A. V. Boriskin, A. Rolland, R. Sauleau, and A. I. Nosich, “Assessment of FDTD accuracy in the compact hemielliptic dielectric lens antenna analysis,” IEEE Trans. Antennas Propag. 56, 758-764 (2008).

[CrossRef]

A. V. Boriskin, G. Godi, R. Sauleau, and A. I. Nosich, “Small hemielliptic dielectric lens antenna analysis in 2-D: boundary integral equations versus geometrical and physical optics,” IEEE Trans. Antennas Propag. 56, 485-492 (2008).

[CrossRef]

P.-T. Lee, T.-W. Lu, J.-H. Fan, and F.-M. Tsai, “High quality factor microcavity lasers realized by circular photonic crystal with isotropic photonic band gap effect,” Appl. Phys. Lett. 90, 151125 (2007).

[CrossRef]

S. V. Pishko, P. D. Sewell, T. M. Benson, and S. V. Boriskina, “Efficient analysis and design of low-loss WGM coupled resonator optical waveguide bends,” J. Lightwave Technol. 25, 2487-2494 (2007).

[CrossRef]

Y. Liu, C. D. Sarrisa, and G. V. Eleftheriades, “Triangular-mesh-based FDTD analysis of 2-D plasmonic structures supporting backward waves at optical frequencies,” J. Lightwave Technol. 25, 938-946 (2007).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Threshold reduction in a cyclic photonic molecule laser composed of identical microdisks with whispering-gallery modes,” Opt. Lett. 31, 921-923 (2006).

[CrossRef]
[PubMed]

Y. Liu and C. D. Sarris, “Fast time-domain simulation of optical waveguide structures with a multilevel dynamically adaptive mesh refinement FDTD approach,” J. Lightwave Technol. 24, 3235-3248 (2006).

[CrossRef]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—Part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006).

[CrossRef]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—Part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15-32 (2006).

[CrossRef]

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors of 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175-1182 (2006).

[CrossRef]

K. Phan-Huy, A. Morand, D. Amans, and P. Benech, “Analytical study of the whispering-gallery modes in two-dimensional microgear cavity using coupled-mode theory,” J. Opt. Soc. Am. B 22, 1793-1804 (2005).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. Benson, and P. Sewell, “Cold-cavity thresholds of microdisks with uniform and non-uniform gain: quasi-3D modeling with accurate 2D analysis,” IEEE J. Sel. Top. Quantum Electron. 11, 1135-1142 (2005).

[CrossRef]

Y.-Z. Huang, Q.-Y. Lu, W.-H. Guo, and L.-J. Yu, “Analysis of mode characteristics for equilateral triangle semiconductor microlasers with imperfect boundaries,” IEE Proc.: Optoelectron. 151, 202-204 (2004).

[CrossRef]

S. Rondineau, A. I. Nosich, J.-P. Daniel, M. Himdi, and S. S. Vinogradov, “MAR-based analysis of a spherical-circular printed antenna with a finite ground excited by an axially-symmetric probe,” IEEE Trans. Antennas Propag. 52, 1270-1280 (2004).

[CrossRef]

S.-Y. Lee, M. S. Kurdoglyan, S. Rim, and C.-M. Kim, “Resonance patterns in a stadium-shaped microcavity,” Phys. Rev. A 70, 023809 (2004).

[CrossRef]

A. V. Boriskin, A. I. Nosich, S. V. Boriskina, T. M. Benson, P. Sewell, and A. Altintas, “Lens or resonator?—Electromagnetic behavior of an extended hemielliptic lens for a sub-mm wave receiver,” Microwave Opt. Technol. Lett. 43, 515-518 (2004).

[CrossRef]

A. V. Boriskin and A. I. Nosich, “Whispering-gallery and Luneburg lens effects in a beam-fed circularly-layered dielectric cylinder,” IEEE Trans. Antennas Propag. 50, 1245-1249 (2002).

[CrossRef]

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154-2165 (1997).

[CrossRef]

P. W. Evans and N. Holonyak Jr., “Room temperature photopump laser operation of native-oxide-defined coupled GaAs-AlAs superlattice microrings,” Appl. Phys. Lett. 69, 2391-2393 (1996).

[CrossRef]

L.-P. Berenger, “Perfectly matched layer for the FDTD solution of wave-structure interaction problem,” IEEE Trans. Antennas Propag. 44, 110-118 (1996).

[CrossRef]

K. L. Shlager and J. B. Schneider, “A selective survey of the finite-difference time-domain literature,” IEEE Antennas Propag. Mag. 37, 39-57 (1995).

[CrossRef]

G. L. Hower, R. G. Olsen, J. D. Earls, and J. B. Schneider, “Inaccuracies in numerical calculations of scattering near natural frequencies of penetrable objects,” IEEE Trans. Antennas Propag. 41, 982-986 (1993).

[CrossRef]

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302-307 (1966).

[CrossRef]

A. V. Boriskin, A. I. Nosich, S. V. Boriskina, T. M. Benson, P. Sewell, and A. Altintas, “Lens or resonator?—Electromagnetic behavior of an extended hemielliptic lens for a sub-mm wave receiver,” Microwave Opt. Technol. Lett. 43, 515-518 (2004).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. Benson, and P. Sewell, “Cold-cavity thresholds of microdisks with uniform and non-uniform gain: quasi-3D modeling with accurate 2D analysis,” IEEE J. Sel. Top. Quantum Electron. 11, 1135-1142 (2005).

[CrossRef]

S. V. Pishko, P. D. Sewell, T. M. Benson, and S. V. Boriskina, “Efficient analysis and design of low-loss WGM coupled resonator optical waveguide bends,” J. Lightwave Technol. 25, 2487-2494 (2007).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Threshold reduction in a cyclic photonic molecule laser composed of identical microdisks with whispering-gallery modes,” Opt. Lett. 31, 921-923 (2006).

[CrossRef]
[PubMed]

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors of 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175-1182 (2006).

[CrossRef]

A. V. Boriskin, A. I. Nosich, S. V. Boriskina, T. M. Benson, P. Sewell, and A. Altintas, “Lens or resonator?—Electromagnetic behavior of an extended hemielliptic lens for a sub-mm wave receiver,” Microwave Opt. Technol. Lett. 43, 515-518 (2004).

[CrossRef]

A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modelling,” Opt. Quantum Electron. (to be published); available at http://www.springerlink.com/content/x74382234u02608v/.

L.-P. Berenger, “Perfectly matched layer for the FDTD solution of wave-structure interaction problem,” IEEE Trans. Antennas Propag. 44, 110-118 (1996).

[CrossRef]

A. V. Boriskin, A. Rolland, R. Sauleau, and A. I. Nosich, “Assessment of FDTD accuracy in the compact hemielliptic dielectric lens antenna analysis,” IEEE Trans. Antennas Propag. 56, 758-764 (2008).

[CrossRef]

A. V. Boriskin, G. Godi, R. Sauleau, and A. I. Nosich, “Small hemielliptic dielectric lens antenna analysis in 2-D: boundary integral equations versus geometrical and physical optics,” IEEE Trans. Antennas Propag. 56, 485-492 (2008).

[CrossRef]

A. V. Boriskin, A. I. Nosich, S. V. Boriskina, T. M. Benson, P. Sewell, and A. Altintas, “Lens or resonator?—Electromagnetic behavior of an extended hemielliptic lens for a sub-mm wave receiver,” Microwave Opt. Technol. Lett. 43, 515-518 (2004).

[CrossRef]

A. V. Boriskin and A. I. Nosich, “Whispering-gallery and Luneburg lens effects in a beam-fed circularly-layered dielectric cylinder,” IEEE Trans. Antennas Propag. 50, 1245-1249 (2002).

[CrossRef]

S. V. Pishko, P. D. Sewell, T. M. Benson, and S. V. Boriskina, “Efficient analysis and design of low-loss WGM coupled resonator optical waveguide bends,” J. Lightwave Technol. 25, 2487-2494 (2007).

[CrossRef]

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors of 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175-1182 (2006).

[CrossRef]

A. V. Boriskin, A. I. Nosich, S. V. Boriskina, T. M. Benson, P. Sewell, and A. Altintas, “Lens or resonator?—Electromagnetic behavior of an extended hemielliptic lens for a sub-mm wave receiver,” Microwave Opt. Technol. Lett. 43, 515-518 (2004).

[CrossRef]

A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modelling,” Opt. Quantum Electron. (to be published); available at http://www.springerlink.com/content/x74382234u02608v/.

S. Rondineau, A. I. Nosich, J.-P. Daniel, M. Himdi, and S. S. Vinogradov, “MAR-based analysis of a spherical-circular printed antenna with a finite ground excited by an axially-symmetric probe,” IEEE Trans. Antennas Propag. 52, 1270-1280 (2004).

[CrossRef]

G. L. Hower, R. G. Olsen, J. D. Earls, and J. B. Schneider, “Inaccuracies in numerical calculations of scattering near natural frequencies of penetrable objects,” IEEE Trans. Antennas Propag. 41, 982-986 (1993).

[CrossRef]

P. W. Evans and N. Holonyak Jr., “Room temperature photopump laser operation of native-oxide-defined coupled GaAs-AlAs superlattice microrings,” Appl. Phys. Lett. 69, 2391-2393 (1996).

[CrossRef]

P.-T. Lee, T.-W. Lu, J.-H. Fan, and F.-M. Tsai, “High quality factor microcavity lasers realized by circular photonic crystal with isotropic photonic band gap effect,” Appl. Phys. Lett. 90, 151125 (2007).

[CrossRef]

A. V. Boriskin, G. Godi, R. Sauleau, and A. I. Nosich, “Small hemielliptic dielectric lens antenna analysis in 2-D: boundary integral equations versus geometrical and physical optics,” IEEE Trans. Antennas Propag. 56, 485-492 (2008).

[CrossRef]

Y.-Z. Huang, Q.-Y. Lu, W.-H. Guo, and L.-J. Yu, “Analysis of mode characteristics for equilateral triangle semiconductor microlasers with imperfect boundaries,” IEE Proc.: Optoelectron. 151, 202-204 (2004).

[CrossRef]

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154-2165 (1997).

[CrossRef]

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

S. Rondineau, A. I. Nosich, J.-P. Daniel, M. Himdi, and S. S. Vinogradov, “MAR-based analysis of a spherical-circular printed antenna with a finite ground excited by an axially-symmetric probe,” IEEE Trans. Antennas Propag. 52, 1270-1280 (2004).

[CrossRef]

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154-2165 (1997).

[CrossRef]

P. W. Evans and N. Holonyak Jr., “Room temperature photopump laser operation of native-oxide-defined coupled GaAs-AlAs superlattice microrings,” Appl. Phys. Lett. 69, 2391-2393 (1996).

[CrossRef]

G. L. Hower, R. G. Olsen, J. D. Earls, and J. B. Schneider, “Inaccuracies in numerical calculations of scattering near natural frequencies of penetrable objects,” IEEE Trans. Antennas Propag. 41, 982-986 (1993).

[CrossRef]

Y.-Z. Huang, Q.-Y. Lu, W.-H. Guo, and L.-J. Yu, “Analysis of mode characteristics for equilateral triangle semiconductor microlasers with imperfect boundaries,” IEE Proc.: Optoelectron. 151, 202-204 (2004).

[CrossRef]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—Part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006).

[CrossRef]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—Part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15-32 (2006).

[CrossRef]

S.-Y. Lee, M. S. Kurdoglyan, S. Rim, and C.-M. Kim, “Resonance patterns in a stadium-shaped microcavity,” Phys. Rev. A 70, 023809 (2004).

[CrossRef]

S.-Y. Lee, M. S. Kurdoglyan, S. Rim, and C.-M. Kim, “Resonance patterns in a stadium-shaped microcavity,” Phys. Rev. A 70, 023809 (2004).

[CrossRef]

P.-T. Lee, T.-W. Lu, J.-H. Fan, and F.-M. Tsai, “High quality factor microcavity lasers realized by circular photonic crystal with isotropic photonic band gap effect,” Appl. Phys. Lett. 90, 151125 (2007).

[CrossRef]

S.-Y. Lee, M. S. Kurdoglyan, S. Rim, and C.-M. Kim, “Resonance patterns in a stadium-shaped microcavity,” Phys. Rev. A 70, 023809 (2004).

[CrossRef]

Y.-Z. Huang, Q.-Y. Lu, W.-H. Guo, and L.-J. Yu, “Analysis of mode characteristics for equilateral triangle semiconductor microlasers with imperfect boundaries,” IEE Proc.: Optoelectron. 151, 202-204 (2004).

[CrossRef]

P.-T. Lee, T.-W. Lu, J.-H. Fan, and F.-M. Tsai, “High quality factor microcavity lasers realized by circular photonic crystal with isotropic photonic band gap effect,” Appl. Phys. Lett. 90, 151125 (2007).

[CrossRef]

D. Marcuse, Light Transmission Optics, Computer Science and Engineering Series (Van Nostrand Reinhold Electrical, 1989).

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—Part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15-32 (2006).

[CrossRef]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—Part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006).

[CrossRef]

A. V. Boriskin, A. Rolland, R. Sauleau, and A. I. Nosich, “Assessment of FDTD accuracy in the compact hemielliptic dielectric lens antenna analysis,” IEEE Trans. Antennas Propag. 56, 758-764 (2008).

[CrossRef]

A. V. Boriskin, G. Godi, R. Sauleau, and A. I. Nosich, “Small hemielliptic dielectric lens antenna analysis in 2-D: boundary integral equations versus geometrical and physical optics,” IEEE Trans. Antennas Propag. 56, 485-492 (2008).

[CrossRef]

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors of 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175-1182 (2006).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Threshold reduction in a cyclic photonic molecule laser composed of identical microdisks with whispering-gallery modes,” Opt. Lett. 31, 921-923 (2006).

[CrossRef]
[PubMed]

E. I. Smotrova, A. I. Nosich, T. Benson, and P. Sewell, “Cold-cavity thresholds of microdisks with uniform and non-uniform gain: quasi-3D modeling with accurate 2D analysis,” IEEE J. Sel. Top. Quantum Electron. 11, 1135-1142 (2005).

[CrossRef]

S. Rondineau, A. I. Nosich, J.-P. Daniel, M. Himdi, and S. S. Vinogradov, “MAR-based analysis of a spherical-circular printed antenna with a finite ground excited by an axially-symmetric probe,” IEEE Trans. Antennas Propag. 52, 1270-1280 (2004).

[CrossRef]

A. V. Boriskin, A. I. Nosich, S. V. Boriskina, T. M. Benson, P. Sewell, and A. Altintas, “Lens or resonator?—Electromagnetic behavior of an extended hemielliptic lens for a sub-mm wave receiver,” Microwave Opt. Technol. Lett. 43, 515-518 (2004).

[CrossRef]

A. V. Boriskin and A. I. Nosich, “Whispering-gallery and Luneburg lens effects in a beam-fed circularly-layered dielectric cylinder,” IEEE Trans. Antennas Propag. 50, 1245-1249 (2002).

[CrossRef]

A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modelling,” Opt. Quantum Electron. (to be published); available at http://www.springerlink.com/content/x74382234u02608v/.

G. L. Hower, R. G. Olsen, J. D. Earls, and J. B. Schneider, “Inaccuracies in numerical calculations of scattering near natural frequencies of penetrable objects,” IEEE Trans. Antennas Propag. 41, 982-986 (1993).

[CrossRef]

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154-2165 (1997).

[CrossRef]

S.-Y. Lee, M. S. Kurdoglyan, S. Rim, and C.-M. Kim, “Resonance patterns in a stadium-shaped microcavity,” Phys. Rev. A 70, 023809 (2004).

[CrossRef]

A. V. Boriskin, A. Rolland, R. Sauleau, and A. I. Nosich, “Assessment of FDTD accuracy in the compact hemielliptic dielectric lens antenna analysis,” IEEE Trans. Antennas Propag. 56, 758-764 (2008).

[CrossRef]

S. Rondineau, A. I. Nosich, J.-P. Daniel, M. Himdi, and S. S. Vinogradov, “MAR-based analysis of a spherical-circular printed antenna with a finite ground excited by an axially-symmetric probe,” IEEE Trans. Antennas Propag. 52, 1270-1280 (2004).

[CrossRef]

A. V. Boriskin, G. Godi, R. Sauleau, and A. I. Nosich, “Small hemielliptic dielectric lens antenna analysis in 2-D: boundary integral equations versus geometrical and physical optics,” IEEE Trans. Antennas Propag. 56, 485-492 (2008).

[CrossRef]

A. V. Boriskin, A. Rolland, R. Sauleau, and A. I. Nosich, “Assessment of FDTD accuracy in the compact hemielliptic dielectric lens antenna analysis,” IEEE Trans. Antennas Propag. 56, 758-764 (2008).

[CrossRef]

K. L. Shlager and J. B. Schneider, “A selective survey of the finite-difference time-domain literature,” IEEE Antennas Propag. Mag. 37, 39-57 (1995).

[CrossRef]

G. L. Hower, R. G. Olsen, J. D. Earls, and J. B. Schneider, “Inaccuracies in numerical calculations of scattering near natural frequencies of penetrable objects,” IEEE Trans. Antennas Propag. 41, 982-986 (1993).

[CrossRef]

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors of 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175-1182 (2006).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Threshold reduction in a cyclic photonic molecule laser composed of identical microdisks with whispering-gallery modes,” Opt. Lett. 31, 921-923 (2006).

[CrossRef]
[PubMed]

E. I. Smotrova, A. I. Nosich, T. Benson, and P. Sewell, “Cold-cavity thresholds of microdisks with uniform and non-uniform gain: quasi-3D modeling with accurate 2D analysis,” IEEE J. Sel. Top. Quantum Electron. 11, 1135-1142 (2005).

[CrossRef]

A. V. Boriskin, A. I. Nosich, S. V. Boriskina, T. M. Benson, P. Sewell, and A. Altintas, “Lens or resonator?—Electromagnetic behavior of an extended hemielliptic lens for a sub-mm wave receiver,” Microwave Opt. Technol. Lett. 43, 515-518 (2004).

[CrossRef]

A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modelling,” Opt. Quantum Electron. (to be published); available at http://www.springerlink.com/content/x74382234u02608v/.

K. L. Shlager and J. B. Schneider, “A selective survey of the finite-difference time-domain literature,” IEEE Antennas Propag. Mag. 37, 39-57 (1995).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Threshold reduction in a cyclic photonic molecule laser composed of identical microdisks with whispering-gallery modes,” Opt. Lett. 31, 921-923 (2006).

[CrossRef]
[PubMed]

E. I. Smotrova, A. I. Nosich, T. Benson, and P. Sewell, “Cold-cavity thresholds of microdisks with uniform and non-uniform gain: quasi-3D modeling with accurate 2D analysis,” IEEE J. Sel. Top. Quantum Electron. 11, 1135-1142 (2005).

[CrossRef]

A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modelling,” Opt. Quantum Electron. (to be published); available at http://www.springerlink.com/content/x74382234u02608v/.

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154-2165 (1997).

[CrossRef]

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

P.-T. Lee, T.-W. Lu, J.-H. Fan, and F.-M. Tsai, “High quality factor microcavity lasers realized by circular photonic crystal with isotropic photonic band gap effect,” Appl. Phys. Lett. 90, 151125 (2007).

[CrossRef]

S. Rondineau, A. I. Nosich, J.-P. Daniel, M. Himdi, and S. S. Vinogradov, “MAR-based analysis of a spherical-circular printed antenna with a finite ground excited by an axially-symmetric probe,” IEEE Trans. Antennas Propag. 52, 1270-1280 (2004).

[CrossRef]

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302-307 (1966).

[CrossRef]

Y.-Z. Huang, Q.-Y. Lu, W.-H. Guo, and L.-J. Yu, “Analysis of mode characteristics for equilateral triangle semiconductor microlasers with imperfect boundaries,” IEE Proc.: Optoelectron. 151, 202-204 (2004).

[CrossRef]

P. W. Evans and N. Holonyak Jr., “Room temperature photopump laser operation of native-oxide-defined coupled GaAs-AlAs superlattice microrings,” Appl. Phys. Lett. 69, 2391-2393 (1996).

[CrossRef]

P.-T. Lee, T.-W. Lu, J.-H. Fan, and F.-M. Tsai, “High quality factor microcavity lasers realized by circular photonic crystal with isotropic photonic band gap effect,” Appl. Phys. Lett. 90, 151125 (2007).

[CrossRef]

Y.-Z. Huang, Q.-Y. Lu, W.-H. Guo, and L.-J. Yu, “Analysis of mode characteristics for equilateral triangle semiconductor microlasers with imperfect boundaries,” IEE Proc.: Optoelectron. 151, 202-204 (2004).

[CrossRef]

K. L. Shlager and J. B. Schneider, “A selective survey of the finite-difference time-domain literature,” IEEE Antennas Propag. Mag. 37, 39-57 (1995).

[CrossRef]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—Part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006).

[CrossRef]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—Part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15-32 (2006).

[CrossRef]

S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors of 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175-1182 (2006).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. Benson, and P. Sewell, “Cold-cavity thresholds of microdisks with uniform and non-uniform gain: quasi-3D modeling with accurate 2D analysis,” IEEE J. Sel. Top. Quantum Electron. 11, 1135-1142 (2005).

[CrossRef]

G. L. Hower, R. G. Olsen, J. D. Earls, and J. B. Schneider, “Inaccuracies in numerical calculations of scattering near natural frequencies of penetrable objects,” IEEE Trans. Antennas Propag. 41, 982-986 (1993).

[CrossRef]

A. V. Boriskin and A. I. Nosich, “Whispering-gallery and Luneburg lens effects in a beam-fed circularly-layered dielectric cylinder,” IEEE Trans. Antennas Propag. 50, 1245-1249 (2002).

[CrossRef]

S. Rondineau, A. I. Nosich, J.-P. Daniel, M. Himdi, and S. S. Vinogradov, “MAR-based analysis of a spherical-circular printed antenna with a finite ground excited by an axially-symmetric probe,” IEEE Trans. Antennas Propag. 52, 1270-1280 (2004).

[CrossRef]

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302-307 (1966).

[CrossRef]

L.-P. Berenger, “Perfectly matched layer for the FDTD solution of wave-structure interaction problem,” IEEE Trans. Antennas Propag. 44, 110-118 (1996).

[CrossRef]

A. V. Boriskin, A. Rolland, R. Sauleau, and A. I. Nosich, “Assessment of FDTD accuracy in the compact hemielliptic dielectric lens antenna analysis,” IEEE Trans. Antennas Propag. 56, 758-764 (2008).

[CrossRef]

A. V. Boriskin, G. Godi, R. Sauleau, and A. I. Nosich, “Small hemielliptic dielectric lens antenna analysis in 2-D: boundary integral equations versus geometrical and physical optics,” IEEE Trans. Antennas Propag. 56, 485-492 (2008).

[CrossRef]

Y. Liu, C. D. Sarrisa, and G. V. Eleftheriades, “Triangular-mesh-based FDTD analysis of 2-D plasmonic structures supporting backward waves at optical frequencies,” J. Lightwave Technol. 25, 938-946 (2007).

[CrossRef]

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154-2165 (1997).

[CrossRef]

A. Sakai and T. Baba, “FDTD simulation of photonic devices and circuits based on circular and fan-shaped microdisks,” J. Lightwave Technol. 17, 1493-1499 (1999).

[CrossRef]

Y. Liu and C. D. Sarris, “Fast time-domain simulation of optical waveguide structures with a multilevel dynamically adaptive mesh refinement FDTD approach,” J. Lightwave Technol. 24, 3235-3248 (2006).

[CrossRef]

S. V. Pishko, P. D. Sewell, T. M. Benson, and S. V. Boriskina, “Efficient analysis and design of low-loss WGM coupled resonator optical waveguide bends,” J. Lightwave Technol. 25, 2487-2494 (2007).

[CrossRef]

A. V. Boriskin, A. I. Nosich, S. V. Boriskina, T. M. Benson, P. Sewell, and A. Altintas, “Lens or resonator?—Electromagnetic behavior of an extended hemielliptic lens for a sub-mm wave receiver,” Microwave Opt. Technol. Lett. 43, 515-518 (2004).

[CrossRef]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711-713 (1999).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Threshold reduction in a cyclic photonic molecule laser composed of identical microdisks with whispering-gallery modes,” Opt. Lett. 31, 921-923 (2006).

[CrossRef]
[PubMed]

S.-Y. Lee, M. S. Kurdoglyan, S. Rim, and C.-M. Kim, “Resonance patterns in a stadium-shaped microcavity,” Phys. Rev. A 70, 023809 (2004).

[CrossRef]

A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modelling,” Opt. Quantum Electron. (to be published); available at http://www.springerlink.com/content/x74382234u02608v/.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

D. Marcuse, Light Transmission Optics, Computer Science and Engineering Series (Van Nostrand Reinhold Electrical, 1989).