Abstract

Model-based infrared reflectrometry (MBIR) has been introduced recently for characterization of high-aspect-ratio deep trench structures in microelectronics. The success of this technique relies heavily on accurate modeling of trench structures and fast extraction of trench parameters. In this paper, we propose a modeling method named corrected effective medium approximation (CEMA) for accurate and fast reflectivity calculation of deep trench structures. We also develop a method combining an artificial neural network (ANN) and a Levenberg–Marquardt (LM) algorithm for robust and fast extraction of geometric parameters from the measured reflectance spectrum. The simulation and experimental work conducted on typical deep trench structures has verified the proposed methods and demonstrated that the improved MBIR metrology achieves highly accurate measurement results as well as fast computation speed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Schroeder, S. Jakschik, A. Avellan, E. Erben, B. Hintze, R. Duschl, M. Kerber, A. Link, and A. Kersch, “Recent developments in ALD technology for 50 nm trench DRAM applications,” ECS Trans. 1, 125-132 (2006).
    [CrossRef]
  2. U. Rudolph, E. Weikmann, A. Kinne, A. Henke, P. VanHolt, S. Wege, A. Khan, S. Pamarthy, F. Schaftlein, and T. U. Lill, “Extending the capabilities of DRAM high aspect ratio trench etching,” in Proceedings of IEEE Conference on Advanced Semiconductor Manufacturing (IEEE, 2004), pp. 89-92.
  3. R. Srivastava, P. Yelehanka, H. A. Kek, S. L. Ng, V. Srinivasan, and R. Peltinov, “A novel approach to characterize trench depth and profile using the 3D tilt capability of a critical dimension-scanning electron microscope at 65 nm technology node,” Proc. SPIE 6152, 61524I (2006).
    [CrossRef]
  4. M. Watanabe, S. Baba, T. Nakata, T. Kurenuma, H. Kuroda, and T. Hiroki, “An advanced AFM sensor for high-aspect ratio pattern profile in-line measurement,” Proc. SPIE 6152, 61522A (2006).
    [CrossRef]
  5. E. Buhr, W. Michaelis, A. Diener, and W. Mirande, “Multi-wavelength VIS/UV optical diffractometer for high-accuracy calibration of nano-scale pitch standards,” Meas. Sci. Technol. 18, 667-674 (2007).
    [CrossRef]
  6. C. J. Raymond, M. Littau, R. Markle, and M. Purdy, “Scatterometry for shallow trench isolation (STI) process metrology,” Proc. SPIE 4344, 716-725 (2001).
    [CrossRef]
  7. A. A. Maznev, A. Mazurenko, C. A. Durán, and M. Gostein, “Measuring trench structures for microelectronics with model-based infrared reflectometry,” AIP Conf. Proc. 931, 74-78 (2007).
    [CrossRef]
  8. P. A. Rosenthal, C. A. Durán, J. Tower, and A. Mazurenko, “Model-based infrared metrology for advanced technology nodes and 300 mm wafer processing,” AIP Conf. Proc. 788, 620-624 (2005).
    [CrossRef]
  9. C. A. Durán, A. A. Maznev, G. T. Merklin, A. Mazurenko, and M. Gostein, “Infrared reflectometry for metrology of trenches in power devices,” in Proceedings of IEEE Conference on Advanced Semiconductor Manufacturing (IEEE, 2007), pp. 175-179.
  10. K. Chadan, D. Colton, L. Päivärinta, and W. Rundell, An Introduction to Inverse Scattering and Inverse Spectral Problems (SIAM, 1987).
  11. X. Niu, N. Jakatdar, J. Bao, and C. J. Spanos, “Specular spectroscopic scatterometry,” IEEE Trans. Semicond. Manuf. 14, 97-111 (2001).
    [CrossRef]
  12. R. T. Zheng, N. Q. Ngo, L. N. Binh, and S. C. Tjin, “Two-stage hybrid optimization of fiber Bragg gratings for design of linear phase filters,” J. Opt. Soc. Am. A 21, 2399-2405 (2004).
    [CrossRef]
  13. K. Hehl, J. Bischoff, U. Mohaupt, M. Palme, B. Schnabel, L. Wenke, R. Bödefeld, W. Theobald, E. Welsch, R. Sauerbrey, and H. Heyer, “High-efficiency dielectric reflection gratings: design, fabrication, and analysis,” Appl. Opt. 38, 6257-6271 (1999).
    [CrossRef]
  14. R. P. Lippmann, “An introduction to computing with neural nets,” IEEE ASSP Mag. 4, 4-22 (1987).
    [CrossRef]
  15. I. Gereige, S. Robert, S. Thiria, F. Badran, G. Granet, and J. J. Rousseau, “Recognition of diffraction-grating profile using a neural network classifier in optical scatterometry,” J. Opt. Soc. Am. A 25, 1661-1667 (2008).
    [CrossRef]
  16. B. Kaplan, T. Novikova, A. D. Martino, and B. Drévillon, “Characterization of bidimensional gratings by spectroscopic ellipsometry and angle-resolved Mueller polarimetry,” Appl. Opt. 43, 1233-1240 (2004).
    [CrossRef] [PubMed]
  17. G. E. Jellison, “Physics of optical metrology of silicon-based semiconductor devices,” in Handbook of Silicon Semiconductor Metrology, A.C.Diebold, ed. (Marcel Dekker, 2001), pp. 723-760.
  18. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466-475 (1956).
  19. S. Y. Liu, H. Y. Gu, C. W. Zhang, and H. W. Shen, “A fast algorithm for reflectivity calculation of micro/nano deep trench structures by corrected effective medium approximation,” Acta Phys. Sin. 57, 5996-6001 (2008).
  20. W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” J. Opt. Soc. Am. A 8, 549-553 (1991).
    [CrossRef]
  21. R. Bräuer and O. Bryngdahl, “Design of antireflection gratings with approximate and rigorous methods,” Appl. Opt. 33, 7875-7882 (1994).
    [CrossRef] [PubMed]
  22. P. Lalanne and D. L. Lalanne, “On the effective medium theory of subwavelength periodic structure,” J. Mod. Opt. 43, 2063-2085 (1996).
    [CrossRef]
  23. P. Lalanne and D. L. Lalanne, “Depth dependence of the effective properties of subwavelength gratings,” J. Opt. Soc. Am. A 14, 450-458 (1997).
    [CrossRef]
  24. S. Y. Liu, C. W. Zhang, H. W. Shen, and H. Y. Gu, “Model-based FTIR reflectometry measurement system for deep trench structures of DRAM,” Spectrosc. Spectr. Anal. 29, 935-939 (2009).

2009 (1)

S. Y. Liu, C. W. Zhang, H. W. Shen, and H. Y. Gu, “Model-based FTIR reflectometry measurement system for deep trench structures of DRAM,” Spectrosc. Spectr. Anal. 29, 935-939 (2009).

2008 (2)

I. Gereige, S. Robert, S. Thiria, F. Badran, G. Granet, and J. J. Rousseau, “Recognition of diffraction-grating profile using a neural network classifier in optical scatterometry,” J. Opt. Soc. Am. A 25, 1661-1667 (2008).
[CrossRef]

S. Y. Liu, H. Y. Gu, C. W. Zhang, and H. W. Shen, “A fast algorithm for reflectivity calculation of micro/nano deep trench structures by corrected effective medium approximation,” Acta Phys. Sin. 57, 5996-6001 (2008).

2007 (2)

E. Buhr, W. Michaelis, A. Diener, and W. Mirande, “Multi-wavelength VIS/UV optical diffractometer for high-accuracy calibration of nano-scale pitch standards,” Meas. Sci. Technol. 18, 667-674 (2007).
[CrossRef]

A. A. Maznev, A. Mazurenko, C. A. Durán, and M. Gostein, “Measuring trench structures for microelectronics with model-based infrared reflectometry,” AIP Conf. Proc. 931, 74-78 (2007).
[CrossRef]

2006 (3)

U. Schroeder, S. Jakschik, A. Avellan, E. Erben, B. Hintze, R. Duschl, M. Kerber, A. Link, and A. Kersch, “Recent developments in ALD technology for 50 nm trench DRAM applications,” ECS Trans. 1, 125-132 (2006).
[CrossRef]

R. Srivastava, P. Yelehanka, H. A. Kek, S. L. Ng, V. Srinivasan, and R. Peltinov, “A novel approach to characterize trench depth and profile using the 3D tilt capability of a critical dimension-scanning electron microscope at 65 nm technology node,” Proc. SPIE 6152, 61524I (2006).
[CrossRef]

M. Watanabe, S. Baba, T. Nakata, T. Kurenuma, H. Kuroda, and T. Hiroki, “An advanced AFM sensor for high-aspect ratio pattern profile in-line measurement,” Proc. SPIE 6152, 61522A (2006).
[CrossRef]

2005 (1)

P. A. Rosenthal, C. A. Durán, J. Tower, and A. Mazurenko, “Model-based infrared metrology for advanced technology nodes and 300 mm wafer processing,” AIP Conf. Proc. 788, 620-624 (2005).
[CrossRef]

2004 (2)

2001 (2)

X. Niu, N. Jakatdar, J. Bao, and C. J. Spanos, “Specular spectroscopic scatterometry,” IEEE Trans. Semicond. Manuf. 14, 97-111 (2001).
[CrossRef]

C. J. Raymond, M. Littau, R. Markle, and M. Purdy, “Scatterometry for shallow trench isolation (STI) process metrology,” Proc. SPIE 4344, 716-725 (2001).
[CrossRef]

1999 (1)

1997 (1)

1996 (1)

P. Lalanne and D. L. Lalanne, “On the effective medium theory of subwavelength periodic structure,” J. Mod. Opt. 43, 2063-2085 (1996).
[CrossRef]

1994 (1)

1991 (1)

1987 (1)

R. P. Lippmann, “An introduction to computing with neural nets,” IEEE ASSP Mag. 4, 4-22 (1987).
[CrossRef]

1956 (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466-475 (1956).

Avellan, A.

U. Schroeder, S. Jakschik, A. Avellan, E. Erben, B. Hintze, R. Duschl, M. Kerber, A. Link, and A. Kersch, “Recent developments in ALD technology for 50 nm trench DRAM applications,” ECS Trans. 1, 125-132 (2006).
[CrossRef]

Baba, S.

M. Watanabe, S. Baba, T. Nakata, T. Kurenuma, H. Kuroda, and T. Hiroki, “An advanced AFM sensor for high-aspect ratio pattern profile in-line measurement,” Proc. SPIE 6152, 61522A (2006).
[CrossRef]

Badran, F.

Bao, J.

X. Niu, N. Jakatdar, J. Bao, and C. J. Spanos, “Specular spectroscopic scatterometry,” IEEE Trans. Semicond. Manuf. 14, 97-111 (2001).
[CrossRef]

Binh, L. N.

Bischoff, J.

Bödefeld, R.

Bräuer, R.

Bryngdahl, O.

Buhr, E.

E. Buhr, W. Michaelis, A. Diener, and W. Mirande, “Multi-wavelength VIS/UV optical diffractometer for high-accuracy calibration of nano-scale pitch standards,” Meas. Sci. Technol. 18, 667-674 (2007).
[CrossRef]

Chadan, K.

K. Chadan, D. Colton, L. Päivärinta, and W. Rundell, An Introduction to Inverse Scattering and Inverse Spectral Problems (SIAM, 1987).

Colton, D.

K. Chadan, D. Colton, L. Päivärinta, and W. Rundell, An Introduction to Inverse Scattering and Inverse Spectral Problems (SIAM, 1987).

Diener, A.

E. Buhr, W. Michaelis, A. Diener, and W. Mirande, “Multi-wavelength VIS/UV optical diffractometer for high-accuracy calibration of nano-scale pitch standards,” Meas. Sci. Technol. 18, 667-674 (2007).
[CrossRef]

Drévillon, B.

Durán, C. A.

A. A. Maznev, A. Mazurenko, C. A. Durán, and M. Gostein, “Measuring trench structures for microelectronics with model-based infrared reflectometry,” AIP Conf. Proc. 931, 74-78 (2007).
[CrossRef]

P. A. Rosenthal, C. A. Durán, J. Tower, and A. Mazurenko, “Model-based infrared metrology for advanced technology nodes and 300 mm wafer processing,” AIP Conf. Proc. 788, 620-624 (2005).
[CrossRef]

C. A. Durán, A. A. Maznev, G. T. Merklin, A. Mazurenko, and M. Gostein, “Infrared reflectometry for metrology of trenches in power devices,” in Proceedings of IEEE Conference on Advanced Semiconductor Manufacturing (IEEE, 2007), pp. 175-179.

Duschl, R.

U. Schroeder, S. Jakschik, A. Avellan, E. Erben, B. Hintze, R. Duschl, M. Kerber, A. Link, and A. Kersch, “Recent developments in ALD technology for 50 nm trench DRAM applications,” ECS Trans. 1, 125-132 (2006).
[CrossRef]

Erben, E.

U. Schroeder, S. Jakschik, A. Avellan, E. Erben, B. Hintze, R. Duschl, M. Kerber, A. Link, and A. Kersch, “Recent developments in ALD technology for 50 nm trench DRAM applications,” ECS Trans. 1, 125-132 (2006).
[CrossRef]

Gereige, I.

Gostein, M.

A. A. Maznev, A. Mazurenko, C. A. Durán, and M. Gostein, “Measuring trench structures for microelectronics with model-based infrared reflectometry,” AIP Conf. Proc. 931, 74-78 (2007).
[CrossRef]

C. A. Durán, A. A. Maznev, G. T. Merklin, A. Mazurenko, and M. Gostein, “Infrared reflectometry for metrology of trenches in power devices,” in Proceedings of IEEE Conference on Advanced Semiconductor Manufacturing (IEEE, 2007), pp. 175-179.

Granet, G.

Gu, H. Y.

S. Y. Liu, C. W. Zhang, H. W. Shen, and H. Y. Gu, “Model-based FTIR reflectometry measurement system for deep trench structures of DRAM,” Spectrosc. Spectr. Anal. 29, 935-939 (2009).

S. Y. Liu, H. Y. Gu, C. W. Zhang, and H. W. Shen, “A fast algorithm for reflectivity calculation of micro/nano deep trench structures by corrected effective medium approximation,” Acta Phys. Sin. 57, 5996-6001 (2008).

Hehl, K.

Henke, A.

U. Rudolph, E. Weikmann, A. Kinne, A. Henke, P. VanHolt, S. Wege, A. Khan, S. Pamarthy, F. Schaftlein, and T. U. Lill, “Extending the capabilities of DRAM high aspect ratio trench etching,” in Proceedings of IEEE Conference on Advanced Semiconductor Manufacturing (IEEE, 2004), pp. 89-92.

Heyer, H.

Hintze, B.

U. Schroeder, S. Jakschik, A. Avellan, E. Erben, B. Hintze, R. Duschl, M. Kerber, A. Link, and A. Kersch, “Recent developments in ALD technology for 50 nm trench DRAM applications,” ECS Trans. 1, 125-132 (2006).
[CrossRef]

Hiroki, T.

M. Watanabe, S. Baba, T. Nakata, T. Kurenuma, H. Kuroda, and T. Hiroki, “An advanced AFM sensor for high-aspect ratio pattern profile in-line measurement,” Proc. SPIE 6152, 61522A (2006).
[CrossRef]

Jakatdar, N.

X. Niu, N. Jakatdar, J. Bao, and C. J. Spanos, “Specular spectroscopic scatterometry,” IEEE Trans. Semicond. Manuf. 14, 97-111 (2001).
[CrossRef]

Jakschik, S.

U. Schroeder, S. Jakschik, A. Avellan, E. Erben, B. Hintze, R. Duschl, M. Kerber, A. Link, and A. Kersch, “Recent developments in ALD technology for 50 nm trench DRAM applications,” ECS Trans. 1, 125-132 (2006).
[CrossRef]

Jellison, G. E.

G. E. Jellison, “Physics of optical metrology of silicon-based semiconductor devices,” in Handbook of Silicon Semiconductor Metrology, A.C.Diebold, ed. (Marcel Dekker, 2001), pp. 723-760.

Kaplan, B.

Kek, H. A.

R. Srivastava, P. Yelehanka, H. A. Kek, S. L. Ng, V. Srinivasan, and R. Peltinov, “A novel approach to characterize trench depth and profile using the 3D tilt capability of a critical dimension-scanning electron microscope at 65 nm technology node,” Proc. SPIE 6152, 61524I (2006).
[CrossRef]

Kerber, M.

U. Schroeder, S. Jakschik, A. Avellan, E. Erben, B. Hintze, R. Duschl, M. Kerber, A. Link, and A. Kersch, “Recent developments in ALD technology for 50 nm trench DRAM applications,” ECS Trans. 1, 125-132 (2006).
[CrossRef]

Kersch, A.

U. Schroeder, S. Jakschik, A. Avellan, E. Erben, B. Hintze, R. Duschl, M. Kerber, A. Link, and A. Kersch, “Recent developments in ALD technology for 50 nm trench DRAM applications,” ECS Trans. 1, 125-132 (2006).
[CrossRef]

Khan, A.

U. Rudolph, E. Weikmann, A. Kinne, A. Henke, P. VanHolt, S. Wege, A. Khan, S. Pamarthy, F. Schaftlein, and T. U. Lill, “Extending the capabilities of DRAM high aspect ratio trench etching,” in Proceedings of IEEE Conference on Advanced Semiconductor Manufacturing (IEEE, 2004), pp. 89-92.

Kinne, A.

U. Rudolph, E. Weikmann, A. Kinne, A. Henke, P. VanHolt, S. Wege, A. Khan, S. Pamarthy, F. Schaftlein, and T. U. Lill, “Extending the capabilities of DRAM high aspect ratio trench etching,” in Proceedings of IEEE Conference on Advanced Semiconductor Manufacturing (IEEE, 2004), pp. 89-92.

Kurenuma, T.

M. Watanabe, S. Baba, T. Nakata, T. Kurenuma, H. Kuroda, and T. Hiroki, “An advanced AFM sensor for high-aspect ratio pattern profile in-line measurement,” Proc. SPIE 6152, 61522A (2006).
[CrossRef]

Kuroda, H.

M. Watanabe, S. Baba, T. Nakata, T. Kurenuma, H. Kuroda, and T. Hiroki, “An advanced AFM sensor for high-aspect ratio pattern profile in-line measurement,” Proc. SPIE 6152, 61522A (2006).
[CrossRef]

Lalanne, D. L.

P. Lalanne and D. L. Lalanne, “Depth dependence of the effective properties of subwavelength gratings,” J. Opt. Soc. Am. A 14, 450-458 (1997).
[CrossRef]

P. Lalanne and D. L. Lalanne, “On the effective medium theory of subwavelength periodic structure,” J. Mod. Opt. 43, 2063-2085 (1996).
[CrossRef]

Lalanne, P.

P. Lalanne and D. L. Lalanne, “Depth dependence of the effective properties of subwavelength gratings,” J. Opt. Soc. Am. A 14, 450-458 (1997).
[CrossRef]

P. Lalanne and D. L. Lalanne, “On the effective medium theory of subwavelength periodic structure,” J. Mod. Opt. 43, 2063-2085 (1996).
[CrossRef]

Lill, T. U.

U. Rudolph, E. Weikmann, A. Kinne, A. Henke, P. VanHolt, S. Wege, A. Khan, S. Pamarthy, F. Schaftlein, and T. U. Lill, “Extending the capabilities of DRAM high aspect ratio trench etching,” in Proceedings of IEEE Conference on Advanced Semiconductor Manufacturing (IEEE, 2004), pp. 89-92.

Link, A.

U. Schroeder, S. Jakschik, A. Avellan, E. Erben, B. Hintze, R. Duschl, M. Kerber, A. Link, and A. Kersch, “Recent developments in ALD technology for 50 nm trench DRAM applications,” ECS Trans. 1, 125-132 (2006).
[CrossRef]

Lippmann, R. P.

R. P. Lippmann, “An introduction to computing with neural nets,” IEEE ASSP Mag. 4, 4-22 (1987).
[CrossRef]

Littau, M.

C. J. Raymond, M. Littau, R. Markle, and M. Purdy, “Scatterometry for shallow trench isolation (STI) process metrology,” Proc. SPIE 4344, 716-725 (2001).
[CrossRef]

Liu, S. Y.

S. Y. Liu, C. W. Zhang, H. W. Shen, and H. Y. Gu, “Model-based FTIR reflectometry measurement system for deep trench structures of DRAM,” Spectrosc. Spectr. Anal. 29, 935-939 (2009).

S. Y. Liu, H. Y. Gu, C. W. Zhang, and H. W. Shen, “A fast algorithm for reflectivity calculation of micro/nano deep trench structures by corrected effective medium approximation,” Acta Phys. Sin. 57, 5996-6001 (2008).

Markle, R.

C. J. Raymond, M. Littau, R. Markle, and M. Purdy, “Scatterometry for shallow trench isolation (STI) process metrology,” Proc. SPIE 4344, 716-725 (2001).
[CrossRef]

Martino, A. D.

Maznev, A. A.

A. A. Maznev, A. Mazurenko, C. A. Durán, and M. Gostein, “Measuring trench structures for microelectronics with model-based infrared reflectometry,” AIP Conf. Proc. 931, 74-78 (2007).
[CrossRef]

C. A. Durán, A. A. Maznev, G. T. Merklin, A. Mazurenko, and M. Gostein, “Infrared reflectometry for metrology of trenches in power devices,” in Proceedings of IEEE Conference on Advanced Semiconductor Manufacturing (IEEE, 2007), pp. 175-179.

Mazurenko, A.

A. A. Maznev, A. Mazurenko, C. A. Durán, and M. Gostein, “Measuring trench structures for microelectronics with model-based infrared reflectometry,” AIP Conf. Proc. 931, 74-78 (2007).
[CrossRef]

P. A. Rosenthal, C. A. Durán, J. Tower, and A. Mazurenko, “Model-based infrared metrology for advanced technology nodes and 300 mm wafer processing,” AIP Conf. Proc. 788, 620-624 (2005).
[CrossRef]

C. A. Durán, A. A. Maznev, G. T. Merklin, A. Mazurenko, and M. Gostein, “Infrared reflectometry for metrology of trenches in power devices,” in Proceedings of IEEE Conference on Advanced Semiconductor Manufacturing (IEEE, 2007), pp. 175-179.

Merklin, G. T.

C. A. Durán, A. A. Maznev, G. T. Merklin, A. Mazurenko, and M. Gostein, “Infrared reflectometry for metrology of trenches in power devices,” in Proceedings of IEEE Conference on Advanced Semiconductor Manufacturing (IEEE, 2007), pp. 175-179.

Michaelis, W.

E. Buhr, W. Michaelis, A. Diener, and W. Mirande, “Multi-wavelength VIS/UV optical diffractometer for high-accuracy calibration of nano-scale pitch standards,” Meas. Sci. Technol. 18, 667-674 (2007).
[CrossRef]

Mirande, W.

E. Buhr, W. Michaelis, A. Diener, and W. Mirande, “Multi-wavelength VIS/UV optical diffractometer for high-accuracy calibration of nano-scale pitch standards,” Meas. Sci. Technol. 18, 667-674 (2007).
[CrossRef]

Mohaupt, U.

Nakata, T.

M. Watanabe, S. Baba, T. Nakata, T. Kurenuma, H. Kuroda, and T. Hiroki, “An advanced AFM sensor for high-aspect ratio pattern profile in-line measurement,” Proc. SPIE 6152, 61522A (2006).
[CrossRef]

Ng, S. L.

R. Srivastava, P. Yelehanka, H. A. Kek, S. L. Ng, V. Srinivasan, and R. Peltinov, “A novel approach to characterize trench depth and profile using the 3D tilt capability of a critical dimension-scanning electron microscope at 65 nm technology node,” Proc. SPIE 6152, 61524I (2006).
[CrossRef]

Ngo, N. Q.

Niu, X.

X. Niu, N. Jakatdar, J. Bao, and C. J. Spanos, “Specular spectroscopic scatterometry,” IEEE Trans. Semicond. Manuf. 14, 97-111 (2001).
[CrossRef]

Novikova, T.

Päivärinta, L.

K. Chadan, D. Colton, L. Päivärinta, and W. Rundell, An Introduction to Inverse Scattering and Inverse Spectral Problems (SIAM, 1987).

Palme, M.

Pamarthy, S.

U. Rudolph, E. Weikmann, A. Kinne, A. Henke, P. VanHolt, S. Wege, A. Khan, S. Pamarthy, F. Schaftlein, and T. U. Lill, “Extending the capabilities of DRAM high aspect ratio trench etching,” in Proceedings of IEEE Conference on Advanced Semiconductor Manufacturing (IEEE, 2004), pp. 89-92.

Peltinov, R.

R. Srivastava, P. Yelehanka, H. A. Kek, S. L. Ng, V. Srinivasan, and R. Peltinov, “A novel approach to characterize trench depth and profile using the 3D tilt capability of a critical dimension-scanning electron microscope at 65 nm technology node,” Proc. SPIE 6152, 61524I (2006).
[CrossRef]

Purdy, M.

C. J. Raymond, M. Littau, R. Markle, and M. Purdy, “Scatterometry for shallow trench isolation (STI) process metrology,” Proc. SPIE 4344, 716-725 (2001).
[CrossRef]

Raymond, C. J.

C. J. Raymond, M. Littau, R. Markle, and M. Purdy, “Scatterometry for shallow trench isolation (STI) process metrology,” Proc. SPIE 4344, 716-725 (2001).
[CrossRef]

Robert, S.

Rosenthal, P. A.

P. A. Rosenthal, C. A. Durán, J. Tower, and A. Mazurenko, “Model-based infrared metrology for advanced technology nodes and 300 mm wafer processing,” AIP Conf. Proc. 788, 620-624 (2005).
[CrossRef]

Rousseau, J. J.

Rudolph, U.

U. Rudolph, E. Weikmann, A. Kinne, A. Henke, P. VanHolt, S. Wege, A. Khan, S. Pamarthy, F. Schaftlein, and T. U. Lill, “Extending the capabilities of DRAM high aspect ratio trench etching,” in Proceedings of IEEE Conference on Advanced Semiconductor Manufacturing (IEEE, 2004), pp. 89-92.

Rundell, W.

K. Chadan, D. Colton, L. Päivärinta, and W. Rundell, An Introduction to Inverse Scattering and Inverse Spectral Problems (SIAM, 1987).

Rytov, S. M.

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466-475 (1956).

Sauerbrey, R.

Schaftlein, F.

U. Rudolph, E. Weikmann, A. Kinne, A. Henke, P. VanHolt, S. Wege, A. Khan, S. Pamarthy, F. Schaftlein, and T. U. Lill, “Extending the capabilities of DRAM high aspect ratio trench etching,” in Proceedings of IEEE Conference on Advanced Semiconductor Manufacturing (IEEE, 2004), pp. 89-92.

Schnabel, B.

Schroeder, U.

U. Schroeder, S. Jakschik, A. Avellan, E. Erben, B. Hintze, R. Duschl, M. Kerber, A. Link, and A. Kersch, “Recent developments in ALD technology for 50 nm trench DRAM applications,” ECS Trans. 1, 125-132 (2006).
[CrossRef]

Shen, H. W.

S. Y. Liu, C. W. Zhang, H. W. Shen, and H. Y. Gu, “Model-based FTIR reflectometry measurement system for deep trench structures of DRAM,” Spectrosc. Spectr. Anal. 29, 935-939 (2009).

S. Y. Liu, H. Y. Gu, C. W. Zhang, and H. W. Shen, “A fast algorithm for reflectivity calculation of micro/nano deep trench structures by corrected effective medium approximation,” Acta Phys. Sin. 57, 5996-6001 (2008).

Southwell, W. H.

Spanos, C. J.

X. Niu, N. Jakatdar, J. Bao, and C. J. Spanos, “Specular spectroscopic scatterometry,” IEEE Trans. Semicond. Manuf. 14, 97-111 (2001).
[CrossRef]

Srinivasan, V.

R. Srivastava, P. Yelehanka, H. A. Kek, S. L. Ng, V. Srinivasan, and R. Peltinov, “A novel approach to characterize trench depth and profile using the 3D tilt capability of a critical dimension-scanning electron microscope at 65 nm technology node,” Proc. SPIE 6152, 61524I (2006).
[CrossRef]

Srivastava, R.

R. Srivastava, P. Yelehanka, H. A. Kek, S. L. Ng, V. Srinivasan, and R. Peltinov, “A novel approach to characterize trench depth and profile using the 3D tilt capability of a critical dimension-scanning electron microscope at 65 nm technology node,” Proc. SPIE 6152, 61524I (2006).
[CrossRef]

Theobald, W.

Thiria, S.

Tjin, S. C.

Tower, J.

P. A. Rosenthal, C. A. Durán, J. Tower, and A. Mazurenko, “Model-based infrared metrology for advanced technology nodes and 300 mm wafer processing,” AIP Conf. Proc. 788, 620-624 (2005).
[CrossRef]

VanHolt, P.

U. Rudolph, E. Weikmann, A. Kinne, A. Henke, P. VanHolt, S. Wege, A. Khan, S. Pamarthy, F. Schaftlein, and T. U. Lill, “Extending the capabilities of DRAM high aspect ratio trench etching,” in Proceedings of IEEE Conference on Advanced Semiconductor Manufacturing (IEEE, 2004), pp. 89-92.

Watanabe, M.

M. Watanabe, S. Baba, T. Nakata, T. Kurenuma, H. Kuroda, and T. Hiroki, “An advanced AFM sensor for high-aspect ratio pattern profile in-line measurement,” Proc. SPIE 6152, 61522A (2006).
[CrossRef]

Wege, S.

U. Rudolph, E. Weikmann, A. Kinne, A. Henke, P. VanHolt, S. Wege, A. Khan, S. Pamarthy, F. Schaftlein, and T. U. Lill, “Extending the capabilities of DRAM high aspect ratio trench etching,” in Proceedings of IEEE Conference on Advanced Semiconductor Manufacturing (IEEE, 2004), pp. 89-92.

Weikmann, E.

U. Rudolph, E. Weikmann, A. Kinne, A. Henke, P. VanHolt, S. Wege, A. Khan, S. Pamarthy, F. Schaftlein, and T. U. Lill, “Extending the capabilities of DRAM high aspect ratio trench etching,” in Proceedings of IEEE Conference on Advanced Semiconductor Manufacturing (IEEE, 2004), pp. 89-92.

Welsch, E.

Wenke, L.

Yelehanka, P.

R. Srivastava, P. Yelehanka, H. A. Kek, S. L. Ng, V. Srinivasan, and R. Peltinov, “A novel approach to characterize trench depth and profile using the 3D tilt capability of a critical dimension-scanning electron microscope at 65 nm technology node,” Proc. SPIE 6152, 61524I (2006).
[CrossRef]

Zhang, C. W.

S. Y. Liu, C. W. Zhang, H. W. Shen, and H. Y. Gu, “Model-based FTIR reflectometry measurement system for deep trench structures of DRAM,” Spectrosc. Spectr. Anal. 29, 935-939 (2009).

S. Y. Liu, H. Y. Gu, C. W. Zhang, and H. W. Shen, “A fast algorithm for reflectivity calculation of micro/nano deep trench structures by corrected effective medium approximation,” Acta Phys. Sin. 57, 5996-6001 (2008).

Zheng, R. T.

Acta Phys. Sin. (1)

S. Y. Liu, H. Y. Gu, C. W. Zhang, and H. W. Shen, “A fast algorithm for reflectivity calculation of micro/nano deep trench structures by corrected effective medium approximation,” Acta Phys. Sin. 57, 5996-6001 (2008).

AIP Conf. Proc. (2)

A. A. Maznev, A. Mazurenko, C. A. Durán, and M. Gostein, “Measuring trench structures for microelectronics with model-based infrared reflectometry,” AIP Conf. Proc. 931, 74-78 (2007).
[CrossRef]

P. A. Rosenthal, C. A. Durán, J. Tower, and A. Mazurenko, “Model-based infrared metrology for advanced technology nodes and 300 mm wafer processing,” AIP Conf. Proc. 788, 620-624 (2005).
[CrossRef]

Appl. Opt. (3)

ECS Trans. (1)

U. Schroeder, S. Jakschik, A. Avellan, E. Erben, B. Hintze, R. Duschl, M. Kerber, A. Link, and A. Kersch, “Recent developments in ALD technology for 50 nm trench DRAM applications,” ECS Trans. 1, 125-132 (2006).
[CrossRef]

IEEE ASSP Mag. (1)

R. P. Lippmann, “An introduction to computing with neural nets,” IEEE ASSP Mag. 4, 4-22 (1987).
[CrossRef]

IEEE Trans. Semicond. Manuf. (1)

X. Niu, N. Jakatdar, J. Bao, and C. J. Spanos, “Specular spectroscopic scatterometry,” IEEE Trans. Semicond. Manuf. 14, 97-111 (2001).
[CrossRef]

J. Mod. Opt. (1)

P. Lalanne and D. L. Lalanne, “On the effective medium theory of subwavelength periodic structure,” J. Mod. Opt. 43, 2063-2085 (1996).
[CrossRef]

J. Opt. Soc. Am. A (4)

Meas. Sci. Technol. (1)

E. Buhr, W. Michaelis, A. Diener, and W. Mirande, “Multi-wavelength VIS/UV optical diffractometer for high-accuracy calibration of nano-scale pitch standards,” Meas. Sci. Technol. 18, 667-674 (2007).
[CrossRef]

Proc. SPIE (3)

C. J. Raymond, M. Littau, R. Markle, and M. Purdy, “Scatterometry for shallow trench isolation (STI) process metrology,” Proc. SPIE 4344, 716-725 (2001).
[CrossRef]

R. Srivastava, P. Yelehanka, H. A. Kek, S. L. Ng, V. Srinivasan, and R. Peltinov, “A novel approach to characterize trench depth and profile using the 3D tilt capability of a critical dimension-scanning electron microscope at 65 nm technology node,” Proc. SPIE 6152, 61524I (2006).
[CrossRef]

M. Watanabe, S. Baba, T. Nakata, T. Kurenuma, H. Kuroda, and T. Hiroki, “An advanced AFM sensor for high-aspect ratio pattern profile in-line measurement,” Proc. SPIE 6152, 61522A (2006).
[CrossRef]

Sov. Phys. JETP (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466-475 (1956).

Spectrosc. Spectr. Anal. (1)

S. Y. Liu, C. W. Zhang, H. W. Shen, and H. Y. Gu, “Model-based FTIR reflectometry measurement system for deep trench structures of DRAM,” Spectrosc. Spectr. Anal. 29, 935-939 (2009).

Other (4)

U. Rudolph, E. Weikmann, A. Kinne, A. Henke, P. VanHolt, S. Wege, A. Khan, S. Pamarthy, F. Schaftlein, and T. U. Lill, “Extending the capabilities of DRAM high aspect ratio trench etching,” in Proceedings of IEEE Conference on Advanced Semiconductor Manufacturing (IEEE, 2004), pp. 89-92.

C. A. Durán, A. A. Maznev, G. T. Merklin, A. Mazurenko, and M. Gostein, “Infrared reflectometry for metrology of trenches in power devices,” in Proceedings of IEEE Conference on Advanced Semiconductor Manufacturing (IEEE, 2007), pp. 175-179.

K. Chadan, D. Colton, L. Päivärinta, and W. Rundell, An Introduction to Inverse Scattering and Inverse Spectral Problems (SIAM, 1987).

G. E. Jellison, “Physics of optical metrology of silicon-based semiconductor devices,” in Handbook of Silicon Semiconductor Metrology, A.C.Diebold, ed. (Marcel Dekker, 2001), pp. 723-760.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic drawings of (a) simple 1-D periodic trench structure and (b) its effective optical model.

Fig. 2
Fig. 2

(a) Simple 2-D trench structure, (b) its effective optical model, and (c) the reflectance spectrum calculated by RCWA theory and its fitted curve by CEMA method.

Fig. 3
Fig. 3

Plot of fitting-determined zeroth-order refractive index by the fourth-order polynomial.

Fig. 4
Fig. 4

Plot of fitting-determined correction factor by the fourth-order polynomial.

Fig. 5
Fig. 5

Forward modeling and inverse spectral problem in MBIR metrology.

Fig. 6
Fig. 6

Flowchart of parameter extraction using the ANN/LM combined method.

Fig. 7
Fig. 7

Simulated reflectance spectra modeled with RCWA, zeroth-order EMA, and CEMA in TE polarization of the 1-D trench structure.

Fig. 8
Fig. 8

Simulated reflectance spectra modeled with RCWA, zeroth-order EMA, and CEMA in TE polarization of the 2-D trench structure. The trench parameters for the simulation: trench depth 1.5 μ m , trench pitch 0.2 μ m , and fill factor 0.5.

Fig. 9
Fig. 9

Simulated reflectance spectra modeled with RCWA, zeroth-order EMA, and CEMA in TM polarization of the 2-D trench structure. The trench parameters for the simulation are as in Fig. 8.

Fig. 10
Fig. 10

(a) Structure of a 1-D deep trench with a SiN layer and a Si layer above the silicon substrate and (b) its effective optical model.

Fig. 11
Fig. 11

(a) Errors and (b) relative errors of extracted depths in Si layer for the 100 test samples.

Fig. 12
Fig. 12

Reflectance spectra calculated from the input parameters shown in Table 1, from parameters extracted by ANN alone and by ANN/LM method.

Fig. 13
Fig. 13

Experimental platform of the improved model-based infrared reflectrometry.

Fig. 14
Fig. 14

(a) SEM micrograph of the bottle trench structure and (b) its effective optical model.

Fig. 15
Fig. 15

Fitted reflectance spectra calculated from the extracted parameters compared with the measured reflectance spectrum of the bottle trench structure.

Tables (2)

Tables Icon

Table 1 Parameters of the 1-D Trench Structure Extracted by ANN Alone and by ANN/LM Combined Method a

Tables Icon

Table 2 Parameters of the Bottle Deep Trench Measured by SEM and the Improved MBIR

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ε eff = ε 0 + B ( 1 λ ) 2 ( for TE and TM polarization ) ,
B = π 2 3 f 2 ( 1 f ) 2 ( ε 1 ε 2 ) 2 Λ 2 ( for TE polarization ) ,
B = π 2 3 f 2 ( 1 f ) 2 ( 1 ε 1 1 ε 2 ) 2 ε eff , TM 0 ε eff , TE 0 3 Λ 2 ( for TM polarization ) ,
n eff = n 0 + B ( 1 λ ) 2 ,
n 0 = a 0 + a 1 f + a 2 f 2 + a 3 f 3 + a 4 f 4 ,
B = b 0 + b 1 f + b 2 f 2 + b 3 f 3 + b 4 f 4 ,
P ̂ = arg min P j = 1 N [ R m ( λ j ) T { P } ] 2 = arg min P j = 1 N [ R m ( λ j ) R c ( λ j ) ] 2 ,

Metrics