystal,” Proc. R. Soc. London, Ser. A 461, 2985-3004 (2005).
[CrossRef]

J. B. Geddes III and A. Lakhtakia, “Numerical investigation of reflection, refraction, and diffraction of pulsed optical beams by chiral sculptured thin films,” Opt. Commun. 252, 307-320 (2005).
[CrossRef]

J. A. Polo, Jr., and A. Lakhtakia, “Comparison of two methods for oblique propagation in helicoidal bianisotropic media,” Opt. Commun. 230, 369-386 (2004).
[CrossRef]

F. Wang and A. Lakhtakia, “Specular and nonspecular, thickness-dependent, spectral holes in a slanted chiral sculptured thin film with a central twist defect,” Opt. Commun. 215, 79-92 (2003).
[CrossRef]

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33-46 (2001).
[CrossRef]

V. C. Venugopal and A. Lakhtakia, “Electromagnetic plane-wave response characteristics of non-axially excited slabs of dielectric thin-film helicoidal bianisotropic media,” Proc. R. Soc. London, Ser. A 456, 125-161 (2000).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun. 184, 57-66 (2000).
[CrossRef]

A. Lakhtakia and W. S. Weiglhofer, “Further results on light propagation in helicoidal bianisotropic media: oblique propagation,” Proc. R. Soc. London, Ser. A 453, 93-105 (1997).
[CrossRef]

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, 2005).
[CrossRef]

Levy, M.

A. M. Merzlikin, A. P. Vinogradov, A. V. Dorofeenko, M. Inoue, M. Levy, and A. B. Granovsky, “Controllable Tamm states in magnetophotonic crystal,” Physica B 394, 277-280 (2007).
[CrossRef]

Martorell, J.

J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A, Pure Appl. Opt. 8, 630-638 (2006).
[CrossRef]

McCall, M. W.

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33-46 (2001).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun. 184, 57-66 (2000).
[CrossRef]

Mendez, E. E.

H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agulló-Rueda, L. L. Chang, and L. Esaki, “Observation of 'Tamm states' in superlattices,” Phys. Rev. Lett. 64, 2555-2558 (1990).
[CrossRef] [PubMed]

Merzlikin, A. M.

A. M. Merzlikin, A. P. Vinogradov, A. V. Dorofeenko, M. Inoue, M. Levy, and A. B. Granovsky, “Controllable Tamm states in magnetophotonic crystal,” Physica B 394, 277-280 (2007).
[CrossRef]

Messier, R.

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, 2005).
[CrossRef]

Mihalache, D.

O. Takayama, L. C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: A review,” Electromagnetics 28, 126-145 (2008).
[CrossRef]

L. C. Crasovan, D. Artigas, D. Mihalache, and L. Torner, “Optical Dyakonov surface wave at magnetic interfaces,” Opt. Lett. 30, 3075-3077 (2005).
[CrossRef] [PubMed]

L. Torner, J. P. Torres, C. Ojeda, and D. Mihalache, “Hybrid waves guided by ultrathin films,” J. Lightwave Technol. 13, 2027-2033 (1995).
[CrossRef]

L. Torner, J. P. Torres, and D. Mihalache, “New type of guided waves in birefringent media,” IEEE Photon. Technol. Lett. 5, 201-203 (1993).
[CrossRef]

Morozov, G. V.

J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A, Pure Appl. Opt. 8, 630-638 (2006).
[CrossRef]

Namdar, A.

A. Namdar, I. V. Shadrivov, and Y. S. Kivshar, “Backward Tamm states in left-handed metamaterials,” Appl. Phys. Lett. 89, 114104 (2006).
[CrossRef]

Nelatury, S.

J. A. Polo, Jr., S. Nelatury, and A. Lakhtakia, “Surface electromagnetic wave at tilted uniaxial bicrystalline interface,” Electromagnetics 26, 629-642 (2006).
[CrossRef]

Nelatury, S. R.

S. R. Nelatury, J. A. Polo Jr., and A. Lakhtakia, “Electrical control of surface-wave propagation at the planar interface of a linear electro-optic material and an isotropic dielectric material,” Electromagnetics 28, 162-174 (2008).
[CrossRef]

S. R. Nelatury, J. A. Polo, Jr., and A. Lakhtakia, “On widening the angular existence domain for Dyakonov surface waves using the Pockels effect,” Microwave Opt. Technol. Lett. 50, 2360-2362 (2008).
[CrossRef]

J. A. Polo, Jr., S. R. Nelatury, and A. Lakhtakia, “Propagation of surface waves at the planar interface of a columnar thin film and an isotropic substrate,” J. Nanophotonics 1, 013501 (2007).
[CrossRef]

S. R. Nelatury, J. A. Polo, Jr., and A. Lakhtakia, “Surface waves with simple exponential transverse decay at a biaxial bicrystalline interface: errata,” J. Opt. Soc. Am. A 24, 2012 (2007).

J. A. Polo, Jr., S. R. Nelatury, and A. Lakhtakia, “Surface waves at a biaxial bicrystalline interface,” J. Opt. Soc. Am. A 24, 2974-2979 (2007).
[CrossRef]

S. R. Nelatury, J. A. Polo, Jr., and A. Lakhtakia, “Surface waves with simple exponential transverse decay at a biaxial bicrystalline interface,” J. Opt. Soc. Am. A 24, 856-865 (2007).
[CrossRef]

Ohno, H.

H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agulló-Rueda, L. L. Chang, and L. Esaki, “Observation of 'Tamm states' in superlattices,” Phys. Rev. Lett. 64, 2555-2558 (1990).
[CrossRef] [PubMed]

Ojeda, C.

L. Torner, J. P. Torres, C. Ojeda, and D. Mihalache, “Hybrid waves guided by ultrathin films,” J. Lightwave Technol. 13, 2027-2033 (1995).
[CrossRef]

Oldano, C.

M. Becchi, S. Ponti, J. A. Reyes, and C. Oldano, “Defect modes in helical photonic crystals: an analytic approach,” Phys. Rev. B 70, 033103 (2004).
[CrossRef]

Polo, J. A.

K. Agarwal, J. A. Polo, Jr., and A. Lakhtakia, “Theory of Dyakonov-Tamm waves at the planar interface of a sculptured nematic thin film and an isotropic dielectric material,” J. Opt. A, Pure Appl. Opt. 11, 074003 (2009).
[CrossRef]

S. R. Nelatury, J. A. Polo Jr., and A. Lakhtakia, “Electrical control of surface-wave propagation at the planar interface of a linear electro-optic material and an isotropic dielectric material,” Electromagnetics 28, 162-174 (2008).
[CrossRef]

S. R. Nelatury, J. A. Polo, Jr., and A. Lakhtakia, “On widening the angular existence domain for Dyakonov surface waves using the Pockels effect,” Microwave Opt. Technol. Lett. 50, 2360-2362 (2008).
[CrossRef]

J. A. Polo, Jr., S. R. Nelatury, and A. Lakhtakia, “Propagation of surface waves at the planar interface of a columnar thin film and an isotropic substrate,” J. Nanophotonics 1, 013501 (2007).
[CrossRef]

A. Lakhtakia and J. A. Polo, Jr., “Dyakonov-Tamm wave at the planar interface of a chiral sculptured thin film and an isotropic dielectric material,” J. Eur. Opt. Soc. Rapid Publ. 2, 07021 (2007).
[CrossRef]

S. R. Nelatury, J. A. Polo, Jr., and A. Lakhtakia, “Surface waves with simple exponential transverse decay at a biaxial bicrystalline interface: errata,” J. Opt. Soc. Am. A 24, 2012 (2007).

J. A. Polo, Jr., S. R. Nelatury, and A. Lakhtakia, “Surface waves at a biaxial bicrystalline interface,” J. Opt. Soc. Am. A 24, 2974-2979 (2007).
[CrossRef]

S. R. Nelatury, J. A. Polo, Jr., and A. Lakhtakia, “Surface waves with simple exponential transverse decay at a biaxial bicrystalline interface,” J. Opt. Soc. Am. A 24, 856-865 (2007).
[CrossRef]

J. A. Polo, Jr., S. Nelatury, and A. Lakhtakia, “Surface electromagnetic wave at tilted uniaxial bicrystalline interface,” Electromagnetics 26, 629-642 (2006).
[CrossRef]

J. A. Polo, Jr., and A. Lakhtakia, “Comparison of two methods for oblique propagation in helicoidal bianisotropic media,” Opt. Commun. 230, 369-386 (2004).
[CrossRef]

Ponti, S.

M. Becchi, S. Ponti, J. A. Reyes, and C. Oldano, “Defect modes in helical photonic crystals: an analytic approach,” Phys. Rev. B 70, 033103 (2004).
[CrossRef]

Prost, J.

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, 1993).

Reyes, J. A.

M. Becchi, S. Ponti, J. A. Reyes, and C. Oldano, “Defect modes in helical photonic crystals: an analytic approach,” Phys. Rev. B 70, 033103 (2004).
[CrossRef]

Schubert, M.

M. Schubert and C. M. Herzinger, “Ellipsometry on anisotropic materials: Bragg conditions and phonons in dielectric helical thin films,” Phys. Status Solidi A 188, 1563-1575 (2001).
[CrossRef]

Shadrivov, I. V.

A. Namdar, I. V. Shadrivov, and Y. S. Kivshar, “Backward Tamm states in left-handed metamaterials,” Appl. Phys. Lett. 89, 114104 (2006).
[CrossRef]

Sherwin, J. A.

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33-46 (2001).
[CrossRef]

Sommerfeld, A.

A. Sommerfeld, “Über die Ausbreitlung der Wellen in der drahtlosen Telegraphie,” Ann. Phys. 28, 665-736 (1909).
[CrossRef]

Sprung, D. W. L.

J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A, Pure Appl. Opt. 8, 630-638 (2006).
[CrossRef]

Starzhinskii, V. M.

V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975).

Takayama, O.

O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett. 102, 043903 (2009).
[CrossRef] [PubMed]

O. Takayama, L. C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: A review,” Electromagnetics 28, 126-145 (2008).
[CrossRef]

Tamm, I.

I. Tamm, “Über eine mögliche Art der Elektronenbindung an Kristalloberflächen,” Z. Phys. 76, 849-850 (1932).
[CrossRef]

Thorn, K. E.

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun. 184, 57-66 (2000).
[CrossRef]

Torner, L.

O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett. 102, 043903 (2009).
[CrossRef] [PubMed]

O. Takayama, L. C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: A review,” Electromagnetics 28, 126-145 (2008).
[CrossRef]

D. Artigas and L. Torner, “Dyakonov surface waves in photonic metamaterials,” Phys. Rev. Lett. 94, 013901 (2005).
[CrossRef] [PubMed]

L. C. Crasovan, D. Artigas, D. Mihalache, and L. Torner, “Optical Dyakonov surface wave at magnetic interfaces,” Opt. Lett. 30, 3075-3077 (2005).
[CrossRef] [PubMed]

L. Torner, J. P. Torres, C. Ojeda, and D. Mihalache, “Hybrid waves guided by ultrathin films,” J. Lightwave Technol. 13, 2027-2033 (1995).
[CrossRef]

L. Torner, J. P. Torres, and D. Mihalache, “New type of guided waves in birefringent media,” IEEE Photon. Technol. Lett. 5, 201-203 (1993).
[CrossRef]

Torres, J. P.

L. Torner, J. P. Torres, C. Ojeda, and D. Mihalache, “Hybrid waves guided by ultrathin films,” J. Lightwave Technol. 13, 2027-2033 (1995).
[CrossRef]

L. Torner, J. P. Torres, and D. Mihalache, “New type of guided waves in birefringent media,” IEEE Photon. Technol. Lett. 5, 201-203 (1993).
[CrossRef]

Venugopal, V. C.

V. C. Venugopal and A. Lakhtakia, “Electromagnetic plane-wave response characteristics of non-axially excited slabs of dielectric thin-film helicoidal bianisotropic media,” Proc. R. Soc. London, Ser. A 456, 125-161 (2000).
[CrossRef]

Vinogradov, A. P.

A. M. Merzlikin, A. P. Vinogradov, A. V. Dorofeenko, M. Inoue, M. Levy, and A. B. Granovsky, “Controllable Tamm states in magnetophotonic crystal,” Physica B 394, 277-280 (2007).
[CrossRef]

Walker, D. B.

Wang, F.

F. Wang and A. Lakhtakia, “Optical crossover phenomenon due to a central 90°-twist defect in a chiral sculptured thin film or chiral liquid crystal,” Proc. R. Soc. London, Ser. A 461, 2985-3004 (2005).
[CrossRef]

F. Wang and A. Lakhtakia, “Specular and nonspecular, thickness-dependent, spectral holes in a slanted chiral sculptured thin film with a central twist defect,” Opt. Commun. 215, 79-92 (2003).
[CrossRef]

Weiglhofer, W. S.

A. Lakhtakia and W. S. Weiglhofer, “Further results on light propagation in helicoidal bianisotropic media: oblique propagation,” Proc. R. Soc. London, Ser. A 453, 93-105 (1997).
[CrossRef]

Weil, R.

I. Abdulhalim, L. Benguigui, and R. Weil, “Selective reflection by helicoidal liquid crystals: Results of an exact calculation using the 4×4 characteristic matrix method,” J. Phys. (France) 46, 815-825 (1985).
[CrossRef]

Wu, Q. H.

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33-46 (2001).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun. 184, 57-66 (2000).
[CrossRef]

Yakubovich, V. A.

V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975).

Zenneck, J.

J. Zenneck, “Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Lieterfläche und ihre Beziehung zur drahtlosen Telegraphie,” Ann. Phys. 23, 846-866 (1907).
[CrossRef]

Ann. Phys. (2)

J. Zenneck, “Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Lieterfläche und ihre Beziehung zur drahtlosen Telegraphie,” Ann. Phys. 23, 846-866 (1907).
[CrossRef]

A. Sommerfeld, “Über die Ausbreitlung der Wellen in der drahtlosen Telegraphie,” Ann. Phys. 28, 665-736 (1909).
[CrossRef]

Appl. Phys. Lett. (1)

A. Namdar, I. V. Shadrivov, and Y. S. Kivshar, “Backward Tamm states in left-handed metamaterials,” Appl. Phys. Lett. 89, 114104 (2006).
[CrossRef]

Asian J. Phys. (1)

A. Lakhtakia, “Narrowband and ultranarrowband filters with electro-optic structurally chiral materials,” Asian J. Phys. 15, 275-282 (2006).

Crystallogr. Rep. (1)

A. N. Darinskii, “Dispersionless polaritons on a twist boundary in optically uniaxial crystals,” Crystallogr. Rep. 46, 842-844 (2001).
[CrossRef]

Electromagnetics (4)

J. A. Polo, Jr., S. Nelatury, and A. Lakhtakia, “Surface electromagnetic wave at tilted uniaxial bicrystalline interface,” Electromagnetics 26, 629-642 (2006).
[CrossRef]

A. M. Furs and L. M. Barkovsky, “Surface polaritons at the planar interface of twinned gyrotropic dielectric media,” Electromagnetics 28, 146-161 (2008).
[CrossRef]

S. R. Nelatury, J. A. Polo Jr., and A. Lakhtakia, “Electrical control of surface-wave propagation at the planar interface of a linear electro-optic material and an isotropic dielectric material,” Electromagnetics 28, 162-174 (2008).
[CrossRef]

O. Takayama, L. C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, “Dyakonov surface waves: A review,” Electromagnetics 28, 126-145 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

L. Torner, J. P. Torres, and D. Mihalache, “New type of guided waves in birefringent media,” IEEE Photon. Technol. Lett. 5, 201-203 (1993).
[CrossRef]

J. Eur. Opt. Soc. Rapid Publ. (2)

A. Lakhtakia, “Electrically tunable, ultranarrowband, circular-polarization rejection filters with electro-optic structurally chiral materials,” J. Eur. Opt. Soc. Rapid Publ. 1, 06006 (2006).
[CrossRef]

A. Lakhtakia and J. A. Polo, Jr., “Dyakonov-Tamm wave at the planar interface of a chiral sculptured thin film and an isotropic dielectric material,” J. Eur. Opt. Soc. Rapid Publ. 2, 07021 (2007).
[CrossRef]

J. Lightwave Technol. (1)

L. Torner, J. P. Torres, C. Ojeda, and D. Mihalache, “Hybrid waves guided by ultrathin films,” J. Lightwave Technol. 13, 2027-2033 (1995).
[CrossRef]

J. Nanophotonics (1)

J. A. Polo, Jr., S. R. Nelatury, and A. Lakhtakia, “Propagation of surface waves at the planar interface of a columnar thin film and an isotropic substrate,” J. Nanophotonics 1, 013501 (2007).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (2)

J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A, Pure Appl. Opt. 8, 630-638 (2006).
[CrossRef]

K. Agarwal, J. A. Polo, Jr., and A. Lakhtakia, “Theory of Dyakonov-Tamm waves at the planar interface of a sculptured nematic thin film and an isotropic dielectric material,” J. Opt. A, Pure Appl. Opt. 11, 074003 (2009).
[CrossRef]

J. Opt. Soc. Am. A (4)

J. Phys. (France) (1)

I. Abdulhalim, L. Benguigui, and R. Weil, “Selective reflection by helicoidal liquid crystals: Results of an exact calculation using the 4×4 characteristic matrix method,” J. Phys. (France) 46, 815-825 (1985).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

S. R. Nelatury, J. A. Polo, Jr., and A. Lakhtakia, “On widening the angular existence domain for Dyakonov surface waves using the Pockels effect,” Microwave Opt. Technol. Lett. 50, 2360-2362 (2008).
[CrossRef]

Opt. Commun. (5)

J. B. Geddes III and A. Lakhtakia, “Numerical investigation of reflection, refraction, and diffraction of pulsed optical beams by chiral sculptured thin films,” Opt. Commun. 252, 307-320 (2005).
[CrossRef]

J. A. Polo, Jr., and A. Lakhtakia, “Comparison of two methods for oblique propagation in helicoidal bianisotropic media,” Opt. Commun. 230, 369-386 (2004).
[CrossRef]

F. Wang and A. Lakhtakia, “Specular and nonspecular, thickness-dependent, spectral holes in a slanted chiral sculptured thin film with a central twist defect,” Opt. Commun. 215, 79-92 (2003).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, “Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment,” Opt. Commun. 184, 57-66 (2000).
[CrossRef]

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, “Sculptured-thin-film spectral holes for optical sensing of fluids,” Opt. Commun. 194, 33-46 (2001).
[CrossRef]

Opt. Lett. (1)

Opt. Spectrosc. (1)

N. S. Averkiev and M. I. Dyakonov, “Electromagnetic waves localized at the interface of transparent anisotropic media,” Opt. Spectrosc. 68, 653-655 (1990).

Phys. Rev. B (1)

M. Becchi, S. Ponti, J. A. Reyes, and C. Oldano, “Defect modes in helical photonic crystals: an analytic approach,” Phys. Rev. B 70, 033103 (2004).
[CrossRef]

Phys. Rev. Lett. (4)

V. I. Kopp and A. Z. Genack, “Twist defect in chiral photonic structures,” Phys. Rev. Lett. 89, 033901 (2002).
[CrossRef] [PubMed]

O. Takayama, L. Crasovan, D. Artigas, and L. Torner, “Observation of Dyakonov surface waves,” Phys. Rev. Lett. 102, 043903 (2009).
[CrossRef] [PubMed]

H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agulló-Rueda, L. L. Chang, and L. Esaki, “Observation of 'Tamm states' in superlattices,” Phys. Rev. Lett. 64, 2555-2558 (1990).
[CrossRef] [PubMed]

D. Artigas and L. Torner, “Dyakonov surface waves in photonic metamaterials,” Phys. Rev. Lett. 94, 013901 (2005).
[CrossRef] [PubMed]

Phys. Status Solidi A (1)

M. Schubert and C. M. Herzinger, “Ellipsometry on anisotropic materials: Bragg conditions and phonons in dielectric helical thin films,” Phys. Status Solidi A 188, 1563-1575 (2001).
[CrossRef]

Physica B (1)

A. M. Merzlikin, A. P. Vinogradov, A. V. Dorofeenko, M. Inoue, M. Levy, and A. B. Granovsky, “Controllable Tamm states in magnetophotonic crystal,” Physica B 394, 277-280 (2007).
[CrossRef]

Proc. R. Soc. London, Ser. A (3)

V. C. Venugopal and A. Lakhtakia, “Electromagnetic plane-wave response characteristics of non-axially excited slabs of dielectric thin-film helicoidal bianisotropic media,” Proc. R. Soc. London, Ser. A 456, 125-161 (2000).
[CrossRef]

F. Wang and A. Lakhtakia, “Optical crossover phenomenon due to a central 90°-twist defect in a chiral sculptured thin film or chiral liquid crystal,” Proc. R. Soc. London, Ser. A 461, 2985-3004 (2005).
[CrossRef]

A. Lakhtakia and W. S. Weiglhofer, “Further results on light propagation in helicoidal bianisotropic media: oblique propagation,” Proc. R. Soc. London, Ser. A 453, 93-105 (1997).
[CrossRef]

Sov. Phys. JETP (1)

M. I. D'yakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP 67, 714-716 (1988).

Z. Phys. (1)

I. Tamm, “Über eine mögliche Art der Elektronenbindung an Kristalloberflächen,” Z. Phys. 76, 849-850 (1932).
[CrossRef]

Other (8)

C. Kittel, Introduction to Solid State Physics (Wiley Eastern, New Delhi, India, 1974).

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, 1993).

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, 2005).
[CrossRef]

V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975).

Given the symmetries in the problem addressed here, a matrix [N͇(γ,κ)] can be defined such that [N͇+]=[N͇(γ,κ)] and [N͇−]=[N͇(−γ,κ)]−1. The matrices [N͇+] and [N͇−] share the same set of eigenvalues but do not have the same set of eigenvectors.

H. M. Barlow, Radio Surface Waves (Clarendon Press, 1962).

A.D.Boardman, ed. Electromagnetic Surface Modes (Wiley, 1982).

Y. Jaluria, Computer Methods for Engineering (Brunner-Routledge, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the nanohelical morphology of a structurally right-handed chiral sculptured thin film with a central twist defect.

Fig. 2
Fig. 2

Variations of the solutions κ k 0 of Eq. (19) with the semitwist angle γ: ϵ a = 2.514 , ϵ b = 3.943 , ϵ c = 3.153 , χ = 46.367 ° , h = 1 , Ω = 197 nm , and λ 0 = 633 nm . (a) Four sets of values of κ k 0 labeled 1 to 4, (b) set labeled 1, and (c) set labeled 4. The kink in the left branch of (b) is probably a numerical artifact, but we could not legitimately eliminate it; the kink is not of significance as the roots in (b) do not signify Dyakonov–Tamm waves.

Fig. 3
Fig. 3

Variations of decay constants exp ( u 1 ) = exp ( ν 1 ) and exp ( u 2 ) = exp ( ν 2 ) with the semitwist angle γ. See Fig. 2 for the values of the constitutive and geometric parameters used.

Fig. 4
Fig. 4

Profiles of the magnitudes of field components of the first solution ( κ k 0 = 0.73236 ) of Eq. (19) for γ = 140 ° . Electric field magnitudes are in V/m, magnetic field magnitudes are in A/m, with A 1 = 1 V m . See Fig. 2 for the values of the constitutive and geometric parameters used.

Fig. 5
Fig. 5

Same as Fig. 4, but for the second solution ( κ k 0 = 1.51239 ) of Eq. (19) for γ = 140 ° .

Fig. 6
Fig. 6

Same as Fig. 4, but for the third solution ( κ k 0 = 1.52881 ) of Eq. (19) for γ = 140 ° .

Fig. 7
Fig. 7

Same as Fig. 4, but for the fourth solution ( κ k 0 = 1.84039 ) of Eq. (19) for γ = 140 ° .

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

ϵ ͇ ( z ) = ϵ 0 S ͇ z ( z , h , Ω , γ ) S ͇ y ( χ ) ϵ ͇ ref S ͇ y T ( χ ) S ͇ z T ( z , h , Ω , γ ) ,
z > 0 ,
ϵ ͇ ( z ) = ϵ 0 S ͇ z ( z , h , Ω , γ ) S ͇ y ( χ ) ϵ ͇ ref S ͇ y T ( χ ) S ͇ z T ( z , h , Ω , γ ) ,
z < 0 ,
ϵ ͇ ref = ϵ a u ̱ z u ̱ z + ϵ b u ̱ x u ̱ x + ϵ c u ̱ y u ̱ y
S ͇ z ( z , h , Ω , ± γ ) = ( u ̱ x u ̱ x + u ̱ y u ̱ y ) cos ζ ± + h ( u ̱ y u ̱ x u ̱ x u ̱ y ) sin ζ ± + u ̱ z u ̱ z ,
ζ ± = π z Ω ± γ ,
S ͇ y ( χ ) = ( u ̱ x u ̱ x + u ̱ z u ̱ z ) cos χ + ( u ̱ z u ̱ x u ̱ x u ̱ z ) sin χ + u ̱ y u ̱ y
{ E ̱ ( r ̱ ) = e ̱ ( z ) exp ( i κ x ) H ̱ ( r ̱ ) = h ̱ ( z ) exp ( i κ x ) } ,
[ f ̱ ( z ) ] = [ e x ( z ) e y ( z ) h x ( z ) h y ( z ) ] T .
d d z [ f ̱ ( z ) ] = i [ P ͇ ± ( z , κ ) ] [ f ̱ ( z ) ] , { z > 0 z < 0 } ,
[ P ͇ ± ( z , κ ) ] = ω [ 0 0 0 μ 0 0 0 μ 0 0 h ϵ 0 ( ϵ c ϵ d ) cos ζ ± sin ζ ± ϵ 0 ( ϵ c cos 2 ζ ± + ϵ d sin 2 ζ ± ) 0 0 ϵ 0 ( ϵ c sin 2 ζ ± + ϵ d cos 2 ζ ± ) h ϵ 0 ( ϵ c ϵ d ) cos ζ ± sin ζ ± 0 0 ] + κ ϵ d ( ϵ a ϵ b ) ϵ a ϵ b sin χ cos χ [ cos ζ ± h sin ζ ± 0 0 0 0 0 0 0 0 0 h sin ζ ± 0 0 0 cos ζ ± ] + [ 0 0 0 κ 2 ω ϵ 0 ϵ d ϵ a ϵ b 0 0 0 0 0 κ 2 ω μ 0 0 0 0 0 0 0 ] ,
ϵ d = ϵ a ϵ b ϵ a cos 2 χ + ϵ b sin 2 χ .
{ [ f ̱ ( 2 Ω ) ] = [ N ͇ + ] [ f ̱ ( 0 + ) ] [ f ̱ ( 2 Ω ) ] = [ N ͇ ] [ f ̱ ( 0 ) ] }
{ [ N ͇ + ] = exp { i 2 Ω [ Q ͇ + ] } [ N ͇ ] = exp { i 2 Ω [ Q ͇ ] } } .
α n ± = i ln σ n ± 2 Ω .
[ f ̱ ( 0 + ) ] = [ [ t ̱ + ] ( 1 ) [ t ̱ + ] ( 2 ) ] [ A 1 A 2 ] ,
[ f ̱ ( 0 ) ] = [ [ t ̱ ] ( 1 ) [ t ̱ ] ( 2 ) ] [ B 1 B 2 ] ,
[ f ̱ ( 0 ) ] = [ f ̱ ( 0 + ) ] ,
[ M ͇ ] [ A 1 A 2 B 1 B 2 ] = [ 0 0 0 0 ] .
det [ M ͇ ] = 0
{ e a ( z ) = e a ( z ) h a ( z ) = h a ( z ) } , a { x , y , z } , z > 0 .
z n ± = ± 2 Ω ( n N ) , n [ 0 , N ] ,
[ W ͇ n ± ] = exp { ± i [ P ͇ ± ( z n 1 ± + z n ± 2 , κ ) ] 2 Ω N } , n [ 1 , N ] ,
[ N ͇ ± ] [ W ͇ N ± ] [ W ͇ N 1 ± ] [ W ͇ 2 ± ] [ W ͇ 1 ± ] .
[ f ̱ ( z n ± ) ] = [ e x ( z n ± ) e y ( z n ± ) h x ( z n ± ) h y ( z n ± ) ] [ W ͇ n ± ] [ W ͇ n 1 ± ] [ W ͇ 2 ± ] [ W ͇ 1 ± ] [ f ( 0 ± ) ] ,
n [ 1 , ) ,
h z ( z n ± ) = ( κ ω μ o ) e y ( z n ± ) , n [ 1 , ) ,
e z ( z n ± ) = ( ϵ d ϵ a ϵ b ) { ( κ ω ϵ o ) h y ( z n ± ) + ( ϵ a ϵ b ) sin 2 χ 2 [ e x ( z n ± ) cos ( z n ± ± γ ) + h e y ( z n ± ) sin ( z n ± ± γ ) ] } , n [ 1 , ) .

Metrics