Abstract

A novel measurement setup for determining the change in color perception due to laser protection filters is described. The developed system overcomes color space limitations common to thin-film transistor displays by using a LED illumination system, creating a large gamut covering a wide range of human color perception, and allowing adjustment of the respective spectra. An objective color matching method is used that is based on the work of MacAdam [J. Opt. Soc. Am. A 32, 247 (1942)] and enhanced by employing discrimination ellipses fitted on color discrimination thresholds on axes in the CIE 1976 USC chromaticity diagram. We present several measured color discrimination ellipses with and without laser protection filters.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Dain, “Clinical colour vision tests,” Clin. Exp. Optom. 87, 276-293 (2004).
    [CrossRef] [PubMed]
  2. R. Lakowski, “Theory and practice of colour vision testing,” Br. J. Ind. Med. 26, 265-288 (1969).
    [PubMed]
  3. J. Krauskopf and K. Gegenfurthner, “Color discrimination and adaptation,” Vision Res. 32, 2165-2175 (1992).
    [CrossRef] [PubMed]
  4. O. Rinner and K. Gegenfurthner, “Time course of chromatic adaptation for color appearance and discrimination,” Vision Res. 40, 1813-1826 (2000).
    [CrossRef] [PubMed]
  5. B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vision Res. 34, 1279-1299 (1994).
    [CrossRef] [PubMed]
  6. M. Zumura, O. Rinner, and K. Gegenfurthner, “The colours seen behind transparent filters,” Perception 29, 911-926 (2000).
    [CrossRef]
  7. G. Wyszecki and W. Stiles, Color Science (Wiley, 2000).
  8. D. L. MacAdam, “Visual sensitivities to color differences in daylight,” J. Opt. Soc. Am. 32, 247-274 (1942).
    [CrossRef]
  9. R. T. Hennessy, “Instrument myopia,” J. Opt. Soc. Am. 65, 1114-1120 (1975).
    [CrossRef] [PubMed]
  10. R. Halir and J. Flusser, “Numerical stable direct least squares fitting of ellipses,” in Proceedings of 6th International Conference in Central Europe on Computer Graphics and Visualization, WSCG'98, Plzen Czech Republic, February 1998 (1998), 125-132.
  11. A. Valberg, Light Vision Color (Wiley, 2005).
  12. J. Cortina, “What is coefficient alpha? An examination of theory and applications,” J. Appl. Psychol. 78, 98-104 (1993).
    [CrossRef]
  13. R. A. Otha N, Colorimetry Fundamentals and Applications (Wiley, 2005).
  14. A. Langenbucher, A. Viestenz, N. Szentmáry, W. Behrens-Baumann, and A. Viestenz, “Determination of toric intraocular lenses,” Ophthalmologe 105, 685-692 (2008).
    [CrossRef] [PubMed]
  15. D. F. Ventura, “Prelimnary norms for the Cambridge Colour Test,” in Normal and Defective colour Vision, J.D.Mollon, J.Pokorny, K.Knoblauch, eds. (Oxford Univ. Press, 2003), 331-339.
    [CrossRef]
  16. A. Shapiro, D. Hood, and Q. Zaidi, “Chromatic and luminance sensitivity in diabetes and glaucoma,” J. Opt. Soc. Am. A 10, 1785-1791 (1993).
    [CrossRef]
  17. I. Kuriki and K. Uchikawa, “Adaptive shift of visual sensitivity balance under ambient illuminant change,” J. Opt. Soc. Am. A 15, 2263-2274 (1998).
    [CrossRef]
  18. W. R. J. Brown, “Statistics of color-matching data,” J. Opt. Soc. Am. A 42, 252-256 (1952).
    [CrossRef]

2008

A. Langenbucher, A. Viestenz, N. Szentmáry, W. Behrens-Baumann, and A. Viestenz, “Determination of toric intraocular lenses,” Ophthalmologe 105, 685-692 (2008).
[CrossRef] [PubMed]

2004

S. J. Dain, “Clinical colour vision tests,” Clin. Exp. Optom. 87, 276-293 (2004).
[CrossRef] [PubMed]

2000

O. Rinner and K. Gegenfurthner, “Time course of chromatic adaptation for color appearance and discrimination,” Vision Res. 40, 1813-1826 (2000).
[CrossRef] [PubMed]

M. Zumura, O. Rinner, and K. Gegenfurthner, “The colours seen behind transparent filters,” Perception 29, 911-926 (2000).
[CrossRef]

1998

1994

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vision Res. 34, 1279-1299 (1994).
[CrossRef] [PubMed]

1993

A. Shapiro, D. Hood, and Q. Zaidi, “Chromatic and luminance sensitivity in diabetes and glaucoma,” J. Opt. Soc. Am. A 10, 1785-1791 (1993).
[CrossRef]

J. Cortina, “What is coefficient alpha? An examination of theory and applications,” J. Appl. Psychol. 78, 98-104 (1993).
[CrossRef]

1992

J. Krauskopf and K. Gegenfurthner, “Color discrimination and adaptation,” Vision Res. 32, 2165-2175 (1992).
[CrossRef] [PubMed]

1975

1969

R. Lakowski, “Theory and practice of colour vision testing,” Br. J. Ind. Med. 26, 265-288 (1969).
[PubMed]

1952

W. R. J. Brown, “Statistics of color-matching data,” J. Opt. Soc. Am. A 42, 252-256 (1952).
[CrossRef]

1942

Behrens-Baumann, W.

A. Langenbucher, A. Viestenz, N. Szentmáry, W. Behrens-Baumann, and A. Viestenz, “Determination of toric intraocular lenses,” Ophthalmologe 105, 685-692 (2008).
[CrossRef] [PubMed]

Brown, W. R. J.

W. R. J. Brown, “Statistics of color-matching data,” J. Opt. Soc. Am. A 42, 252-256 (1952).
[CrossRef]

Cortina, J.

J. Cortina, “What is coefficient alpha? An examination of theory and applications,” J. Appl. Psychol. 78, 98-104 (1993).
[CrossRef]

Dain, S. J.

S. J. Dain, “Clinical colour vision tests,” Clin. Exp. Optom. 87, 276-293 (2004).
[CrossRef] [PubMed]

Flusser, J.

R. Halir and J. Flusser, “Numerical stable direct least squares fitting of ellipses,” in Proceedings of 6th International Conference in Central Europe on Computer Graphics and Visualization, WSCG'98, Plzen Czech Republic, February 1998 (1998), 125-132.

Gegenfurthner, K.

O. Rinner and K. Gegenfurthner, “Time course of chromatic adaptation for color appearance and discrimination,” Vision Res. 40, 1813-1826 (2000).
[CrossRef] [PubMed]

M. Zumura, O. Rinner, and K. Gegenfurthner, “The colours seen behind transparent filters,” Perception 29, 911-926 (2000).
[CrossRef]

J. Krauskopf and K. Gegenfurthner, “Color discrimination and adaptation,” Vision Res. 32, 2165-2175 (1992).
[CrossRef] [PubMed]

Halir, R.

R. Halir and J. Flusser, “Numerical stable direct least squares fitting of ellipses,” in Proceedings of 6th International Conference in Central Europe on Computer Graphics and Visualization, WSCG'98, Plzen Czech Republic, February 1998 (1998), 125-132.

Hennessy, R. T.

Hood, D.

Krauskopf, J.

J. Krauskopf and K. Gegenfurthner, “Color discrimination and adaptation,” Vision Res. 32, 2165-2175 (1992).
[CrossRef] [PubMed]

Kuriki, I.

Lakowski, R.

R. Lakowski, “Theory and practice of colour vision testing,” Br. J. Ind. Med. 26, 265-288 (1969).
[PubMed]

Langenbucher, A.

A. Langenbucher, A. Viestenz, N. Szentmáry, W. Behrens-Baumann, and A. Viestenz, “Determination of toric intraocular lenses,” Ophthalmologe 105, 685-692 (2008).
[CrossRef] [PubMed]

MacAdam, D. L.

Mollon, J. D.

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vision Res. 34, 1279-1299 (1994).
[CrossRef] [PubMed]

Otha N, R. A.

R. A. Otha N, Colorimetry Fundamentals and Applications (Wiley, 2005).

Reffin, J. P.

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vision Res. 34, 1279-1299 (1994).
[CrossRef] [PubMed]

Regan, B. C.

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vision Res. 34, 1279-1299 (1994).
[CrossRef] [PubMed]

Rinner, O.

O. Rinner and K. Gegenfurthner, “Time course of chromatic adaptation for color appearance and discrimination,” Vision Res. 40, 1813-1826 (2000).
[CrossRef] [PubMed]

M. Zumura, O. Rinner, and K. Gegenfurthner, “The colours seen behind transparent filters,” Perception 29, 911-926 (2000).
[CrossRef]

Shapiro, A.

Stiles, W.

G. Wyszecki and W. Stiles, Color Science (Wiley, 2000).

Szentmáry, N.

A. Langenbucher, A. Viestenz, N. Szentmáry, W. Behrens-Baumann, and A. Viestenz, “Determination of toric intraocular lenses,” Ophthalmologe 105, 685-692 (2008).
[CrossRef] [PubMed]

Uchikawa, K.

Valberg, A.

A. Valberg, Light Vision Color (Wiley, 2005).

Ventura, D. F.

D. F. Ventura, “Prelimnary norms for the Cambridge Colour Test,” in Normal and Defective colour Vision, J.D.Mollon, J.Pokorny, K.Knoblauch, eds. (Oxford Univ. Press, 2003), 331-339.
[CrossRef]

Viestenz, A.

A. Langenbucher, A. Viestenz, N. Szentmáry, W. Behrens-Baumann, and A. Viestenz, “Determination of toric intraocular lenses,” Ophthalmologe 105, 685-692 (2008).
[CrossRef] [PubMed]

A. Langenbucher, A. Viestenz, N. Szentmáry, W. Behrens-Baumann, and A. Viestenz, “Determination of toric intraocular lenses,” Ophthalmologe 105, 685-692 (2008).
[CrossRef] [PubMed]

Wyszecki, G.

G. Wyszecki and W. Stiles, Color Science (Wiley, 2000).

Zaidi, Q.

Zumura, M.

M. Zumura, O. Rinner, and K. Gegenfurthner, “The colours seen behind transparent filters,” Perception 29, 911-926 (2000).
[CrossRef]

Br. J. Ind. Med.

R. Lakowski, “Theory and practice of colour vision testing,” Br. J. Ind. Med. 26, 265-288 (1969).
[PubMed]

Clin. Exp. Optom.

S. J. Dain, “Clinical colour vision tests,” Clin. Exp. Optom. 87, 276-293 (2004).
[CrossRef] [PubMed]

J. Appl. Psychol.

J. Cortina, “What is coefficient alpha? An examination of theory and applications,” J. Appl. Psychol. 78, 98-104 (1993).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Ophthalmologe

A. Langenbucher, A. Viestenz, N. Szentmáry, W. Behrens-Baumann, and A. Viestenz, “Determination of toric intraocular lenses,” Ophthalmologe 105, 685-692 (2008).
[CrossRef] [PubMed]

Perception

M. Zumura, O. Rinner, and K. Gegenfurthner, “The colours seen behind transparent filters,” Perception 29, 911-926 (2000).
[CrossRef]

Vision Res.

J. Krauskopf and K. Gegenfurthner, “Color discrimination and adaptation,” Vision Res. 32, 2165-2175 (1992).
[CrossRef] [PubMed]

O. Rinner and K. Gegenfurthner, “Time course of chromatic adaptation for color appearance and discrimination,” Vision Res. 40, 1813-1826 (2000).
[CrossRef] [PubMed]

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vision Res. 34, 1279-1299 (1994).
[CrossRef] [PubMed]

Other

R. Halir and J. Flusser, “Numerical stable direct least squares fitting of ellipses,” in Proceedings of 6th International Conference in Central Europe on Computer Graphics and Visualization, WSCG'98, Plzen Czech Republic, February 1998 (1998), 125-132.

A. Valberg, Light Vision Color (Wiley, 2005).

G. Wyszecki and W. Stiles, Color Science (Wiley, 2000).

R. A. Otha N, Colorimetry Fundamentals and Applications (Wiley, 2005).

D. F. Ventura, “Prelimnary norms for the Cambridge Colour Test,” in Normal and Defective colour Vision, J.D.Mollon, J.Pokorny, K.Knoblauch, eds. (Oxford Univ. Press, 2003), 331-339.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Dotted curve denotes the transmission spectra of the laser eye protection filter T68. Spectral shifting similar to color changes in the NSC color system [11] created the color loci on the axes. This means that the intensity in one part of the spectrum is decreased when the complementary part is increased.

Fig. 2
Fig. 2

Specimen of the FM 100-test evaluated with filter T68. The error score per chip is below 2 for unfiltered sight for four subjects with normal color vision. With filter T68, the total error score increased for all subjects; however, it was still within the normal range (below 100), and the specimens have no significant decreases at certain directions. The concentric circles correspond to the error score per chip that numbers are given with respect to the central circle.

Fig. 3
Fig. 3

Characteristic line spectra (green, yellow and red solid lines) of an anomaloscope along with the light spectrum as generated by a CRT display (solid curve on the left) and a TFT monitor (dotted curve on the left). Especially at the long wavelength range λ ⩾ 600 nm the monitor spectra are not continuous. The spectra have been measured with a spectrometer. See text for equipment suppliers.

Fig. 4
Fig. 4

Diagram of the measurement setup. Part A: Light generation of the test field using LEDs and homogeneous mixing in color and brightness by an “S” shaped optical fiber. Part B: Principle of Koehler illumination; light bundle is truncated by a razor blade and mapped by a mirror on the test field. Part C: Ambient field and back-shifted divided test field. Part D: Ambient illumination with frosted glass plate. Part E: Observation lens allows adjustment of the FOV and eliminates instrumental myopia. The filter is positioned in front of the observation lens. The subject’s view of the test field is shown next to the eye.

Fig. 5
Fig. 5

Spectral curves of the seven LEDs (thin curves) along with the summation spectrum imitating D65 light (wide curve). The norm light D65 is shown for comparison (dashed curve). The additive mixture of the LED spectra provides a continuous spectra within the range of 420 nm to 780 nm.

Fig. 6
Fig. 6

Measurement strategy: First the subject is neutral-adapted by the same color as the ambient field. Then the central point of the ellipse and the outermost color lying on one of the measurement axes are presented. If the answer is “yes” (a color difference could be seen), a point closer to the center is taken; a farther point is chosen if the answer is “no.” The subject has to decide whether a color difference is visible or not. After the chosen presentation time, the stimulus is changed to neutral adaptation again. Then a new color discrimination stimulus is presented, the location on the axis depending on the previous answer given. Color differences in the image are enhanced for better display.

Fig. 7
Fig. 7

Starting color is a yellowish hue at coordinate (0.4664,0.4528) in the (x, y) chromaticity diagram and corresponds to the center of the resulting color discrimination ellipse. Based on this coordinate six half-axes are defined. Of these, three half-axes are chosen along the confusion lines of deuteranomaly, protanomaly, and tritanomaly [7].

Fig. 8
Fig. 8

One discrimination ellipse of MacAdam compared with those for unfiltered sight and those with laser protection eye filter T68 as measured with the described setup shown in the ( u , v ) chromaticity diagram. The central color coordinate of all ellipses is shifted to the origin of the diagram. The transmission spectrum of the filter is shown in Fig. 1. Distinguishable color perception differences in the yellow/blue direction (vertical) and in the green/red direction (horizontal) are obvious by comparing the dimensions of the respective ellipses.

Tables (4)

Tables Icon

Table 1 Technical Data of the Seven LEDs Used for the Measurement Setup a

Tables Icon

Table 2 Reliability of the Color Distances a in the (x, y) Chromaticity Diagram of 18 Subjects on Each Axis for Three Measurements

Tables Icon

Table 3 Validation Measurements of Subjects with Anomaloscope a

Tables Icon

Table 4 Comparison of Discrimination Ellipses with and without Filter T68 a

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

u = 4 x ( 2 x + 12 y + 3 ) ,
v = 9 y ( 2 x + 12 y + 3 ) .
Δ E u , v = ( Δ u ) 2 + ( Δ v ) 2 .
S = B + ( A B ) 2 ,
C 0 = ( A B ) cos ( 2 ϕ ) ,
C 45 = ( A B ) × sin ( 2 ϕ ) .

Metrics