Abstract

A rigorous integral equation (IE) analysis of the interaction between a surface plasmon polariton (SPP) and a circular dielectric cavity embedded in a metal half-space is presented. The device is addressed as the plasmonic counterpart of the established integrated optics filter comprising a whispering gallery (WG) resonator coupled to a waveguide. The mathematical formulation is that of a transverse magnetic scattering problem. Using a magnetic-type Green’s function of the two-layer medium with boundary conditions that cancel the line integral contributions along the interface, an IE for the magnetic field inside the cavity is obtained. The IE is treated through an entire-domain method of moments (MoM) with cylindrical-harmonic basis functions. The entries of the MoM matrix are determined analytically by utilizing the inverse Fourier transform of Green’s function and the Jacobi–Anger formula for interchanging between plane and cylindrical waves. Complex analysis techniques are applied to determine the transmitted, reflected, and radiated field quantities in series forms. The numerical results show that the scattered SPPs’ spectra exhibit pronounced wavelength selectivity that is related to the excitation of WG-like cavity modes. It seems feasible to exploit the device as a bandstop or reflective filter or even as an efficient radiating element. In addition, the dependence of transmission on the cavity refractive index endows this structure with a sensing functionality.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475-477 (1997).
    [CrossRef] [PubMed]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189-193 (2006).
    [CrossRef] [PubMed]
  3. K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158-1160 (2003).
    [CrossRef]
  4. D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323-6325 (2004).
    [CrossRef]
  5. Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259, 690-695 (2006).
    [CrossRef]
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508-511 (2006).
    [CrossRef] [PubMed]
  7. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14, 2932-2937 (2006).
    [CrossRef] [PubMed]
  8. A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90, 181102 (2007).
    [CrossRef]
  9. D. G. Rabus, Integrated Ring Resonators: The Compendium (Springer, 2007).
  10. J.B.Khurgin and R.S.Tucker, eds. Slow Light: Science and Applications (CRC Press2009).
  11. V. S. Volkov and S. I. Bozhevolnyi, “Waveguide-ring resonator-based photonic components utilizing channel plasmon polaritons,” Proc. SPIE 6896, 68960M (2008).
    [CrossRef]
  12. H.-M. Gong, L. Zhou, X.-R. Su, S. Xiao, S.-D. Liu, and Q.-Q. Wang, “Illuminating dark plasmons of silver nanoantenna rings to enhance exciton-plasmon interactions,” Adv. Function. Mat. 19, 298-303 (2009).
    [CrossRef]
  13. F. Hao, P. Nordlander, M. T. Burnett, and S. A. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B 76, 245417 (2007).
    [CrossRef]
  14. F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano. 3, 643-652 (2009).
    [CrossRef] [PubMed]
  15. A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Fabrication and tuning of nanoscale metallic ring and split-ring arrays,” J. Vac. Sci. Technol. B 25, 2628-2631 (2007).
    [CrossRef]
  16. R.-L. Chern, “Magnetic and surface plasmon resonances for periodic lattices of plasmonic split-ring resonators,” Phys. Rev. B 78, 085116 (2008).
    [CrossRef]
  17. Y.-T. Chang, D.-C. Tzuang, Y.-T. Wu, C.-F. Chan, Y.-H. Ye, T.-H. Hung, Y.-F. Chen, and S.-C. Lee, “Surface plasmon on aluminum concentric rings arranged in a long-range periodic structure,” Appl. Phys. Lett. 92, 253111 (2008).
    [CrossRef]
  18. J. Sone, J. Fujita, Y. Ochiai, S. Manako, S. Matsui, E. Nomura, T. Baba, H. Kawaura, T. Sakamoto, C. D. Chen, Y. Nakamura, and J. S. Tsai, “Nanofabrication toward sub-10 nm and its application to novel nanodevices,” Nanotechnology 10, 135-141 (1999).
    [CrossRef]
  19. C. A. Volkert and A. M. Minor, “Focused ion beam microscopy and micromachining,” MRS Bull. 32, 389-399 (2007).
    [CrossRef]
  20. S. V. Boriskina and A. I. Nosich, “Radiation and absorption losses of the whispering-gallery-mode dielectric resonators excited by a dielectric waveguide,” IEEE Trans. Microwave Theory Tech. 47, 224-231 (1999).
    [CrossRef]
  21. J. A. Sánchez-Gil and A. A. Maradudin, “Near-field and far-field scattering of surface plasmon polaritons by one-dimensional surface defects,” Phys. Rev. B 60, 8359-8367 (1999).
    [CrossRef]
  22. A. Yu. Nikitin, F. López-Tejeira, and L. Martín-Moreno, “Scattering of surface plasmon polaritons by one-dimensional inhomogeneities,” Phys. Rev. B 75, 035129 (2007).
    [CrossRef]
  23. F. Pincemin, A. A. Maradudin, A. D. Boardman, and J.-J. Greffet, “Scattering of a surface plasmon polariton by a surface defect,” Phys. Rev. B 50, 15261-15275 (1994).
    [CrossRef]
  24. A. B. Evlyukhin, G. Brucoli, L. Martín-Moreno, S. I Bozhevolnyi, and F. J. García-Vidal, “Surface plasmon polariton scattering by finite-size nanoparticles,” Phys. Rev. B 76, 075426 (2007).
    [CrossRef]
  25. X.-S. Lin and X.-G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometric sizes,” Opt. Lett. 33, 2874-2876 (2008).
    [CrossRef] [PubMed]
  26. A. L. Cullen, “Reflection from cylinder in surface-wave field,” Electron. Lett. 11, 479-480 (1975).
    [CrossRef]
  27. A. Nosich, “Radiation conditions, limiting absorption principle, and general relations in open waveguide scattering,” J. Electromagn. Waves Appl. 8, 329-353 (1994).
    [CrossRef]
  28. W. C. Chew, Waves and Fields in Inhomogenous Media, 2nd ed. (Wiley-IEEE Press, 1999).
    [CrossRef]
  29. R. F. Harrington, Field Computation by Moment Methods (IEEE Press, 1993).
    [CrossRef]
  30. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1972).
  31. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  32. S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154-2165 (1997).
    [CrossRef]
  33. I. D. Chremmos and N. K. Uzunoglu, “Transmission and radiation in a slab waveguide coupled to a whispering gallery resonator: volume integral equation analysis,” J. Opt. Soc. Am. A 21, 839-846 (2004).
    [CrossRef]
  34. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15, 7888-7893 (2007).
    [CrossRef] [PubMed]
  35. S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Effect of a layered environment on the complex natural frequencies of two-dimensional WGM dielectric-ring resonators,” J. Lightwave Technol. 20, 1563-1572 (2002).
    [CrossRef]
  36. A. I. Nosich, “Method of analytical regularization in wave-scattering and eigenvalue problems: foundations and review of solutions,” IEEE Antennas Propag. Mag. 41, 34-39 (1999).
    [CrossRef]

2009 (2)

H.-M. Gong, L. Zhou, X.-R. Su, S. Xiao, S.-D. Liu, and Q.-Q. Wang, “Illuminating dark plasmons of silver nanoantenna rings to enhance exciton-plasmon interactions,” Adv. Function. Mat. 19, 298-303 (2009).
[CrossRef]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano. 3, 643-652 (2009).
[CrossRef] [PubMed]

2008 (4)

R.-L. Chern, “Magnetic and surface plasmon resonances for periodic lattices of plasmonic split-ring resonators,” Phys. Rev. B 78, 085116 (2008).
[CrossRef]

Y.-T. Chang, D.-C. Tzuang, Y.-T. Wu, C.-F. Chan, Y.-H. Ye, T.-H. Hung, Y.-F. Chen, and S.-C. Lee, “Surface plasmon on aluminum concentric rings arranged in a long-range periodic structure,” Appl. Phys. Lett. 92, 253111 (2008).
[CrossRef]

V. S. Volkov and S. I. Bozhevolnyi, “Waveguide-ring resonator-based photonic components utilizing channel plasmon polaritons,” Proc. SPIE 6896, 68960M (2008).
[CrossRef]

X.-S. Lin and X.-G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometric sizes,” Opt. Lett. 33, 2874-2876 (2008).
[CrossRef] [PubMed]

2007 (7)

F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15, 7888-7893 (2007).
[CrossRef] [PubMed]

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90, 181102 (2007).
[CrossRef]

F. Hao, P. Nordlander, M. T. Burnett, and S. A. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B 76, 245417 (2007).
[CrossRef]

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Fabrication and tuning of nanoscale metallic ring and split-ring arrays,” J. Vac. Sci. Technol. B 25, 2628-2631 (2007).
[CrossRef]

C. A. Volkert and A. M. Minor, “Focused ion beam microscopy and micromachining,” MRS Bull. 32, 389-399 (2007).
[CrossRef]

A. Yu. Nikitin, F. López-Tejeira, and L. Martín-Moreno, “Scattering of surface plasmon polaritons by one-dimensional inhomogeneities,” Phys. Rev. B 75, 035129 (2007).
[CrossRef]

A. B. Evlyukhin, G. Brucoli, L. Martín-Moreno, S. I Bozhevolnyi, and F. J. García-Vidal, “Surface plasmon polariton scattering by finite-size nanoparticles,” Phys. Rev. B 76, 075426 (2007).
[CrossRef]

2006 (4)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189-193 (2006).
[CrossRef] [PubMed]

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259, 690-695 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14, 2932-2937 (2006).
[CrossRef] [PubMed]

2004 (2)

D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323-6325 (2004).
[CrossRef]

I. D. Chremmos and N. K. Uzunoglu, “Transmission and radiation in a slab waveguide coupled to a whispering gallery resonator: volume integral equation analysis,” J. Opt. Soc. Am. A 21, 839-846 (2004).
[CrossRef]

2003 (1)

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158-1160 (2003).
[CrossRef]

2002 (1)

1999 (4)

A. I. Nosich, “Method of analytical regularization in wave-scattering and eigenvalue problems: foundations and review of solutions,” IEEE Antennas Propag. Mag. 41, 34-39 (1999).
[CrossRef]

S. V. Boriskina and A. I. Nosich, “Radiation and absorption losses of the whispering-gallery-mode dielectric resonators excited by a dielectric waveguide,” IEEE Trans. Microwave Theory Tech. 47, 224-231 (1999).
[CrossRef]

J. A. Sánchez-Gil and A. A. Maradudin, “Near-field and far-field scattering of surface plasmon polaritons by one-dimensional surface defects,” Phys. Rev. B 60, 8359-8367 (1999).
[CrossRef]

J. Sone, J. Fujita, Y. Ochiai, S. Manako, S. Matsui, E. Nomura, T. Baba, H. Kawaura, T. Sakamoto, C. D. Chen, Y. Nakamura, and J. S. Tsai, “Nanofabrication toward sub-10 nm and its application to novel nanodevices,” Nanotechnology 10, 135-141 (1999).
[CrossRef]

1997 (2)

J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475-477 (1997).
[CrossRef] [PubMed]

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154-2165 (1997).
[CrossRef]

1994 (2)

A. Nosich, “Radiation conditions, limiting absorption principle, and general relations in open waveguide scattering,” J. Electromagn. Waves Appl. 8, 329-353 (1994).
[CrossRef]

F. Pincemin, A. A. Maradudin, A. D. Boardman, and J.-J. Greffet, “Scattering of a surface plasmon polariton by a surface defect,” Phys. Rev. B 50, 15261-15275 (1994).
[CrossRef]

1975 (1)

A. L. Cullen, “Reflection from cylinder in surface-wave field,” Electron. Lett. 11, 479-480 (1975).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Abramowitz, M.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1972).

Baba, T.

J. Sone, J. Fujita, Y. Ochiai, S. Manako, S. Matsui, E. Nomura, T. Baba, H. Kawaura, T. Sakamoto, C. D. Chen, Y. Nakamura, and J. S. Tsai, “Nanofabrication toward sub-10 nm and its application to novel nanodevices,” Nanotechnology 10, 135-141 (1999).
[CrossRef]

Benson, T. M.

Boardman, A. D.

F. Pincemin, A. A. Maradudin, A. D. Boardman, and J.-J. Greffet, “Scattering of a surface plasmon polariton by a surface defect,” Phys. Rev. B 50, 15261-15275 (1994).
[CrossRef]

Boriskina, S. V.

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Effect of a layered environment on the complex natural frequencies of two-dimensional WGM dielectric-ring resonators,” J. Lightwave Technol. 20, 1563-1572 (2002).
[CrossRef]

S. V. Boriskina and A. I. Nosich, “Radiation and absorption losses of the whispering-gallery-mode dielectric resonators excited by a dielectric waveguide,” IEEE Trans. Microwave Theory Tech. 47, 224-231 (1999).
[CrossRef]

Bozhevolnyi, S. I

A. B. Evlyukhin, G. Brucoli, L. Martín-Moreno, S. I Bozhevolnyi, and F. J. García-Vidal, “Surface plasmon polariton scattering by finite-size nanoparticles,” Phys. Rev. B 76, 075426 (2007).
[CrossRef]

Bozhevolnyi, S. I.

V. S. Volkov and S. I. Bozhevolnyi, “Waveguide-ring resonator-based photonic components utilizing channel plasmon polaritons,” Proc. SPIE 6896, 68960M (2008).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Brambilla, G.

Brucoli, G.

A. B. Evlyukhin, G. Brucoli, L. Martín-Moreno, S. I Bozhevolnyi, and F. J. García-Vidal, “Surface plasmon polariton scattering by finite-size nanoparticles,” Phys. Rev. B 76, 075426 (2007).
[CrossRef]

Burnett, M. T.

F. Hao, P. Nordlander, M. T. Burnett, and S. A. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B 76, 245417 (2007).
[CrossRef]

Chan, C.-F.

Y.-T. Chang, D.-C. Tzuang, Y.-T. Wu, C.-F. Chan, Y.-H. Ye, T.-H. Hung, Y.-F. Chen, and S.-C. Lee, “Surface plasmon on aluminum concentric rings arranged in a long-range periodic structure,” Appl. Phys. Lett. 92, 253111 (2008).
[CrossRef]

Chang, Y.-T.

Y.-T. Chang, D.-C. Tzuang, Y.-T. Wu, C.-F. Chan, Y.-H. Ye, T.-H. Hung, Y.-F. Chen, and S.-C. Lee, “Surface plasmon on aluminum concentric rings arranged in a long-range periodic structure,” Appl. Phys. Lett. 92, 253111 (2008).
[CrossRef]

Chen, C. D.

J. Sone, J. Fujita, Y. Ochiai, S. Manako, S. Matsui, E. Nomura, T. Baba, H. Kawaura, T. Sakamoto, C. D. Chen, Y. Nakamura, and J. S. Tsai, “Nanofabrication toward sub-10 nm and its application to novel nanodevices,” Nanotechnology 10, 135-141 (1999).
[CrossRef]

Chen, Y.-F.

Y.-T. Chang, D.-C. Tzuang, Y.-T. Wu, C.-F. Chan, Y.-H. Ye, T.-H. Hung, Y.-F. Chen, and S.-C. Lee, “Surface plasmon on aluminum concentric rings arranged in a long-range periodic structure,” Appl. Phys. Lett. 92, 253111 (2008).
[CrossRef]

Chern, R.-L.

R.-L. Chern, “Magnetic and surface plasmon resonances for periodic lattices of plasmonic split-ring resonators,” Phys. Rev. B 78, 085116 (2008).
[CrossRef]

Chew, W. C.

W. C. Chew, Waves and Fields in Inhomogenous Media, 2nd ed. (Wiley-IEEE Press, 1999).
[CrossRef]

Chremmos, I. D.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Clark, A. W.

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Fabrication and tuning of nanoscale metallic ring and split-ring arrays,” J. Vac. Sci. Technol. B 25, 2628-2631 (2007).
[CrossRef]

Cooper, J. M.

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Fabrication and tuning of nanoscale metallic ring and split-ring arrays,” J. Vac. Sci. Technol. B 25, 2628-2631 (2007).
[CrossRef]

Cullen, A. L.

A. L. Cullen, “Reflection from cylinder in surface-wave field,” Electron. Lett. 11, 479-480 (1975).
[CrossRef]

Cumming, D. R. S.

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Fabrication and tuning of nanoscale metallic ring and split-ring arrays,” J. Vac. Sci. Technol. B 25, 2628-2631 (2007).
[CrossRef]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Evlyukhin, A. B.

A. B. Evlyukhin, G. Brucoli, L. Martín-Moreno, S. I Bozhevolnyi, and F. J. García-Vidal, “Surface plasmon polariton scattering by finite-size nanoparticles,” Phys. Rev. B 76, 075426 (2007).
[CrossRef]

Forsberg, E.

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259, 690-695 (2006).
[CrossRef]

Fujita, J.

J. Sone, J. Fujita, Y. Ochiai, S. Manako, S. Matsui, E. Nomura, T. Baba, H. Kawaura, T. Sakamoto, C. D. Chen, Y. Nakamura, and J. S. Tsai, “Nanofabrication toward sub-10 nm and its application to novel nanodevices,” Nanotechnology 10, 135-141 (1999).
[CrossRef]

García-Vidal, F. J.

A. B. Evlyukhin, G. Brucoli, L. Martín-Moreno, S. I Bozhevolnyi, and F. J. García-Vidal, “Surface plasmon polariton scattering by finite-size nanoparticles,” Phys. Rev. B 76, 075426 (2007).
[CrossRef]

Glidle, A.

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Fabrication and tuning of nanoscale metallic ring and split-ring arrays,” J. Vac. Sci. Technol. B 25, 2628-2631 (2007).
[CrossRef]

Gong, H.-M.

H.-M. Gong, L. Zhou, X.-R. Su, S. Xiao, S.-D. Liu, and Q.-Q. Wang, “Illuminating dark plasmons of silver nanoantenna rings to enhance exciton-plasmon interactions,” Adv. Function. Mat. 19, 298-303 (2009).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323-6325 (2004).
[CrossRef]

Greffet, J.-J.

F. Pincemin, A. A. Maradudin, A. D. Boardman, and J.-J. Greffet, “Scattering of a surface plasmon polariton by a surface defect,” Phys. Rev. B 50, 15261-15275 (1994).
[CrossRef]

Hagness, S. C.

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154-2165 (1997).
[CrossRef]

Han, Z.

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259, 690-695 (2006).
[CrossRef]

Hao, F.

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano. 3, 643-652 (2009).
[CrossRef] [PubMed]

F. Hao, P. Nordlander, M. T. Burnett, and S. A. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B 76, 245417 (2007).
[CrossRef]

Harrington, R. F.

R. F. Harrington, Field Computation by Moment Methods (IEEE Press, 1993).
[CrossRef]

Ho, S. T.

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154-2165 (1997).
[CrossRef]

Horak, P.

Hosseini, A.

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90, 181102 (2007).
[CrossRef]

Huang, X.-G.

Hung, T.-H.

Y.-T. Chang, D.-C. Tzuang, Y.-T. Wu, C.-F. Chan, Y.-H. Ye, T.-H. Hung, Y.-F. Chen, and S.-C. Lee, “Surface plasmon on aluminum concentric rings arranged in a long-range periodic structure,” Appl. Phys. Lett. 92, 253111 (2008).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Kawaura, H.

J. Sone, J. Fujita, Y. Ochiai, S. Manako, S. Matsui, E. Nomura, T. Baba, H. Kawaura, T. Sakamoto, C. D. Chen, Y. Nakamura, and J. S. Tsai, “Nanofabrication toward sub-10 nm and its application to novel nanodevices,” Nanotechnology 10, 135-141 (1999).
[CrossRef]

Kobayashi, T.

Laluet, J.-Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Lee, S.-C.

Y.-T. Chang, D.-C. Tzuang, Y.-T. Wu, C.-F. Chan, Y.-H. Ye, T.-H. Hung, Y.-F. Chen, and S.-C. Lee, “Surface plasmon on aluminum concentric rings arranged in a long-range periodic structure,” Appl. Phys. Lett. 92, 253111 (2008).
[CrossRef]

Lin, X.-S.

Liu, L.

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259, 690-695 (2006).
[CrossRef]

S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14, 2932-2937 (2006).
[CrossRef] [PubMed]

Liu, S.-D.

H.-M. Gong, L. Zhou, X.-R. Su, S. Xiao, S.-D. Liu, and Q.-Q. Wang, “Illuminating dark plasmons of silver nanoantenna rings to enhance exciton-plasmon interactions,” Adv. Function. Mat. 19, 298-303 (2009).
[CrossRef]

López-Tejeira, F.

A. Yu. Nikitin, F. López-Tejeira, and L. Martín-Moreno, “Scattering of surface plasmon polaritons by one-dimensional inhomogeneities,” Phys. Rev. B 75, 035129 (2007).
[CrossRef]

Maier, S. A.

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano. 3, 643-652 (2009).
[CrossRef] [PubMed]

F. Hao, P. Nordlander, M. T. Burnett, and S. A. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B 76, 245417 (2007).
[CrossRef]

Manako, S.

J. Sone, J. Fujita, Y. Ochiai, S. Manako, S. Matsui, E. Nomura, T. Baba, H. Kawaura, T. Sakamoto, C. D. Chen, Y. Nakamura, and J. S. Tsai, “Nanofabrication toward sub-10 nm and its application to novel nanodevices,” Nanotechnology 10, 135-141 (1999).
[CrossRef]

Maradudin, A. A.

J. A. Sánchez-Gil and A. A. Maradudin, “Near-field and far-field scattering of surface plasmon polaritons by one-dimensional surface defects,” Phys. Rev. B 60, 8359-8367 (1999).
[CrossRef]

F. Pincemin, A. A. Maradudin, A. D. Boardman, and J.-J. Greffet, “Scattering of a surface plasmon polariton by a surface defect,” Phys. Rev. B 50, 15261-15275 (1994).
[CrossRef]

Martín-Moreno, L.

A. Yu. Nikitin, F. López-Tejeira, and L. Martín-Moreno, “Scattering of surface plasmon polaritons by one-dimensional inhomogeneities,” Phys. Rev. B 75, 035129 (2007).
[CrossRef]

A. B. Evlyukhin, G. Brucoli, L. Martín-Moreno, S. I Bozhevolnyi, and F. J. García-Vidal, “Surface plasmon polariton scattering by finite-size nanoparticles,” Phys. Rev. B 76, 075426 (2007).
[CrossRef]

Massoud, Y.

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90, 181102 (2007).
[CrossRef]

Matsui, S.

J. Sone, J. Fujita, Y. Ochiai, S. Manako, S. Matsui, E. Nomura, T. Baba, H. Kawaura, T. Sakamoto, C. D. Chen, Y. Nakamura, and J. S. Tsai, “Nanofabrication toward sub-10 nm and its application to novel nanodevices,” Nanotechnology 10, 135-141 (1999).
[CrossRef]

Minor, A. M.

C. A. Volkert and A. M. Minor, “Focused ion beam microscopy and micromachining,” MRS Bull. 32, 389-399 (2007).
[CrossRef]

Morimoto, A.

Nakamura, Y.

J. Sone, J. Fujita, Y. Ochiai, S. Manako, S. Matsui, E. Nomura, T. Baba, H. Kawaura, T. Sakamoto, C. D. Chen, Y. Nakamura, and J. S. Tsai, “Nanofabrication toward sub-10 nm and its application to novel nanodevices,” Nanotechnology 10, 135-141 (1999).
[CrossRef]

Nomura, E.

J. Sone, J. Fujita, Y. Ochiai, S. Manako, S. Matsui, E. Nomura, T. Baba, H. Kawaura, T. Sakamoto, C. D. Chen, Y. Nakamura, and J. S. Tsai, “Nanofabrication toward sub-10 nm and its application to novel nanodevices,” Nanotechnology 10, 135-141 (1999).
[CrossRef]

Nordlander, P.

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano. 3, 643-652 (2009).
[CrossRef] [PubMed]

F. Hao, P. Nordlander, M. T. Burnett, and S. A. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B 76, 245417 (2007).
[CrossRef]

Nosich, A.

A. Nosich, “Radiation conditions, limiting absorption principle, and general relations in open waveguide scattering,” J. Electromagn. Waves Appl. 8, 329-353 (1994).
[CrossRef]

Nosich, A. I.

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Effect of a layered environment on the complex natural frequencies of two-dimensional WGM dielectric-ring resonators,” J. Lightwave Technol. 20, 1563-1572 (2002).
[CrossRef]

S. V. Boriskina and A. I. Nosich, “Radiation and absorption losses of the whispering-gallery-mode dielectric resonators excited by a dielectric waveguide,” IEEE Trans. Microwave Theory Tech. 47, 224-231 (1999).
[CrossRef]

A. I. Nosich, “Method of analytical regularization in wave-scattering and eigenvalue problems: foundations and review of solutions,” IEEE Antennas Propag. Mag. 41, 34-39 (1999).
[CrossRef]

Ochiai, Y.

J. Sone, J. Fujita, Y. Ochiai, S. Manako, S. Matsui, E. Nomura, T. Baba, H. Kawaura, T. Sakamoto, C. D. Chen, Y. Nakamura, and J. S. Tsai, “Nanofabrication toward sub-10 nm and its application to novel nanodevices,” Nanotechnology 10, 135-141 (1999).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189-193 (2006).
[CrossRef] [PubMed]

Pile, D. F. P.

D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323-6325 (2004).
[CrossRef]

Pincemin, F.

F. Pincemin, A. A. Maradudin, A. D. Boardman, and J.-J. Greffet, “Scattering of a surface plasmon polariton by a surface defect,” Phys. Rev. B 50, 15261-15275 (1994).
[CrossRef]

Qiu, M.

Rabus, D. G.

D. G. Rabus, Integrated Ring Resonators: The Compendium (Springer, 2007).

Rafizadeh, D.

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154-2165 (1997).
[CrossRef]

Sakamoto, T.

J. Sone, J. Fujita, Y. Ochiai, S. Manako, S. Matsui, E. Nomura, T. Baba, H. Kawaura, T. Sakamoto, C. D. Chen, Y. Nakamura, and J. S. Tsai, “Nanofabrication toward sub-10 nm and its application to novel nanodevices,” Nanotechnology 10, 135-141 (1999).
[CrossRef]

Sánchez-Gil, J. A.

J. A. Sánchez-Gil and A. A. Maradudin, “Near-field and far-field scattering of surface plasmon polaritons by one-dimensional surface defects,” Phys. Rev. B 60, 8359-8367 (1999).
[CrossRef]

Sewell, P.

Sheridan, A. K.

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Fabrication and tuning of nanoscale metallic ring and split-ring arrays,” J. Vac. Sci. Technol. B 25, 2628-2631 (2007).
[CrossRef]

Sone, J.

J. Sone, J. Fujita, Y. Ochiai, S. Manako, S. Matsui, E. Nomura, T. Baba, H. Kawaura, T. Sakamoto, C. D. Chen, Y. Nakamura, and J. S. Tsai, “Nanofabrication toward sub-10 nm and its application to novel nanodevices,” Nanotechnology 10, 135-141 (1999).
[CrossRef]

Sonnefraud, Y.

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano. 3, 643-652 (2009).
[CrossRef] [PubMed]

Stegun, I. A.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1972).

Su, X.-R.

H.-M. Gong, L. Zhou, X.-R. Su, S. Xiao, S.-D. Liu, and Q.-Q. Wang, “Illuminating dark plasmons of silver nanoantenna rings to enhance exciton-plasmon interactions,” Adv. Function. Mat. 19, 298-303 (2009).
[CrossRef]

Taflove, A.

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154-2165 (1997).
[CrossRef]

Takahara, J.

Taki, H.

Tanaka, K.

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158-1160 (2003).
[CrossRef]

Tanaka, M.

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158-1160 (2003).
[CrossRef]

Tsai, J. S.

J. Sone, J. Fujita, Y. Ochiai, S. Manako, S. Matsui, E. Nomura, T. Baba, H. Kawaura, T. Sakamoto, C. D. Chen, Y. Nakamura, and J. S. Tsai, “Nanofabrication toward sub-10 nm and its application to novel nanodevices,” Nanotechnology 10, 135-141 (1999).
[CrossRef]

Tzuang, D.-C.

Y.-T. Chang, D.-C. Tzuang, Y.-T. Wu, C.-F. Chan, Y.-H. Ye, T.-H. Hung, Y.-F. Chen, and S.-C. Lee, “Surface plasmon on aluminum concentric rings arranged in a long-range periodic structure,” Appl. Phys. Lett. 92, 253111 (2008).
[CrossRef]

Uzunoglu, N. K.

Van Dorpe, P.

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano. 3, 643-652 (2009).
[CrossRef] [PubMed]

Volkert, C. A.

C. A. Volkert and A. M. Minor, “Focused ion beam microscopy and micromachining,” MRS Bull. 32, 389-399 (2007).
[CrossRef]

Volkov, V. S.

V. S. Volkov and S. I. Bozhevolnyi, “Waveguide-ring resonator-based photonic components utilizing channel plasmon polaritons,” Proc. SPIE 6896, 68960M (2008).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Wang, Q.-Q.

H.-M. Gong, L. Zhou, X.-R. Su, S. Xiao, S.-D. Liu, and Q.-Q. Wang, “Illuminating dark plasmons of silver nanoantenna rings to enhance exciton-plasmon interactions,” Adv. Function. Mat. 19, 298-303 (2009).
[CrossRef]

Wu, Y.-T.

Y.-T. Chang, D.-C. Tzuang, Y.-T. Wu, C.-F. Chan, Y.-H. Ye, T.-H. Hung, Y.-F. Chen, and S.-C. Lee, “Surface plasmon on aluminum concentric rings arranged in a long-range periodic structure,” Appl. Phys. Lett. 92, 253111 (2008).
[CrossRef]

Xiao, S.

H.-M. Gong, L. Zhou, X.-R. Su, S. Xiao, S.-D. Liu, and Q.-Q. Wang, “Illuminating dark plasmons of silver nanoantenna rings to enhance exciton-plasmon interactions,” Adv. Function. Mat. 19, 298-303 (2009).
[CrossRef]

S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14, 2932-2937 (2006).
[CrossRef] [PubMed]

Xu, F.

Yamagishi, S.

Ye, Y.-H.

Y.-T. Chang, D.-C. Tzuang, Y.-T. Wu, C.-F. Chan, Y.-H. Ye, T.-H. Hung, Y.-F. Chen, and S.-C. Lee, “Surface plasmon on aluminum concentric rings arranged in a long-range periodic structure,” Appl. Phys. Lett. 92, 253111 (2008).
[CrossRef]

Yu. Nikitin, A.

A. Yu. Nikitin, F. López-Tejeira, and L. Martín-Moreno, “Scattering of surface plasmon polaritons by one-dimensional inhomogeneities,” Phys. Rev. B 75, 035129 (2007).
[CrossRef]

Zhou, L.

H.-M. Gong, L. Zhou, X.-R. Su, S. Xiao, S.-D. Liu, and Q.-Q. Wang, “Illuminating dark plasmons of silver nanoantenna rings to enhance exciton-plasmon interactions,” Adv. Function. Mat. 19, 298-303 (2009).
[CrossRef]

ACS Nano. (1)

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano. 3, 643-652 (2009).
[CrossRef] [PubMed]

Adv. Function. Mat. (1)

H.-M. Gong, L. Zhou, X.-R. Su, S. Xiao, S.-D. Liu, and Q.-Q. Wang, “Illuminating dark plasmons of silver nanoantenna rings to enhance exciton-plasmon interactions,” Adv. Function. Mat. 19, 298-303 (2009).
[CrossRef]

Appl. Phys. Lett. (4)

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90, 181102 (2007).
[CrossRef]

Y.-T. Chang, D.-C. Tzuang, Y.-T. Wu, C.-F. Chan, Y.-H. Ye, T.-H. Hung, Y.-F. Chen, and S.-C. Lee, “Surface plasmon on aluminum concentric rings arranged in a long-range periodic structure,” Appl. Phys. Lett. 92, 253111 (2008).
[CrossRef]

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158-1160 (2003).
[CrossRef]

D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323-6325 (2004).
[CrossRef]

Electron. Lett. (1)

A. L. Cullen, “Reflection from cylinder in surface-wave field,” Electron. Lett. 11, 479-480 (1975).
[CrossRef]

IEEE Antennas Propag. Mag. (1)

A. I. Nosich, “Method of analytical regularization in wave-scattering and eigenvalue problems: foundations and review of solutions,” IEEE Antennas Propag. Mag. 41, 34-39 (1999).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

S. V. Boriskina and A. I. Nosich, “Radiation and absorption losses of the whispering-gallery-mode dielectric resonators excited by a dielectric waveguide,” IEEE Trans. Microwave Theory Tech. 47, 224-231 (1999).
[CrossRef]

J. Electromagn. Waves Appl. (1)

A. Nosich, “Radiation conditions, limiting absorption principle, and general relations in open waveguide scattering,” J. Electromagn. Waves Appl. 8, 329-353 (1994).
[CrossRef]

J. Lightwave Technol. (2)

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Effect of a layered environment on the complex natural frequencies of two-dimensional WGM dielectric-ring resonators,” J. Lightwave Technol. 20, 1563-1572 (2002).
[CrossRef]

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154-2165 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. B (1)

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Fabrication and tuning of nanoscale metallic ring and split-ring arrays,” J. Vac. Sci. Technol. B 25, 2628-2631 (2007).
[CrossRef]

MRS Bull. (1)

C. A. Volkert and A. M. Minor, “Focused ion beam microscopy and micromachining,” MRS Bull. 32, 389-399 (2007).
[CrossRef]

Nanotechnology (1)

J. Sone, J. Fujita, Y. Ochiai, S. Manako, S. Matsui, E. Nomura, T. Baba, H. Kawaura, T. Sakamoto, C. D. Chen, Y. Nakamura, and J. S. Tsai, “Nanofabrication toward sub-10 nm and its application to novel nanodevices,” Nanotechnology 10, 135-141 (1999).
[CrossRef]

Nature (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Opt. Commun. (1)

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259, 690-695 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (7)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

R.-L. Chern, “Magnetic and surface plasmon resonances for periodic lattices of plasmonic split-ring resonators,” Phys. Rev. B 78, 085116 (2008).
[CrossRef]

F. Hao, P. Nordlander, M. T. Burnett, and S. A. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B 76, 245417 (2007).
[CrossRef]

J. A. Sánchez-Gil and A. A. Maradudin, “Near-field and far-field scattering of surface plasmon polaritons by one-dimensional surface defects,” Phys. Rev. B 60, 8359-8367 (1999).
[CrossRef]

A. Yu. Nikitin, F. López-Tejeira, and L. Martín-Moreno, “Scattering of surface plasmon polaritons by one-dimensional inhomogeneities,” Phys. Rev. B 75, 035129 (2007).
[CrossRef]

F. Pincemin, A. A. Maradudin, A. D. Boardman, and J.-J. Greffet, “Scattering of a surface plasmon polariton by a surface defect,” Phys. Rev. B 50, 15261-15275 (1994).
[CrossRef]

A. B. Evlyukhin, G. Brucoli, L. Martín-Moreno, S. I Bozhevolnyi, and F. J. García-Vidal, “Surface plasmon polariton scattering by finite-size nanoparticles,” Phys. Rev. B 76, 075426 (2007).
[CrossRef]

Proc. SPIE (1)

V. S. Volkov and S. I. Bozhevolnyi, “Waveguide-ring resonator-based photonic components utilizing channel plasmon polaritons,” Proc. SPIE 6896, 68960M (2008).
[CrossRef]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189-193 (2006).
[CrossRef] [PubMed]

Other (5)

W. C. Chew, Waves and Fields in Inhomogenous Media, 2nd ed. (Wiley-IEEE Press, 1999).
[CrossRef]

R. F. Harrington, Field Computation by Moment Methods (IEEE Press, 1993).
[CrossRef]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1972).

D. G. Rabus, Integrated Ring Resonators: The Compendium (Springer, 2007).

J.B.Khurgin and R.S.Tucker, eds. Slow Light: Science and Applications (CRC Press2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Metal–air SPP impinging on a discontinuous region formed by a circular dielectric cavity embedded in the metal. The scattering phenomenon gives rise to transmitted (T) and reflected (R) SPP modes and to radiation in both half-spaces.

Fig. 2
Fig. 2

Error functions e ( N ) for τ (solid curve) and c ̃ n = c n J n ( k d α ) (dashed curves) of a void cavity ( ϵ d = ϵ 0 ) with radius α = 800 nm centered at (1) x 0 = 805 nm , (2) x 0 = 810 nm , (3) x 0 = 820 nm , (4) x 0 = 830 nm , and (5) x 0 = 840 nm . λ = 600 nm .

Fig. 3
Fig. 3

Spectra of the transmitted (solid curve), reflected (dashed curve), and radiated in air (dotted curve) power fractions (in dB) for a void cavity with α = 800 nm centered at x 0 = 810 nm . The order of truncation is N = 35 . The mode numbers ( m , n ) of the various cavity resonances observed in the spectrum are indicated.

Fig. 4
Fig. 4

Magnitude of the magnetic field phasor H y inside the cavity at (a) λ = 652.4 nm , (b) λ = 588.8 nm , (c) λ = 540.6 nm , (d) λ = 648.2 nm , (e) λ = 562.4 nm , (f) λ = 606.6 nm , (g) λ = 520.4 nm , (h) λ = 510 nm . The cavity parameters are the same as in Fig. 3. The corresponding resonant modes ( m , n ) are indicated. The color scale is linear.

Fig. 5
Fig. 5

Amplitude of the normalized field expansion coefficients c ̃ n = c n J n ( k d α ) at λ = 588.8 nm and the cavity parameters of Fig. 3. The stronger harmonics n = ± 8 are indicated and imply the resonance of mode (8,1).

Fig. 6
Fig. 6

Radiation pattern in the upper half-space for a cavity with the parameters of Fig. 3 at λ = 580 nm (dashed loop), λ = 588.8 nm [outer solid loop, resonance (8,1)] and λ = 603 nm (inner solid loop).

Fig. 7
Fig. 7

Transmitted power (in dB, lower curves) and sensitivity (in 10 3 dB RIU , upper curves) versus n d at λ = 588.8 nm (solid curves) and λ = 540.6 nm (dashed curves). The remaining cavity parameters are the same as in Fig. 3.

Fig. 8
Fig. 8

Resonance wavelength of mode (8,1) versus n d for a cavity with radius α = 800 nm centered at (1) x 0 = 810 nm , (2) x 0 = 820 nm , and (3) x 0 = 830 nm .

Tables (1)

Tables Icon

Table 1 Mode Numbers and Their Corresponding Wavelengths Obtained from the Spectra of Fig. 3

Equations (39)

Equations on this page are rendered with MathJax. Learn more.

[ 2 + k 2 ( r ) ] G ( r , r ) = δ ( x x ) δ ( y y ) ,
k ( r ) = { k 0 , x > 0 k m , x < 0 } ,
| ϵ m G ( r , r ) | x 0 = | ϵ 0 G ( r , r ) | x 0 + ,
| G ( r , r ) x | x 0 = | G ( r , r ) x | x 0 + ,
( G r ( r , r ) G t ( r , r ) ) = + d k 4 π γ m ( k ) ( R ( k ) e γ m ( k ) x T ( k ) e γ 0 ( k ) x ) e j k ( z z ) + γ m ( k ) x ,
R ( k ) = γ m ϵ 0 γ 0 ϵ m γ m ϵ 0 + γ 0 ϵ m , T ( k ) = 2 γ m ϵ m γ m ϵ 0 + γ 0 ϵ m ,
[ H y scat ( r ) 2 G ( r , r ) G ( r , r ) 2 H y scat ( r ) ] d S = [ H y scat ( r ) G ( r , r ) G ( r , r ) H y scat ( r ) ] n ̂ out d l ,
[ 2 + k 2 ( r ) ] H y ( r ) = 0 ,
k ( r ) = { k 0 , x > 0 k d , ( x x 0 ) 2 + z 2 < α k m , x < 0 and ( x x 0 ) 2 + z 2 > α } ,
[ 2 + k 2 ( r ) ] H y inc ( r ) = 0 , k ( r ) = { k 0 , x > 0 k m , x < 0 } ,
H y ( r ) = H y inc ( r ) + ( k d 2 k m 2 ) C H y ( r ) G ( r , r ) d S + ( 1 ϵ m ϵ d ) C H y ( r ) n out G ( r , r ) d l ,
H y ( r ) = H y inc ( r ) + ( k d 2 k m 2 ) C G ( r , r ) H y ( r ) d S + ( 1 ϵ m ϵ d ) C G ( r , r ) H y ( r ) n out d l ,
H y ( r ) = n = + c n J n ( k d ρ ) e j n φ ,
G m ( r , r ) = j 4 H 0 ( 2 ) ( k m | r r | ) = j 4 p = + J p ( k m ρ < ) H p ( 2 ) ( k m ρ > ) e j p ( φ φ ) ,
( k d 2 k m 2 ) C G m ( r , r ) H y ( r ) ρ d ρ d φ + ( 1 ϵ m ϵ d ) C G m ( r , r ) H y ( r ) ρ α d φ = H y ( r ) π j 2 n = + c n ( K n + κ n ) J n ( k m ρ ) e j n φ ,
K n = ( k d α ) J n ( k d α ) H n ( 2 ) ( k m α ) + ( k m α ) J n ( k d α ) H n ( 2 ) ( k m α ) ,
κ n = ( 1 ϵ m ϵ d ) ( k d α ) J n ( k d α ) H n ( 2 ) ( k m α ) ,
e j k m ρ cos ( φ q ) = m = + j m J m ( k m ρ ) e j m ( φ q ) ,
( k d 2 k m 2 ) C G r ( r , r ) H y ( r ) ρ d ρ d φ + ( 1 ϵ m ϵ d ) C G r ( r , r ) H y ( r ) ρ α d φ = + d k R 2 γ m e j k z + γ m ( x + x 0 ) [ n = + c n ( L n + l n ) ( k γ m j k m ) n ] .
H y inc ( r ) = { e γ 0 ( β ) x j β z , x > 0 e + γ m ( β ) x j β z , x < 0 } ,
n = + c n [ π j ( K n + κ n ) δ ν n + ( L n + l n ) M ν n ] = 2 e γ m ( β ) x 0 ( β + γ m ( β ) j k m ) ν ,
M ν n = j ν n + d k R γ m e 2 γ m x 0 ( k γ m k m ) ν + n .
H y ( r ) = H y inc ( r ) + ϵ 0 ϵ m + d k S T 2 γ m e j k z γ 0 x ,
S ( k ) = e γ m x 0 n = + c n ( L n + l n ) ( k γ m j k m ) n .
( τ ρ ) = ± 2 π j × ( ϵ 0 ϵ m S ( β ) 2 γ m ( β ) Res | [ T ( k ) ] | k β ) = 2 π j γ 0 ( β ) S ( β ) β ( ϵ 0 ϵ m ϵ m 2 ϵ 0 2 ) ,
| H y ( r ) | r ( π j 2 k 0 ϵ 0 ϵ m ) ( S ( θ ) T ( θ ) cos θ γ m ( θ ) ) ( e j k 0 r k 0 r ) ,
P rad ( air ) = π ϵ 0 | ϵ m | 2 [ Re ( β ϵ m ) Re ( γ m ) + Re ( β ) ϵ 0 Re ( γ 0 ) ] 1 × π 2 π 2 | S ( θ ) T ( θ ) cos θ γ m ( θ ) k 0 | 2 d θ .
ϵ m ( ω ) = ϵ 0 ( ϵ ω p 2 ω 2 j γ ω ) ,
e τ ( N ) = | τ ( N + 1 ) τ ( N ) τ ( N ) | , e ρ ( N ) = | ρ ( N + 1 ) ρ ( N ) ρ ( N ) | ,
e ( N ) = ( n = N N | c n ( N + 1 ) c n ( N ) | 2 ) 1 2 ( n = N N | c n ( N ) | 2 ) 1 2
n = + c ̃ n [ δ ν n + A ν n ] = b ν ,
where A ν n = ( L n + l n ) J ν ( k d α ) π j ( K ν + κ ν ) J n ( k d α ) M ν n ,
b ν = 2 e γ m ( β ) x 0 ( β + γ m ( β ) j k m ) ν J ν ( k d α ) π j ( K ν + κ ν ) .
J n ( z ) 1 n ! ( z 2 ) n , H n ( 2 ) ( z ) j π ( n 1 ) ! ( 2 z ) n , n ,
L n + l n ( 1 ϵ m ϵ d ) ( k d k m α 2 4 ) | n | ( | n | ) ! ( | n | 1 ) ! , | n | ,
K n + κ n ( 1 + ϵ m ϵ d ) ( k d k m ) | n | , | n | .
| A ν m | Const. ( | ν + n | 1 ) ! ( | ν | ) ! ( | n | 1 ) ! ( | k m | α 2 ) | ν | + | n | ( | k m x 0 | ) | ν + n | .
| A ν m | Const. ( α | x 0 | ) | ν | + | n | .
| A ν m | Const. ( α 2 | x 0 | ) | n | ( | k m 2 x 0 | α 2 ) | ν | ( | ν | ) ! .

Metrics