Abstract

We present a general theory of electromagnetic diffraction-free beams composed of uncorrelated Bessel modes. Our approach is based on the direct application of the nonnegativity constraint to the cross-spectral density tensor describing the electromagnetic field distribution. The field correlation properties are most conveniently derived in the spatial frequency domain, where the angular spectrum takes on the form of an infinitely thin ring. We also present several examples, including a vector generalization of the recently introduced dark and antidark diffraction-free beams.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electromagnetic cosine-Gaussian Schell-model beams in free space and atmospheric turbulence

Zhangrong Mei and Olga Korotkova
Opt. Express 21(22) 27246-27259 (2013)

Quasi-diffraction-free beams

Kazumasa Tanaka, Mitsuo Taguchi, and Toshiyuki Tanaka
J. Opt. Soc. Am. A 18(7) 1644-1649 (2001)

Properties and diffraction of vector Bessel–Gauss beams

Pamela L. Greene and Dennis G. Hall
J. Opt. Soc. Am. A 15(12) 3020-3027 (1998)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (71)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription