Abstract

We propose a new approach to the classical detection problem of discrimination of a true signal of interest from an interferent signal, which may be applied to the area of chemical sensing. We show that the detection performance, as quantified by the receiver operating curve (ROC), can be substantially improved when the signal is represented by a multicomponent data set that is actively manipulated by means of a shaped laser probe pulse. In this case, the signal sought (agent) and the interfering signal (interferent) are visualized by vectors in a multidimensional detection space. Separation of these vectors can be achieved by adaptive modification of a probing laser pulse to actively manipulate the Hamiltonian of the agent and interferent. We demonstrate one implementation of the concept of adaptive rotation of signal vectors to chemical agent detection by means of strong-field time-of-flight mass spectrometry.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Bellman, Adaptive Control Processes: A Guided Tour (Princeton U. Press, 1961).
  2. D. W. Scott, Multivariate Density Estimation (Wiley, 1992).
    [CrossRef]
  3. C. E. Priebe, D. J. Marchette, and D. M. Healy, “Integrated sensing and processing decision trees,” IEEE Trans. Pattern Anal. Mach. Intell. 26, 699-708 (2004).
    [CrossRef]
  4. R. J. Levis and H. A. Rabitz, “Closing the loop on bond selective chemistry using tailored strong field laser pulses,” J. Phys. Chem. A 106, 6427-6444 (2002).
    [CrossRef]
  5. R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500-1503 (1992).
    [CrossRef] [PubMed]
  6. M. M. Wefers and K. A. Nelson, “Ultrafast optical wave-forms,” Science 262, 1381-1382 (1993).
    [CrossRef] [PubMed]
  7. D. Meshulach, D. Yelin, and Y. Silberberg, “Adaptive real-time femtosecond pulse shaping,” J. Opt. Soc. Am. B 15, 1615-1619 (1998).
    [CrossRef]
  8. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929-1960 (2000).
    [CrossRef]
  9. T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, “Feedback-controlled femtosecond pulse shaping,” Appl. Phys. B: Lasers Opt. 70, S119-S124 (2000).
    [CrossRef]
  10. R. J. Levis, G. M. Menkir, and H. Rabitz, “Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses,” Science 292, 709-713 (2001).
    [CrossRef] [PubMed]
  11. N. P. Moore, G. M. Menkir, A. N. Markevitch, P. Graham, and R. J. Levis, “The mechanisms of strong-field control of chemical reactivity using tailored laser pulses,” in Laser Control and Manipulation of Molecules, A.D.Bandrauk, R.J.Gordon, and Y.Fujimura, eds. (American Chemical Society, 2002), pp. 207-220.
    [CrossRef]
  12. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219-221 (1985).
    [CrossRef]
  13. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid-crystal phase modulator,” IEEE J. Quantum Electron. 28, 908-920 (1992).
    [CrossRef]
  14. A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161-237 (1995).
    [CrossRef]
  15. M. M. Wefers and K. A. Nelson, “Programmable phase and amplitude femtosecond pulse shaping,” Opt. Lett. 18, 2032-2034 (1993).
    [CrossRef] [PubMed]
  16. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, “Chemistry—whither the future of controlling quantum phenomena?” Science 288, 824-828 (2000).
    [CrossRef] [PubMed]
  17. T. C. Weinacht and P. H. Bucksbaum, “Using feedback for coherent control of quantum systems,” J. Opt. B: Quantum Semiclassical Opt. 4, R35-R52 (2002).
    [CrossRef]
  18. T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57-60 (2001).
    [CrossRef] [PubMed]
  19. P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470-2497 (2007).
    [CrossRef] [PubMed]
  20. B. J. Pearson, J. L. White, T. C. Weinacht, and P. H. Bucksbaum, “Coherent control using adaptive learning algorithms,” Phys. Rev. A 6306, 063412 (2001).
    [CrossRef]
  21. J. L. White, B. J. Pearson, and P. H. Bucksbaum, “Extracting quantum dynamics from genetic learning algorithms through principal control analysis,” J. Phys. B 37, L399-L405 (2004).
    [CrossRef]
  22. B. von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38, 916-926 (2007).
    [CrossRef]
  23. G. I. Petrov, V. V. Yakovlev, A. V. Sokolov, and M. O. Scully, “Detection of Bacillus subtilis spores in water by means of broadband coherent anti-Stokes Raman spectroscopy,” Opt. Express 13, 9537-9542 (2005).
    [CrossRef] [PubMed]
  24. A. Dogariu, Y. Huang, Y. Avitzour, R. K. Murawski, and M. O. Scully, “Sensitive femtosecond coherent anti-Stokes Raman spectroscopy discrimination between dipicolinic acid and dinicotinic acid,” Opt. Lett. 31, 3176-3178 (2006).
    [CrossRef] [PubMed]
  25. D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265-268 (2007).
    [CrossRef] [PubMed]
  26. B. von Vacano and M. Motzkus, “Molecular discrimination of a mixture with single-beam Raman control,” J. Chem. Phys. 127, 144514 (2007).
    [CrossRef] [PubMed]
  27. M. J. DeWitt and R. J. Levis, “Observing the transition from a multiphoton-dominated to a field-mediated ionization process for polyatomic molecules in intense laser fields,” Phys. Rev. Lett. 81, 5101-5104 (1998).
    [CrossRef]
  28. M. Spanner and P. Brumer, “Mechanisms for the control of two-mode transient stimulated Raman scattering in liquids,” Phys. Rev. A 73, 023809 (2006).
    [CrossRef]
  29. M. Spanner and P. Brumer, “Two-pulse control of Raman scattering in liquid methanol: the dominance of classical nonlinear optical effects,” Phys. Rev. A 73, 023810 (2006).
    [CrossRef]
  30. S. M. Kay, Fundamentals of Statistical Signal Processing, Vol. II: Detection Theory (Prentice Hall, 1998).
  31. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (U. S. Government Printing Office, 1972).

2007 (4)

B. von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38, 916-926 (2007).
[CrossRef]

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265-268 (2007).
[CrossRef] [PubMed]

B. von Vacano and M. Motzkus, “Molecular discrimination of a mixture with single-beam Raman control,” J. Chem. Phys. 127, 144514 (2007).
[CrossRef] [PubMed]

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470-2497 (2007).
[CrossRef] [PubMed]

2006 (3)

M. Spanner and P. Brumer, “Mechanisms for the control of two-mode transient stimulated Raman scattering in liquids,” Phys. Rev. A 73, 023809 (2006).
[CrossRef]

M. Spanner and P. Brumer, “Two-pulse control of Raman scattering in liquid methanol: the dominance of classical nonlinear optical effects,” Phys. Rev. A 73, 023810 (2006).
[CrossRef]

A. Dogariu, Y. Huang, Y. Avitzour, R. K. Murawski, and M. O. Scully, “Sensitive femtosecond coherent anti-Stokes Raman spectroscopy discrimination between dipicolinic acid and dinicotinic acid,” Opt. Lett. 31, 3176-3178 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (2)

J. L. White, B. J. Pearson, and P. H. Bucksbaum, “Extracting quantum dynamics from genetic learning algorithms through principal control analysis,” J. Phys. B 37, L399-L405 (2004).
[CrossRef]

C. E. Priebe, D. J. Marchette, and D. M. Healy, “Integrated sensing and processing decision trees,” IEEE Trans. Pattern Anal. Mach. Intell. 26, 699-708 (2004).
[CrossRef]

2002 (2)

R. J. Levis and H. A. Rabitz, “Closing the loop on bond selective chemistry using tailored strong field laser pulses,” J. Phys. Chem. A 106, 6427-6444 (2002).
[CrossRef]

T. C. Weinacht and P. H. Bucksbaum, “Using feedback for coherent control of quantum systems,” J. Opt. B: Quantum Semiclassical Opt. 4, R35-R52 (2002).
[CrossRef]

2001 (3)

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57-60 (2001).
[CrossRef] [PubMed]

R. J. Levis, G. M. Menkir, and H. Rabitz, “Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses,” Science 292, 709-713 (2001).
[CrossRef] [PubMed]

B. J. Pearson, J. L. White, T. C. Weinacht, and P. H. Bucksbaum, “Coherent control using adaptive learning algorithms,” Phys. Rev. A 6306, 063412 (2001).
[CrossRef]

2000 (3)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, “Feedback-controlled femtosecond pulse shaping,” Appl. Phys. B: Lasers Opt. 70, S119-S124 (2000).
[CrossRef]

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, “Chemistry—whither the future of controlling quantum phenomena?” Science 288, 824-828 (2000).
[CrossRef] [PubMed]

1998 (2)

M. J. DeWitt and R. J. Levis, “Observing the transition from a multiphoton-dominated to a field-mediated ionization process for polyatomic molecules in intense laser fields,” Phys. Rev. Lett. 81, 5101-5104 (1998).
[CrossRef]

D. Meshulach, D. Yelin, and Y. Silberberg, “Adaptive real-time femtosecond pulse shaping,” J. Opt. Soc. Am. B 15, 1615-1619 (1998).
[CrossRef]

1995 (1)

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161-237 (1995).
[CrossRef]

1993 (2)

1992 (2)

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid-crystal phase modulator,” IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500-1503 (1992).
[CrossRef] [PubMed]

1985 (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Abramowitz, M.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (U. S. Government Printing Office, 1972).

Ariunbold, G. O.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265-268 (2007).
[CrossRef] [PubMed]

Avitzour, Y.

Bellman, R.

R. Bellman, Adaptive Control Processes: A Guided Tour (Princeton U. Press, 1961).

Brixner, T.

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470-2497 (2007).
[CrossRef] [PubMed]

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57-60 (2001).
[CrossRef] [PubMed]

T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, “Feedback-controlled femtosecond pulse shaping,” Appl. Phys. B: Lasers Opt. 70, S119-S124 (2000).
[CrossRef]

Brumer, P.

M. Spanner and P. Brumer, “Two-pulse control of Raman scattering in liquid methanol: the dominance of classical nonlinear optical effects,” Phys. Rev. A 73, 023810 (2006).
[CrossRef]

M. Spanner and P. Brumer, “Mechanisms for the control of two-mode transient stimulated Raman scattering in liquids,” Phys. Rev. A 73, 023809 (2006).
[CrossRef]

Bucksbaum, P. H.

J. L. White, B. J. Pearson, and P. H. Bucksbaum, “Extracting quantum dynamics from genetic learning algorithms through principal control analysis,” J. Phys. B 37, L399-L405 (2004).
[CrossRef]

T. C. Weinacht and P. H. Bucksbaum, “Using feedback for coherent control of quantum systems,” J. Opt. B: Quantum Semiclassical Opt. 4, R35-R52 (2002).
[CrossRef]

B. J. Pearson, J. L. White, T. C. Weinacht, and P. H. Bucksbaum, “Coherent control using adaptive learning algorithms,” Phys. Rev. A 6306, 063412 (2001).
[CrossRef]

Damrauer, N. H.

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57-60 (2001).
[CrossRef] [PubMed]

de Vivie-Riedle, R.

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, “Chemistry—whither the future of controlling quantum phenomena?” Science 288, 824-828 (2000).
[CrossRef] [PubMed]

DeWitt, M. J.

M. J. DeWitt and R. J. Levis, “Observing the transition from a multiphoton-dominated to a field-mediated ionization process for polyatomic molecules in intense laser fields,” Phys. Rev. Lett. 81, 5101-5104 (1998).
[CrossRef]

Dogariu, A.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265-268 (2007).
[CrossRef] [PubMed]

A. Dogariu, Y. Huang, Y. Avitzour, R. K. Murawski, and M. O. Scully, “Sensitive femtosecond coherent anti-Stokes Raman spectroscopy discrimination between dipicolinic acid and dinicotinic acid,” Opt. Lett. 31, 3176-3178 (2006).
[CrossRef] [PubMed]

Gerber, G.

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470-2497 (2007).
[CrossRef] [PubMed]

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57-60 (2001).
[CrossRef] [PubMed]

T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, “Feedback-controlled femtosecond pulse shaping,” Appl. Phys. B: Lasers Opt. 70, S119-S124 (2000).
[CrossRef]

Graham, P.

N. P. Moore, G. M. Menkir, A. N. Markevitch, P. Graham, and R. J. Levis, “The mechanisms of strong-field control of chemical reactivity using tailored laser pulses,” in Laser Control and Manipulation of Molecules, A.D.Bandrauk, R.J.Gordon, and Y.Fujimura, eds. (American Chemical Society, 2002), pp. 207-220.
[CrossRef]

Healy, D. M.

C. E. Priebe, D. J. Marchette, and D. M. Healy, “Integrated sensing and processing decision trees,” IEEE Trans. Pattern Anal. Mach. Intell. 26, 699-708 (2004).
[CrossRef]

Huang, Y.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265-268 (2007).
[CrossRef] [PubMed]

A. Dogariu, Y. Huang, Y. Avitzour, R. K. Murawski, and M. O. Scully, “Sensitive femtosecond coherent anti-Stokes Raman spectroscopy discrimination between dipicolinic acid and dinicotinic acid,” Opt. Lett. 31, 3176-3178 (2006).
[CrossRef] [PubMed]

Judson, R. S.

R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500-1503 (1992).
[CrossRef] [PubMed]

Kay, S. M.

S. M. Kay, Fundamentals of Statistical Signal Processing, Vol. II: Detection Theory (Prentice Hall, 1998).

Kompa, K.

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, “Chemistry—whither the future of controlling quantum phenomena?” Science 288, 824-828 (2000).
[CrossRef] [PubMed]

Leaird, D. E.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid-crystal phase modulator,” IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

Levis, R. J.

R. J. Levis and H. A. Rabitz, “Closing the loop on bond selective chemistry using tailored strong field laser pulses,” J. Phys. Chem. A 106, 6427-6444 (2002).
[CrossRef]

R. J. Levis, G. M. Menkir, and H. Rabitz, “Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses,” Science 292, 709-713 (2001).
[CrossRef] [PubMed]

M. J. DeWitt and R. J. Levis, “Observing the transition from a multiphoton-dominated to a field-mediated ionization process for polyatomic molecules in intense laser fields,” Phys. Rev. Lett. 81, 5101-5104 (1998).
[CrossRef]

N. P. Moore, G. M. Menkir, A. N. Markevitch, P. Graham, and R. J. Levis, “The mechanisms of strong-field control of chemical reactivity using tailored laser pulses,” in Laser Control and Manipulation of Molecules, A.D.Bandrauk, R.J.Gordon, and Y.Fujimura, eds. (American Chemical Society, 2002), pp. 207-220.
[CrossRef]

Marchette, D. J.

C. E. Priebe, D. J. Marchette, and D. M. Healy, “Integrated sensing and processing decision trees,” IEEE Trans. Pattern Anal. Mach. Intell. 26, 699-708 (2004).
[CrossRef]

Markevitch, A. N.

N. P. Moore, G. M. Menkir, A. N. Markevitch, P. Graham, and R. J. Levis, “The mechanisms of strong-field control of chemical reactivity using tailored laser pulses,” in Laser Control and Manipulation of Molecules, A.D.Bandrauk, R.J.Gordon, and Y.Fujimura, eds. (American Chemical Society, 2002), pp. 207-220.
[CrossRef]

Menkir, G. M.

R. J. Levis, G. M. Menkir, and H. Rabitz, “Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses,” Science 292, 709-713 (2001).
[CrossRef] [PubMed]

N. P. Moore, G. M. Menkir, A. N. Markevitch, P. Graham, and R. J. Levis, “The mechanisms of strong-field control of chemical reactivity using tailored laser pulses,” in Laser Control and Manipulation of Molecules, A.D.Bandrauk, R.J.Gordon, and Y.Fujimura, eds. (American Chemical Society, 2002), pp. 207-220.
[CrossRef]

Meshulach, D.

Meyer, L.

B. von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38, 916-926 (2007).
[CrossRef]

Moore, N. P.

N. P. Moore, G. M. Menkir, A. N. Markevitch, P. Graham, and R. J. Levis, “The mechanisms of strong-field control of chemical reactivity using tailored laser pulses,” in Laser Control and Manipulation of Molecules, A.D.Bandrauk, R.J.Gordon, and Y.Fujimura, eds. (American Chemical Society, 2002), pp. 207-220.
[CrossRef]

Motzkus, M.

B. von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38, 916-926 (2007).
[CrossRef]

B. von Vacano and M. Motzkus, “Molecular discrimination of a mixture with single-beam Raman control,” J. Chem. Phys. 127, 144514 (2007).
[CrossRef] [PubMed]

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, “Chemistry—whither the future of controlling quantum phenomena?” Science 288, 824-828 (2000).
[CrossRef] [PubMed]

Mourou, G.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Murawski, R. K.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265-268 (2007).
[CrossRef] [PubMed]

A. Dogariu, Y. Huang, Y. Avitzour, R. K. Murawski, and M. O. Scully, “Sensitive femtosecond coherent anti-Stokes Raman spectroscopy discrimination between dipicolinic acid and dinicotinic acid,” Opt. Lett. 31, 3176-3178 (2006).
[CrossRef] [PubMed]

Nelson, K. A.

Niklaus, P.

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57-60 (2001).
[CrossRef] [PubMed]

Nuernberger, P.

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470-2497 (2007).
[CrossRef] [PubMed]

Oehrlein, A.

T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, “Feedback-controlled femtosecond pulse shaping,” Appl. Phys. B: Lasers Opt. 70, S119-S124 (2000).
[CrossRef]

Patel, J. S.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid-crystal phase modulator,” IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

Pearson, B. J.

J. L. White, B. J. Pearson, and P. H. Bucksbaum, “Extracting quantum dynamics from genetic learning algorithms through principal control analysis,” J. Phys. B 37, L399-L405 (2004).
[CrossRef]

B. J. Pearson, J. L. White, T. C. Weinacht, and P. H. Bucksbaum, “Coherent control using adaptive learning algorithms,” Phys. Rev. A 6306, 063412 (2001).
[CrossRef]

Pestov, D.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265-268 (2007).
[CrossRef] [PubMed]

Petrov, G. I.

Priebe, C. E.

C. E. Priebe, D. J. Marchette, and D. M. Healy, “Integrated sensing and processing decision trees,” IEEE Trans. Pattern Anal. Mach. Intell. 26, 699-708 (2004).
[CrossRef]

Rabitz, H.

R. J. Levis, G. M. Menkir, and H. Rabitz, “Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses,” Science 292, 709-713 (2001).
[CrossRef] [PubMed]

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, “Chemistry—whither the future of controlling quantum phenomena?” Science 288, 824-828 (2000).
[CrossRef] [PubMed]

R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500-1503 (1992).
[CrossRef] [PubMed]

Rabitz, H. A.

R. J. Levis and H. A. Rabitz, “Closing the loop on bond selective chemistry using tailored strong field laser pulses,” J. Phys. Chem. A 106, 6427-6444 (2002).
[CrossRef]

Rostovtsev, Y. V.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265-268 (2007).
[CrossRef] [PubMed]

Sautenkov, V. A.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265-268 (2007).
[CrossRef] [PubMed]

Scott, D. W.

D. W. Scott, Multivariate Density Estimation (Wiley, 1992).
[CrossRef]

Scully, M. O.

Silberberg, Y.

Sokolov, A. V.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265-268 (2007).
[CrossRef] [PubMed]

G. I. Petrov, V. V. Yakovlev, A. V. Sokolov, and M. O. Scully, “Detection of Bacillus subtilis spores in water by means of broadband coherent anti-Stokes Raman spectroscopy,” Opt. Express 13, 9537-9542 (2005).
[CrossRef] [PubMed]

Spanner, M.

M. Spanner and P. Brumer, “Mechanisms for the control of two-mode transient stimulated Raman scattering in liquids,” Phys. Rev. A 73, 023809 (2006).
[CrossRef]

M. Spanner and P. Brumer, “Two-pulse control of Raman scattering in liquid methanol: the dominance of classical nonlinear optical effects,” Phys. Rev. A 73, 023810 (2006).
[CrossRef]

Stegun, I. A.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (U. S. Government Printing Office, 1972).

Strehle, M.

T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, “Feedback-controlled femtosecond pulse shaping,” Appl. Phys. B: Lasers Opt. 70, S119-S124 (2000).
[CrossRef]

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Vogt, G.

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470-2497 (2007).
[CrossRef] [PubMed]

von Vacano, B.

B. von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38, 916-926 (2007).
[CrossRef]

B. von Vacano and M. Motzkus, “Molecular discrimination of a mixture with single-beam Raman control,” J. Chem. Phys. 127, 144514 (2007).
[CrossRef] [PubMed]

Wang, X.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265-268 (2007).
[CrossRef] [PubMed]

Wefers, M. M.

Weinacht, T. C.

T. C. Weinacht and P. H. Bucksbaum, “Using feedback for coherent control of quantum systems,” J. Opt. B: Quantum Semiclassical Opt. 4, R35-R52 (2002).
[CrossRef]

B. J. Pearson, J. L. White, T. C. Weinacht, and P. H. Bucksbaum, “Coherent control using adaptive learning algorithms,” Phys. Rev. A 6306, 063412 (2001).
[CrossRef]

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161-237 (1995).
[CrossRef]

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid-crystal phase modulator,” IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

White, J. L.

J. L. White, B. J. Pearson, and P. H. Bucksbaum, “Extracting quantum dynamics from genetic learning algorithms through principal control analysis,” J. Phys. B 37, L399-L405 (2004).
[CrossRef]

B. J. Pearson, J. L. White, T. C. Weinacht, and P. H. Bucksbaum, “Coherent control using adaptive learning algorithms,” Phys. Rev. A 6306, 063412 (2001).
[CrossRef]

Wullert, J. R.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid-crystal phase modulator,” IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

Yakovlev, V. V.

Yelin, D.

Zhi, M. C.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265-268 (2007).
[CrossRef] [PubMed]

Appl. Phys. B: Lasers Opt. (1)

T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, “Feedback-controlled femtosecond pulse shaping,” Appl. Phys. B: Lasers Opt. 70, S119-S124 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid-crystal phase modulator,” IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

C. E. Priebe, D. J. Marchette, and D. M. Healy, “Integrated sensing and processing decision trees,” IEEE Trans. Pattern Anal. Mach. Intell. 26, 699-708 (2004).
[CrossRef]

J. Chem. Phys. (1)

B. von Vacano and M. Motzkus, “Molecular discrimination of a mixture with single-beam Raman control,” J. Chem. Phys. 127, 144514 (2007).
[CrossRef] [PubMed]

J. Opt. B: Quantum Semiclassical Opt. (1)

T. C. Weinacht and P. H. Bucksbaum, “Using feedback for coherent control of quantum systems,” J. Opt. B: Quantum Semiclassical Opt. 4, R35-R52 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

J. L. White, B. J. Pearson, and P. H. Bucksbaum, “Extracting quantum dynamics from genetic learning algorithms through principal control analysis,” J. Phys. B 37, L399-L405 (2004).
[CrossRef]

J. Phys. Chem. A (1)

R. J. Levis and H. A. Rabitz, “Closing the loop on bond selective chemistry using tailored strong field laser pulses,” J. Phys. Chem. A 106, 6427-6444 (2002).
[CrossRef]

J. Raman Spectrosc. (1)

B. von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38, 916-926 (2007).
[CrossRef]

Nature (1)

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57-60 (2001).
[CrossRef] [PubMed]

Opt. Commun. (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Chem. Chem. Phys. (1)

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470-2497 (2007).
[CrossRef] [PubMed]

Phys. Rev. A (3)

B. J. Pearson, J. L. White, T. C. Weinacht, and P. H. Bucksbaum, “Coherent control using adaptive learning algorithms,” Phys. Rev. A 6306, 063412 (2001).
[CrossRef]

M. Spanner and P. Brumer, “Mechanisms for the control of two-mode transient stimulated Raman scattering in liquids,” Phys. Rev. A 73, 023809 (2006).
[CrossRef]

M. Spanner and P. Brumer, “Two-pulse control of Raman scattering in liquid methanol: the dominance of classical nonlinear optical effects,” Phys. Rev. A 73, 023810 (2006).
[CrossRef]

Phys. Rev. Lett. (2)

M. J. DeWitt and R. J. Levis, “Observing the transition from a multiphoton-dominated to a field-mediated ionization process for polyatomic molecules in intense laser fields,” Phys. Rev. Lett. 81, 5101-5104 (1998).
[CrossRef]

R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500-1503 (1992).
[CrossRef] [PubMed]

Prog. Quantum Electron. (1)

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161-237 (1995).
[CrossRef]

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Science (4)

R. J. Levis, G. M. Menkir, and H. Rabitz, “Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses,” Science 292, 709-713 (2001).
[CrossRef] [PubMed]

M. M. Wefers and K. A. Nelson, “Ultrafast optical wave-forms,” Science 262, 1381-1382 (1993).
[CrossRef] [PubMed]

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265-268 (2007).
[CrossRef] [PubMed]

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, “Chemistry—whither the future of controlling quantum phenomena?” Science 288, 824-828 (2000).
[CrossRef] [PubMed]

Other (5)

S. M. Kay, Fundamentals of Statistical Signal Processing, Vol. II: Detection Theory (Prentice Hall, 1998).

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (U. S. Government Printing Office, 1972).

R. Bellman, Adaptive Control Processes: A Guided Tour (Princeton U. Press, 1961).

D. W. Scott, Multivariate Density Estimation (Wiley, 1992).
[CrossRef]

N. P. Moore, G. M. Menkir, A. N. Markevitch, P. Graham, and R. J. Levis, “The mechanisms of strong-field control of chemical reactivity using tailored laser pulses,” in Laser Control and Manipulation of Molecules, A.D.Bandrauk, R.J.Gordon, and Y.Fujimura, eds. (American Chemical Society, 2002), pp. 207-220.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Integrated sensing and processing where the initial sensor measurements are processed in the preprocessor. Both preprocessor and exploitation levels operate in feedback mode, suggesting adjustments to the sensor. (b) Proposed modification where the physical layer includes the adaptive feedback loop controlling the probe to optimize the measured signal by changing the physical characteristics of the target.

Fig. 2
Fig. 2

Schematic of a control loop for mass spectral identification of molecular species. The control pulse is optimized by adaptive learning. The computer monitors the outcome of the intense laser–molecule interaction via TOF mass spectrometry, evaluates the outcome via a fitness function, and creates new pulse shapes based on fitness. The process iterates until the desired outcome is obtained. SLM, spatial light modulator.

Fig. 3
Fig. 3

Typical mass spectrum of a complex molecule (dimethyl methylphosphonate subjected to a transform-limited pulse of 10 13 W cm 2 intensity and 60 fs duration), which displays a variety of dissociation fragments.

Fig. 4
Fig. 4

Pulse shaper to produce intense tailored pulses of 50 fs duration.

Fig. 5
Fig. 5

Depictions of the agent, interferent, and related detection signals in the chamber (physical) space, molecule space, and detection (signature) space.

Fig. 6
Fig. 6

ROCs in cases of (a) an interferent that mimics the agent peak intensity ratio well and (b) the agent signature that has been manipulated to be not as well masked by the interferent peak intensity ratio. The marked improvement in the detection performance is due to disentangling rotation of the standard vectors A and I, shown in the inserts.

Fig. 7
Fig. 7

Fragmentation pattern of acetone subjected to an intense transform-limited laser pulse [4].

Fig. 8
Fig. 8

Rotation of the two-dimensional vector representing the acetone fragmentation pattern achieved by manipulating the amplitudes of the parent ion and methyl carbonyl peaks. (a) Mass spectrum resulting from a shaped laser pulse maximizing the parent molecular ion, (b) mass spectrum resulting from a shaped pulse maximizing the methyl carbonyl fragment, (c) two-dimensional representation of the mass spectrum shown in (a), (d) two-dimensional representation of the mass spectrum shown in (b). The rotation was achieved by adaptive laser pulse shaping.

Fig. 9
Fig. 9

Strong-field mass spectra for the mixture of deuterated acetone and trifluoroacetone. The spectrum resulting from a 60 fs pulse is shown in plot (a), and the optimized spectrum is shown in plot (b).

Fig. 10
Fig. 10

Two-dimensional Banach space plot of the signal/interferent vectors for trifluoroacetone and fully deuterated acetone. The solid lines correspond to the initial detection vectors for the molecules, and the dotted lines correspond to the detection vectors after optimization of the rotation.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

A 1 + A 2 = 1 ,
I 1 + I 2 = 1 .
n A A 1 + n I I 1 = s 1 ,
n A A 2 + n I I 2 = s 2 ,
( n A n I ) = 1 A 1 I 2 A 2 I 1 ( s 1 I 2 s 2 I 1 s 2 A 1 s 1 A 2 ) ,
( n A n ) = 1 A 1 I 2 A 2 I 1 ( s 1 I 2 s 2 I 1 s 2 ( A 1 I 1 ) s 1 ( A 2 I 2 ) ) = M ̂ ( s 1 s 2 ) .
P 0 ( n ) = 1 2 π n ¯ exp ( ( n n ¯ ) 2 2 n ¯ ) ,
P ( n A n , ν ) = ( n n A ) ν n A ( 1 ν ) n n A = n ! n A ! ( n n A ) ! ν n A ( 1 ν ) n n A .
P ( s 1 A n A , A 1 ) = ( n A s 1 A ) A 1 s 1 A ( 1 A 1 ) n A s 1 A = n A ! s 1 A ! ( n A s 1 A ) ! A 1 s 1 A ( 1 A 1 ) n A s 1 A ,
P ( s 1 I n I , I 1 ) = ( n I s 1 I ) I 1 s 1 I ( 1 I 1 ) n I s 1 I = n I ! s 1 I ! ( n I s 1 I ) ! I 1 s 1 I ( 1 I 1 ) n I s 1 I .
L ( s 1 ) = P ( s 1 H 1 ) P ( s 1 H 0 ) < γ ,
s 1 { L ( s 1 ) > γ } P ( s 1 n , I 1 ) = α .
L ( s 1 ) = ( n s 1 ) A 1 s 1 ( 1 A 1 ) n s 1 ( n s 1 ) I 1 s 1 ( 1 I 1 ) n s 1 = ( 1 A 1 1 I 1 ) n ( A 1 ( 1 I 1 ) I 1 ( 1 A 1 ) ) s 1 .
P ( s 1 s th H 0 ) = k = 0 s th P ( k n , I ) = k = 0 s t h ( n k ) I 1 k ( 1 I 1 ) n k = α .
P ( H 1 H 0 ) + P ( H 0 H 0 ) = 1 ,
P ( H 1 H 1 ) + P ( H 0 H 1 ) = 1 .
P ( s 1 ; n A , n n A ν ) = s 1 A + s 1 I = s 1 P ( s 1 A , n A ) P ( s 1 I , n n A ) = n A ! ( n n A ) ! ( 1 A 1 ) n A I 1 s 1 ( 1 I 1 ) n n A s 1 s 1 A = 0 min { s 1 , n A } ( A 1 ( 1 I 1 ) I 1 ( 1 A 1 ) ) s 1 A s 1 A ! ( s 1 s 1 A ) ! ( n A s 1 A ) ! ( n n A s 1 + s 1 A ) ! .
P ( s 1 , s 2 ) = ( s 1 + s 2 ) ! I 1 s 1 ( 1 I 1 ) s 2 ( 1 ν ) s 1 + s 2 n A = 0 s 1 + s 2 ( ν 1 ν ) n A ( 1 A 1 1 I 1 ) n A 1 n A ! ( s 2 n A ) ! F 1 2 ( n A , s 1 , s 2 n A + 1 , A 1 ( 1 I 1 ) I 1 ( 1 A 1 ) ) ,
ν m = s 1 ( 1 I 1 ) s 2 I 1 ( A 1 I 1 ) ( s 1 + s 2 ) .
s 2 = 1 ( I 1 + ν th ( A 1 I 1 ) ) I 1 + ν th ( A 1 I 1 ) s 1 ,
P ( H 1 H 1 ) = ν t 1 d ν s 1 = 0 s 2 = 0 P 0 ( s 1 + s 2 ) P ( s 1 , s 2 ν ) ϴ ( 1 ( I 1 + ν th ( A 1 I 1 ) ) I 1 + ν th ( A 1 I 1 ) s 1 s 2 ) ,
P ( H 1 H 0 ) = 0 ν t d ν s 1 = 0 s 2 = 0 P 0 ( s 1 + s 2 ) P ( s 1 , s 2 ν ) ϴ ( 1 ( I 1 + ν th ( A 1 I 1 ) ) I 1 + ν th ( A 1 I 1 ) s 1 s 2 ) .
P ( H 1 H 1 ) = s 1 = 0 n ¯ P ( s 1 , n ¯ s 1 ν ) ϴ ( s 1 ( I 1 + ν th ( A 1 I 1 ) ) n ¯ ) ,
P ( H 1 H 0 ) = s 1 = 0 n ¯ P ( s 1 , n ¯ s 1 0 ) ϴ ( s 1 ( I 1 + ν th ( A 1 I 1 ) ) n ¯ ) .
f = tan 1 ( M 2 I M 1 I ) tan 1 ( M 2 A M 1 A ) .

Metrics