Abstract

Anisotropic gratings are recorded on bacteriorhodopsin films by two parallelly polarized beams, and the effect of the polarization orientation of the reconstructing beam on the diffraction efficiency kinetics is studied. A theoretical model for the diffraction efficiency kinetics of the anisotropic grating is developed by combining Jones-matrix and photochromic two-state theory. It is found that the polarization azimuth of the reconstructing beam produces a cosine modulation on the kinetics of the diffraction efficiency, being positive at the peak efficiency and negative for steady state. By adding auxiliary violet light during grating formation, the saturation of the grating can be restrained. As a result, the negative cosine modulation for the steady-state diffraction efficiency changes to a positive one. In addition, the steady-state diffraction efficiency is increased appreciably for all reconstructing polarization orientations.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. N. Hampp, “Bacteriorhodopsin as a photochromic retinal protein for optical memories,” Chem. Rev. (Washington, D.C.) 100, 1755-1776 (2000).
    [CrossRef]
  2. B. Yao, Y. Zheng, Y. Wang, M. Lei, G. Chen, and N. Hampp, “Kinetic spectra of light-adaptation, dark-adaptation and M-intermediate of BR-D96N,” Opt. Commun. 218, 125-130 (2003).
    [CrossRef]
  3. K. Clays, S. V. Elshocht, and A. Persoons, “Bacteriorhodopsin: a natural (nonlinear) photonic bandgap material,” Opt. Lett. 25, 1391-1393 (2000).
    [CrossRef]
  4. Y. H. Huang, S. T. Wu, and Y. Y. Zhao, “Photonic switching based on the photoinduced birefringence in bacteriorhodopsin films,” Appl. Phys. Lett. 84, 2029-2030 (2004).
    [CrossRef]
  5. S. Kothapalli, P. F. Wu, S. Chandra, Yelleswarapu, and D. V. G. L. N. Rao, “Medical image processing using transient Fourier holography in bacteriorhodopsin films,” Appl. Phys. Lett. 85, 5836-5838 (2004).
    [CrossRef]
  6. T. Juchem, M. Sanio, and N. Hampp, “Bacteriorhodopsin modules for data processing with incoherent light,” Opt. Lett. 27, 1607-1609 (2002).
    [CrossRef]
  7. Y. Huang, G. Siganakis, M. Moharam, and S. Wu, “All-optical display using photoinduced anisotropy in bacteriorhodopsin film,” Opt. Lett. 29, 1933-1935 (2004).
    [CrossRef] [PubMed]
  8. E. Korchemskaya, N. Burykin, A. De Lera, R. Alvarez, S. Pirutin, and A. Druzhko, “14-Fluoro-bacteriorhodopsin gelatin films for dynamic holography recording,” Photochem. Photobiol. 81, 920-923 (2005).
    [CrossRef] [PubMed]
  9. B. Yao, Z. Ren, N. Menke, Y. Wang, Y. Zheng, M. Lei, G. Chen, and N. Hampp, “Polarization holographic high-density optical data storage in bacteriorhodopsin film,” Appl. Opt. 44, 7344-7348 (2005).
    [CrossRef] [PubMed]
  10. A. Lewis, Y. Albeck, Z. Lange, J. Benchowski, and G. Weizman, “Optical computation with negative light intensity with a plastic bacteriorhodopsin film,” Science 275, 1462-1464 (1997).
    [CrossRef]
  11. H. Kogelink, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2946 (1969).
  12. J. D. Downie and D. A. Timucin, “Modeling the grating-formation process in thick bacteriorhodopsin films,” Appl. Opt. 37, 2102-2111 (1998).
    [CrossRef]
  13. N. Hampp and T. Juchem, “Improvement of the diffraction efficiency and kinetics of holographic gratings in photochromedia by auxiliary light,” Opt. Lett. 29, 2911-2913 (2004).
    [CrossRef]
  14. Y. Wang, B. Yao, N. Menke, Z. Ren, M. Lei, and L. Ren, “Experimental and theoretical studies on auxiliary violet light increasing the diffraction efficiency of holographic gratings in bacteriorhodopsin,” Acta Phys. Sin. 55, 5200-5205 (2006).
  15. M. W. Yu, Optical Holography and Its Applications (Beijing Institute of Technology Press, Academic, 1996).
  16. J. D. Downie and D. T. Smithey, “Measurements of holographic properties of bacteriorhodopsin films,” Appl. Opt. 35, 5780-5789 (1996).
    [CrossRef] [PubMed]
  17. E. Ya. Korchemskaya, D. A. Stepanchikov, A. B. Druzhko, and T. V. Dyukova, “Mechanism of nonlinear photoinduced anisotropy in bacteriorhodopsin and its derivatives,” J. Biol. Phys. 24, 201-215 (1999).
    [CrossRef]

2006

Y. Wang, B. Yao, N. Menke, Z. Ren, M. Lei, and L. Ren, “Experimental and theoretical studies on auxiliary violet light increasing the diffraction efficiency of holographic gratings in bacteriorhodopsin,” Acta Phys. Sin. 55, 5200-5205 (2006).

2005

E. Korchemskaya, N. Burykin, A. De Lera, R. Alvarez, S. Pirutin, and A. Druzhko, “14-Fluoro-bacteriorhodopsin gelatin films for dynamic holography recording,” Photochem. Photobiol. 81, 920-923 (2005).
[CrossRef] [PubMed]

B. Yao, Z. Ren, N. Menke, Y. Wang, Y. Zheng, M. Lei, G. Chen, and N. Hampp, “Polarization holographic high-density optical data storage in bacteriorhodopsin film,” Appl. Opt. 44, 7344-7348 (2005).
[CrossRef] [PubMed]

2004

Y. H. Huang, S. T. Wu, and Y. Y. Zhao, “Photonic switching based on the photoinduced birefringence in bacteriorhodopsin films,” Appl. Phys. Lett. 84, 2029-2030 (2004).
[CrossRef]

S. Kothapalli, P. F. Wu, S. Chandra, Yelleswarapu, and D. V. G. L. N. Rao, “Medical image processing using transient Fourier holography in bacteriorhodopsin films,” Appl. Phys. Lett. 85, 5836-5838 (2004).
[CrossRef]

Y. Huang, G. Siganakis, M. Moharam, and S. Wu, “All-optical display using photoinduced anisotropy in bacteriorhodopsin film,” Opt. Lett. 29, 1933-1935 (2004).
[CrossRef] [PubMed]

N. Hampp and T. Juchem, “Improvement of the diffraction efficiency and kinetics of holographic gratings in photochromedia by auxiliary light,” Opt. Lett. 29, 2911-2913 (2004).
[CrossRef]

2003

B. Yao, Y. Zheng, Y. Wang, M. Lei, G. Chen, and N. Hampp, “Kinetic spectra of light-adaptation, dark-adaptation and M-intermediate of BR-D96N,” Opt. Commun. 218, 125-130 (2003).
[CrossRef]

2002

2000

K. Clays, S. V. Elshocht, and A. Persoons, “Bacteriorhodopsin: a natural (nonlinear) photonic bandgap material,” Opt. Lett. 25, 1391-1393 (2000).
[CrossRef]

N. Hampp, “Bacteriorhodopsin as a photochromic retinal protein for optical memories,” Chem. Rev. (Washington, D.C.) 100, 1755-1776 (2000).
[CrossRef]

1999

E. Ya. Korchemskaya, D. A. Stepanchikov, A. B. Druzhko, and T. V. Dyukova, “Mechanism of nonlinear photoinduced anisotropy in bacteriorhodopsin and its derivatives,” J. Biol. Phys. 24, 201-215 (1999).
[CrossRef]

1998

1997

A. Lewis, Y. Albeck, Z. Lange, J. Benchowski, and G. Weizman, “Optical computation with negative light intensity with a plastic bacteriorhodopsin film,” Science 275, 1462-1464 (1997).
[CrossRef]

1996

1969

H. Kogelink, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2946 (1969).

Acta Phys. Sin.

Y. Wang, B. Yao, N. Menke, Z. Ren, M. Lei, and L. Ren, “Experimental and theoretical studies on auxiliary violet light increasing the diffraction efficiency of holographic gratings in bacteriorhodopsin,” Acta Phys. Sin. 55, 5200-5205 (2006).

Appl. Opt.

Appl. Phys. Lett.

Y. H. Huang, S. T. Wu, and Y. Y. Zhao, “Photonic switching based on the photoinduced birefringence in bacteriorhodopsin films,” Appl. Phys. Lett. 84, 2029-2030 (2004).
[CrossRef]

S. Kothapalli, P. F. Wu, S. Chandra, Yelleswarapu, and D. V. G. L. N. Rao, “Medical image processing using transient Fourier holography in bacteriorhodopsin films,” Appl. Phys. Lett. 85, 5836-5838 (2004).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelink, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2946 (1969).

Chem. Rev. (Washington, D.C.)

N. Hampp, “Bacteriorhodopsin as a photochromic retinal protein for optical memories,” Chem. Rev. (Washington, D.C.) 100, 1755-1776 (2000).
[CrossRef]

J. Biol. Phys.

E. Ya. Korchemskaya, D. A. Stepanchikov, A. B. Druzhko, and T. V. Dyukova, “Mechanism of nonlinear photoinduced anisotropy in bacteriorhodopsin and its derivatives,” J. Biol. Phys. 24, 201-215 (1999).
[CrossRef]

Opt. Commun.

B. Yao, Y. Zheng, Y. Wang, M. Lei, G. Chen, and N. Hampp, “Kinetic spectra of light-adaptation, dark-adaptation and M-intermediate of BR-D96N,” Opt. Commun. 218, 125-130 (2003).
[CrossRef]

Opt. Lett.

Photochem. Photobiol.

E. Korchemskaya, N. Burykin, A. De Lera, R. Alvarez, S. Pirutin, and A. Druzhko, “14-Fluoro-bacteriorhodopsin gelatin films for dynamic holography recording,” Photochem. Photobiol. 81, 920-923 (2005).
[CrossRef] [PubMed]

Science

A. Lewis, Y. Albeck, Z. Lange, J. Benchowski, and G. Weizman, “Optical computation with negative light intensity with a plastic bacteriorhodopsin film,” Science 275, 1462-1464 (1997).
[CrossRef]

Other

M. W. Yu, Optical Holography and Its Applications (Beijing Institute of Technology Press, Academic, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Geometry of grating recording.

Fig. 2
Fig. 2

Diffraction efficiency kinetics of the reconstructing waves for different polarization orientation: (a) without violet irradiation, (b) with violet irradiation. θ is the polarization azimuth between the polarization orientation of the recording waves and that of the reconstructing wave. The total intensity of the recording waves is I W = 40 mW cm 2 . The intensities of the reconstructing wave are I D = 0.4 mW cm 2 . The intensity of violet light in (b) is I E = 10 mW cm 2 .

Fig. 3
Fig. 3

Profiles of the refractive grating for e and o light at different times: (a) when the diffraction efficiency is at the peak value, (b) when it is at steady state, (c) when it is at steady state and with violet light irradiation. const 1 = [ Δ n o ( x , t p e a k ) ] m i n [ Δ n e ( x , t p e a k ) ] m i n , const 2 = [ Δ n o ( x , t s t e a d y ) ] m i n [ Δ n e ( x , t s t e a d y ) ] m i n , and for the case that violet light is added, const 3 = [ Δ n o ( x , t s t e a d y ) ] m i n [ Δ n e ( x , t s t e a d y ) ] m i n . Here, min stands for minimum.

Fig. 4
Fig. 4

Scheme of the experimental setup for real-time holography. BS 1 - BS 3 , beam splitters; M 1 - M 4 , mirrors; A 1 - A 3 , variable attenuators; S 1 and S 2 , shutters; D, power meter; O, digital oscilloscope.

Fig. 5
Fig. 5

Experimental diffraction efficiencies for different polarization orientations of the reconstructing beam. (a) Kinetics of the diffraction efficiency, (b) peak and steady diffraction efficiencies versus the polarization orientation.

Fig. 6
Fig. 6

Experimental diffraction efficiencies for different polarization orientations of the reconstructing beam under violet light. (a) Kinetics of the diffraction efficiency, (b) comparison of the steady diffraction efficiencies with violet irradiation and without violet irradiation.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

O = A e i K x 2 [ 0 1 ] , R = A e i K x 2 [ 0 1 ] .
E = O + R = 2 A cos ( K x 2 ) [ 0 1 ] .
I w ( x ) = E 2 = 2 A 2 [ 1 + cos ( K x ) ] .
t ̃ ( t , x ) = [ t o e i k 0 Δ n o d 0 0 t e e i k 0 Δ n e d ] e i k 0 n 0 d .
C = C [ sin θ cos θ ] e i K x 2 .
D = t ̃ ( t , x ) C = C e i k 0 n 0 d [ t o e i k 0 Δ n o d sin θ t e e i k 0 Δ n e d cos θ ] e i K x 2 .
t j exp ( i k 0 Δ n j d ) = l = + a l j exp ( i l K x ) .
a l j ( t ) = 1 2 π 0 2 π t j exp ( i k 0 Δ n j d ) exp ( i l K x ) d ( K x ) .
D = t ̃ ( t , x ) C = C e i k 0 n 0 d { [ a 0 o sin θ a 0 e cos θ ] e i K x 2 + [ a 1 o sin θ a 1 e cos θ ] e i K x 2 + } .
η + 1 = D + 1 D + 1 * C C * = ( a 1 e a 1 e * ) cos 2 θ + ( a 1 o a 1 o * ) sin 2 θ = η e cos 2 θ + η o sin 2 θ = η e + η o 2 + η e η o 2 cos ( 2 θ ) .
N M = N 0 2 π k 1 + k 2 k 123 r [ 1 exp ( k 123 r t ) ] ,
N B = N 0 2 π N M .
ln t j ( t , x ) = ln 10 2 d 0 2 π ε j B N B ( t , x , ψ ) d ψ .
Δ n j ( t , x ) = 0 2 π C B M N M ( t , x , ψ ) cos ( ψ β j ) d ψ .

Metrics