Abstract

Digital in-line soft x-ray holography (DIXH) was used to image immobilized polystyrene and iron oxide particles and to distinguish them based on their different x-ray absorption cross sections in the vicinity of the carbon K-absorption edge. The element-specific information from the resonant DIXH images was correlated with high-resolution scanning electron microscopy (SEM) pictures. We also present DIXH images of a cell nucleus and compare the contrast obtained for nuclear components with the appearance in optical microscopy.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).
    [CrossRef] [PubMed]
  2. U. Schnars and W. Juepner, Digital Holography (Springer, 2005).
  3. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography for biological applications," Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001).
    [CrossRef] [PubMed]
  4. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography of microspheres," Appl. Opt. 41, 5367-5375 (2002).
    [CrossRef] [PubMed]
  5. J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, "Immersion digital in-line holographic microscopy," Opt. Lett. 31, 1211-1213 (2006).
    [CrossRef] [PubMed]
  6. A.-S. Morlens, J. Gautier, R. Gilles, P. Zeitoun, J.-P. Caumes, M. Kos-Rosset, H. Merdji, S. Kazamias, K. Cassou, and M. Fajardo, "Submicrometer digital in-line holographic microscopy at 32 nm with high-order harmonics," Opt. Lett. 31, 3095-3097 (2006).
    [CrossRef] [PubMed]
  7. A. Rosenhahn, R. Barth, X. Cao, M. Schürmann, M. Grunze, and S. Eisebitt, "Vacuum-ultraviolet Gabor holography with synchrotron radiation," Ultramicroscopy 107, 1171-1177 (2007).
    [CrossRef] [PubMed]
  8. S. Vogt, G. Schneider, A. Steuernagel, J. Lucchesi, E. Schulze, D. Rudolph, and G. Schmahl, "X-ray microscopic studies of the Drosophila dosage compensation complex," J. Struct. Biol. 132, 123-132 (2000).
    [CrossRef]
  9. W. Meyer-Ilse, D. Hamamoto, A. Nair, S. A. Lelivièvre, G. Denbeaux, L. Johnson, A. L. Pearson, D. Yager, M. A. Legros, and C. A. Larabell, "High resolution protein localization using soft x-ray microscopy," J. Microsc. 201, 395-403 (2001).
    [CrossRef] [PubMed]
  10. S. Lindaas, M. Howells, C. Jacobsen, and A. Kalinovsky, "X-ray holographic microscopy by means of photoresist recording and atomic-force microscope readout," J. Opt. Soc. Am. A 13, 1788-1800 (1996).
    [CrossRef]
  11. N. Watanabe and S. Aoki, "Three-dimensional tomography using a soft x-ray holographic microscope and CCD camera," J. Synchrotron Radiat. 5, 1088-1089 (1998).
    [CrossRef]
  12. C. Jacobsen, G. Flynn, S. Wirick, and C. Zimba, "Soft x-ray spectroscopy from image sequences with sub-100 nm spatial resolution," J. Microsc. 197, 173-184 (2000).
    [CrossRef]
  13. A. P. Hitchcock, I. Koprinarov, T. Tyliszczak, E. G. Rightor, G. E. Mitchell, M. T. Dineen, F. Hayes, W. Lidy, R. D. Priester, S. G. Urquhart, A. P. Smith, and H. Ade, "Optimization of scanning transmission x-ray microscopy for the identification and quantification of reinforcing particles in polyurethanes," Ultramicroscopy 88, 33-49 (2001).
    [CrossRef] [PubMed]
  14. M. Lerotic, C. Jacobsen, T. Schäfer, and S. Vogt, "Cluster analysis of soft x-ray spectromicroscopic data," Ultramicroscopy 100, 35-57 (2004).
    [CrossRef] [PubMed]
  15. S. Omori, L. Zhao, S. Marchesini, M. A. van Hove, and C. S. Fadley, "Resonant x-ray fluorescence holography: three-dimensional atomic imaging in true color," Phys. Rev. B 65, 014106 (2002).
    [CrossRef]
  16. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, P. Klages, and H. J. Kreuzer, "Digital in-line holographic microscopy," Appl. Opt. 45, 836-850 (2006).
    [CrossRef] [PubMed]
  17. The Center of X-Ray Optics, Lawrence Berkeley National Laboratory, "X-ray interaction with matter," http://www.cxro.lbl.gov/opticallowbarconstants/.

2007 (1)

A. Rosenhahn, R. Barth, X. Cao, M. Schürmann, M. Grunze, and S. Eisebitt, "Vacuum-ultraviolet Gabor holography with synchrotron radiation," Ultramicroscopy 107, 1171-1177 (2007).
[CrossRef] [PubMed]

2006 (3)

2004 (1)

M. Lerotic, C. Jacobsen, T. Schäfer, and S. Vogt, "Cluster analysis of soft x-ray spectromicroscopic data," Ultramicroscopy 100, 35-57 (2004).
[CrossRef] [PubMed]

2002 (2)

S. Omori, L. Zhao, S. Marchesini, M. A. van Hove, and C. S. Fadley, "Resonant x-ray fluorescence holography: three-dimensional atomic imaging in true color," Phys. Rev. B 65, 014106 (2002).
[CrossRef]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography of microspheres," Appl. Opt. 41, 5367-5375 (2002).
[CrossRef] [PubMed]

2001 (3)

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography for biological applications," Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001).
[CrossRef] [PubMed]

W. Meyer-Ilse, D. Hamamoto, A. Nair, S. A. Lelivièvre, G. Denbeaux, L. Johnson, A. L. Pearson, D. Yager, M. A. Legros, and C. A. Larabell, "High resolution protein localization using soft x-ray microscopy," J. Microsc. 201, 395-403 (2001).
[CrossRef] [PubMed]

A. P. Hitchcock, I. Koprinarov, T. Tyliszczak, E. G. Rightor, G. E. Mitchell, M. T. Dineen, F. Hayes, W. Lidy, R. D. Priester, S. G. Urquhart, A. P. Smith, and H. Ade, "Optimization of scanning transmission x-ray microscopy for the identification and quantification of reinforcing particles in polyurethanes," Ultramicroscopy 88, 33-49 (2001).
[CrossRef] [PubMed]

2000 (2)

C. Jacobsen, G. Flynn, S. Wirick, and C. Zimba, "Soft x-ray spectroscopy from image sequences with sub-100 nm spatial resolution," J. Microsc. 197, 173-184 (2000).
[CrossRef]

S. Vogt, G. Schneider, A. Steuernagel, J. Lucchesi, E. Schulze, D. Rudolph, and G. Schmahl, "X-ray microscopic studies of the Drosophila dosage compensation complex," J. Struct. Biol. 132, 123-132 (2000).
[CrossRef]

1998 (1)

N. Watanabe and S. Aoki, "Three-dimensional tomography using a soft x-ray holographic microscope and CCD camera," J. Synchrotron Radiat. 5, 1088-1089 (1998).
[CrossRef]

1996 (1)

1948 (1)

D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).
[CrossRef] [PubMed]

Appl. Opt. (2)

J. Microsc. (2)

W. Meyer-Ilse, D. Hamamoto, A. Nair, S. A. Lelivièvre, G. Denbeaux, L. Johnson, A. L. Pearson, D. Yager, M. A. Legros, and C. A. Larabell, "High resolution protein localization using soft x-ray microscopy," J. Microsc. 201, 395-403 (2001).
[CrossRef] [PubMed]

C. Jacobsen, G. Flynn, S. Wirick, and C. Zimba, "Soft x-ray spectroscopy from image sequences with sub-100 nm spatial resolution," J. Microsc. 197, 173-184 (2000).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Struct. Biol. (1)

S. Vogt, G. Schneider, A. Steuernagel, J. Lucchesi, E. Schulze, D. Rudolph, and G. Schmahl, "X-ray microscopic studies of the Drosophila dosage compensation complex," J. Struct. Biol. 132, 123-132 (2000).
[CrossRef]

J. Synchrotron Radiat. (1)

N. Watanabe and S. Aoki, "Three-dimensional tomography using a soft x-ray holographic microscope and CCD camera," J. Synchrotron Radiat. 5, 1088-1089 (1998).
[CrossRef]

Nature (1)

D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (1)

S. Omori, L. Zhao, S. Marchesini, M. A. van Hove, and C. S. Fadley, "Resonant x-ray fluorescence holography: three-dimensional atomic imaging in true color," Phys. Rev. B 65, 014106 (2002).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography for biological applications," Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001).
[CrossRef] [PubMed]

Ultramicroscopy (3)

A. Rosenhahn, R. Barth, X. Cao, M. Schürmann, M. Grunze, and S. Eisebitt, "Vacuum-ultraviolet Gabor holography with synchrotron radiation," Ultramicroscopy 107, 1171-1177 (2007).
[CrossRef] [PubMed]

A. P. Hitchcock, I. Koprinarov, T. Tyliszczak, E. G. Rightor, G. E. Mitchell, M. T. Dineen, F. Hayes, W. Lidy, R. D. Priester, S. G. Urquhart, A. P. Smith, and H. Ade, "Optimization of scanning transmission x-ray microscopy for the identification and quantification of reinforcing particles in polyurethanes," Ultramicroscopy 88, 33-49 (2001).
[CrossRef] [PubMed]

M. Lerotic, C. Jacobsen, T. Schäfer, and S. Vogt, "Cluster analysis of soft x-ray spectromicroscopic data," Ultramicroscopy 100, 35-57 (2004).
[CrossRef] [PubMed]

Other (2)

U. Schnars and W. Juepner, Digital Holography (Springer, 2005).

The Center of X-Ray Optics, Lawrence Berkeley National Laboratory, "X-ray interaction with matter," http://www.cxro.lbl.gov/opticallowbarconstants/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic drawing of the experimental setup and SEM image of the pinhole used for the experiments.

Fig. 2
Fig. 2

Mixture of polystyrene and iron oxide particles dispersed on a silicon nitride membrane; image size of b and c, 85 × 85 μ m 2 . a, Hologram, E = 220 eV , NA eff = 0.014 , b, Numerical reconstruction of a. c, Electron microscopy picture, Leo 1530, magnification of 826 × , electron energy of 10 keV , secondary electron detector.

Fig. 3
Fig. 3

Distinguishing chemistry within particle mixtures by imaging at different photon energies: (a, f) reconstructions for 220 eV , (b, g) reconstructions for 283 eV , and (c, h) for 330 eV photon energy. Plots d and e show the wavelength-dependent attenuation length (often described via the imaginary part of the complex index of refraction) (d) and refractive index (connected to the real part of the complex index of refraction) (e) of polystyrene and iron oxide [17]. The dotted lines indicate the photon energies used for holographic imaging. Image size: (a–c) 30 × 20 μ m 2 ; (f–h) 25 × 20 μ m 2 .

Fig. 4
Fig. 4

Chemical maps derived from the holospectroscopy images and correlation with scanning electron microscopy. (a, d) Color-coded images based on the contrast observed in Figs. 3b, 3c and Figs. 3g, 3h. (b, e) SEM picture, Leo 1530, electron energy of 10 keV , secondary electron detector. (c, f) Correlation images DIXH chemical maps and electron microscopy. Image size: (a–c) 30 × 20 μ m 2 ; (d, f) 25 × 20 μ m 2 .

Fig. 5
Fig. 5

Nucleus of a fibroblast cell imaged with DIXH. a, Hologram, E = 220 eV , NA eff = 0.014 . b, Numerical reconstruction of a, image size of 53 × 60 μ m 2 . c, Reconstruction b with some major features highlighted within the nucleus. d, Optical microscopy picture of the whole fibroblast cell, image size of 120 × 120 μ m 2 . e, Section of d to compare the nucleus with b, image size of 53 × 60 μ m 2 . f, Optical microscopy picture e with highlights derived for the reconstruction c. The two arrows point to two nuclear features that are imaged differently in optical microscopy and DIXH.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

K ( r ) = screen d 2 ξ I ̃ ( ξ ) exp [ i k r ξ ξ ] .

Metrics