Abstract

Neither Eq. (6.52) of Jackson [Classical Electrodynamics, 3rd ed. (Wiley, 1999)] nor Hannay's derivation of that equation in the preceding Comment [J. Opt. Soc. Am. A26, 2107 (2009)] is applicable to a source whose distribution pattern moves faster than light in vacuo with nonzero acceleration. It is assumed in Hannay's derivation that the retarded distribution of the density of any moving source will be smooth and differentiable if its rest-frame distribution is. By working out an explicit example of a rotating superluminal source with a bounded and smooth density profile, we show that this assumption is erroneous. The retarded distribution of a rotating source with a moderate superluminal speed is, in general, spread over three disjoint volumes (differing in shape from one another and from the volume occupied by the source in its rest frame) whose boundaries depend on the space-time position of the observer. Hannay overlooks the fact that the limits of integration in his expression for the retarded potential are not differentiable, as functions of the coordinates of the observer, when the distribution pattern of the source moves faster than light. These limits, which delineate the boundaries of the retarded distribution of the source, have divergent gradients at those points on the source boundary that approach the observer, along the radiation direction, with the speed of light at the retarded time. In the superluminal regime, derivatives of the integral representing the retarded potential are well defined only as generalized functions.

© 2009 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Hannay, “Fundamental role of the retarded potential in the electrodynamics of superluminal sources: comment,” J. Opt. Soc. Am. A 26, 2107-2108 (2009).
    [CrossRef]
  2. H. Ardavan, A. Ardavan, J. Singleton, J. Fasel, and A. Schmidt, “Fundamental role of the retarded potential in the electrodynamics of superluminal sources,” J. Opt. Soc. Am. A 25, 543-557 (2008).
    [CrossRef]
  3. R. Courant, Differential and Integral Calculus (Blackie, 1967), Vol. 2, Chap. 4.
  4. J. Hadamard, Lectures on Cauchy's problem in Linear Partial Differential Equations (Yale Univ. Press, 1923). Dover reprint, 1952.
  5. R. F. Hoskins, Delta Functions: An Introduction to Generalised Functions (Harwood, 1999), Chap. 7.
  6. A. H. Zemanian, Distribution Theory and Transform Analysis (McGraw-Hill, 1965).
  7. H. Ardavan, A. Ardavan, and J. Singleton, “Spectral and polarization characteristics of the nonspherically decaying radiation generated by polarization currents with superluminally rotating distribution patterns,” J. Opt. Soc. Am. A 21, 858-872 (2004).
    [CrossRef]
  8. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
  9. H. Ardavan, A. Ardavan, J. Singleton, J. Fasel, and A. Schmidt, “Morphology of the nonspherically decaying radiation beam generated by a rotating superluminal source,” J. Opt. Soc. Am. A 24, 2443-2456 (2007).
    [CrossRef]

2009

2008

2007

2004

Ardavan, A.

Ardavan, H.

Courant, R.

R. Courant, Differential and Integral Calculus (Blackie, 1967), Vol. 2, Chap. 4.

Fasel, J.

Hadamard, J.

J. Hadamard, Lectures on Cauchy's problem in Linear Partial Differential Equations (Yale Univ. Press, 1923). Dover reprint, 1952.

Hannay, J. H.

Hoskins, R. F.

R. F. Hoskins, Delta Functions: An Introduction to Generalised Functions (Harwood, 1999), Chap. 7.

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).

Schmidt, A.

Singleton, J.

Zemanian, A. H.

A. H. Zemanian, Distribution Theory and Transform Analysis (McGraw-Hill, 1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics