Abstract

Traditionally, thresholds for detecting photometric changes have been measured by using stimuli such as disks or gratings and accounted for in terms of relatively low-level mechanisms in the visual pathway. Therefore one might not expect the higher-order structures that characterize natural scenes to influence thresholds for detecting uniform photometric changes. We compared thresholds for detecting uniform photometric changes for natural and phase-scrambled versions of images of natural scenes. The chromaticity and luminance of every pixel was represented as a vector in a modified version of the MacLeod-Boynton color space and was translated, rotated, or compressed within that color space. Thresholds for all types of transformation were significantly lower in the raw compared with phase-scrambled scenes, and we attribute this to the influence of higher-order structure.

© 2008 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription