Abstract

We have used an adaptive-optics scanning laser ophthalmoscope to image the cone photoreceptor mosaic throughout the central 10°–12° of the retina for four normal subjects. We then constructed montages of the images and processed the montages to determine cone locations. Cone densities range from approximately 10,000conesmm2 at 7° to 40,000conesmm2 at 1°. The smallest cones were not resolved in the center of the fovea. From the locations of the cones we also analyzed the packing properties of the cone mosaic, finding that all four subjects had a slight cone streak of increased cone density and that, in agreement with previous studies using different approaches, the packing geometry decreased in regularity from the fovea toward the periphery. We also found variations in packing density between subjects and in local anisotropy across retinal locations. The complete montages are presented for download, as well as the estimated cone locations.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Williams, “Seeing through the photoreceptor mosaic,” Trends Neurosci. 9, 193-198 (1986).
    [CrossRef]
  2. D. R. Williams and R. Collier, “Consequences of spatial sampling by a human photoreceptor mosaic,” Science 221, 385-387 (1983).
    [CrossRef] [PubMed]
  3. J. Hirsch and C. A. Curcio, “The spatial resolution capacity of human fovea,” Vision Res. 29, 1095-1101 (1989).
    [CrossRef] [PubMed]
  4. D. R. Williams and N. J. Coletta, “Cone spacing and the visual resolution limit,” J. Opt. Soc. Am. A 4, 1514-1523 (1987).
    [CrossRef] [PubMed]
  5. D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25, 195-205 (1985).
    [CrossRef] [PubMed]
  6. F. W. Campbell and D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576-593 (1965).
  7. S. J. Anderson and R. F. Hess, “Post-receptoral undersampling in normal human peripheral-vision,” Vision Res. 30, 1507-1515 (1990).
    [CrossRef] [PubMed]
  8. L. N. Thibos, D. L. Still, and A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vision Res. 36, 249-258 (1996).
    [CrossRef] [PubMed]
  9. L. N. Thibos, F. E. Cheney, and D. J. Walsh, “Retinal limits to the detection and resolution of gratings,” J. Opt. Soc. Am. A 4, 1524-1529 (1987).
    [CrossRef] [PubMed]
  10. N. J. Coletta and T. Watson, “Effect of myopia on visual acuity measured with laser interference fringes,” Vision Res. 46, 636-651 (2006).
    [CrossRef]
  11. S. J. Anderson, K. T. Mullen, and R. F. Hess, “Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors,” J. Physiol. (London) 442, 47-64 (1991).
  12. S. L. Polyak, The Retina (U. Chicago Press, 1941).
  13. C. A. Curcio, K. R. Sloan, Jr., O. Packer, A. E. Hendrickson, and R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236, 579-582 (1987).
    [CrossRef] [PubMed]
  14. C. A. Curcio and K. R. Sloan, “Packing geometry of human cone photoreceptors: variation with eccentricity and evidence for local anistropy,” Vision Res. 9, 169-180 (1992).
  15. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497-523 (1990).
    [CrossRef] [PubMed]
  16. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884-2892 (1997).
    [CrossRef]
  17. A. Roorda, “Adaptive optics ophthalmoscopy,” J. Refract. Surg. 16, S602-S607 (2000).
    [PubMed]
  18. A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405-412 (2002).
    [PubMed]
  19. P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13, 024008 (2008).
    [CrossRef] [PubMed]
  20. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 24, 1313-1326 (2007).
    [CrossRef]
  21. S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE 5288, 145-151 (2005).
    [CrossRef]
  22. K. Y. Li and A. Roorda, “Automated identification of cone photoreceptors in adaptive optics retinal images,” J. Opt. Soc. Am. A 24, 1358-1363 (2007).
    [CrossRef]
  23. D. H. Wojtas, B. Wu, P. K. Ahnelt, P. J. Bones, and R. P. Millane, “Automated analysis of differential interference contrast microscopy images of the foveal cone mosaic,” J. Opt. Soc. Am. A 25, 1181-1189 (2008).
    [CrossRef]
  24. R. Montes-Mico, A. Caliz, and J. L. Alio, “Wavefront analysis of higher order aberrations in dry eye patients,” J. Refract. Surg. 20, 243-247 (2004).
    [PubMed]
  25. S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115-117 (2002).
    [CrossRef] [PubMed]
  26. S. Koh and N. Maeda, “Wavefront sensing and the dynamics of tear film,” Cornea 26, S41-S45 (2007).
    [CrossRef] [PubMed]
  27. N. J. Coletta and D. R. Williams, “Psychophysical estimation of extrafoveal cone spacing,” J. Opt. Soc. Am. A 4, 1503-1513 (1987).
    [CrossRef] [PubMed]
  28. J. Liang, B. Grimm, S. Goetz, and J. F. Bille, “Objective measurements of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor.,” J. Opt. Soc. Am. A 11, 1949-1957 (1994).
    [CrossRef]
  29. L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vision 4, 329-351 (2004).
    [CrossRef]
  30. R. Navarro, “Measurement, modeling and improvement of optical image quality in human eyes,” Acta Phys. Pol. A 101, 147-158 (2002).
  31. T. Y. Chui, H. Song, and S. A. Burns, “Individual variations in human cone photoreceptor packing density: variations with refractive error,” Invest. Ophthalmol. Visual Sci. 49, 4679-4687 (2008).
    [CrossRef]
  32. P. K. Ahnelt, H. Kolb, and R. Pflug, “Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina,” J. Comp. Neurol. 255, 18-34 (1987).
    [CrossRef] [PubMed]
  33. C. Yuodelis and A. Hendrickson, “A qualitative and quantitative analysis of the human fovea during development,” Vision Res. 26, 847-855 (1986).
    [CrossRef] [PubMed]
  34. G. A. Osterberg, “Topography of the layer of rods and cones in the human retina,” Acta Ophthalmol. 13 Suppl 6, 1-97 (1935).
  35. J. Hirsch and R. Hylton, “Quality of the primate photoreceptor lattice and limits of spatial vision,” Vision Res. 24, 347-356 (1984).
    [CrossRef] [PubMed]
  36. J. I. Yellott, “Spectral consequences of photoreceptor sampling in the rhesus retina,” Science 221, 382-385 (1983).
    [CrossRef] [PubMed]
  37. J. Rovamo, V. Virsu, P. Laurinen, and L. Hyvarinen, “Resolution of gratings oriented along and across meridians in peripheral vision,” Invest. Ophthalmol. Visual Sci. 23, 666-670 (1982).
  38. M. A. Berkley, F. Kitterle, and D. W. Watkins, “Grating visibility as a function of orientation and retinal eccentricity,” Vision Res. 15, 239-244 (1975).
    [CrossRef] [PubMed]
  39. F. W. Campbell, J. J. Kulikowski, and J. Levinson, “The effect of orientation on the visual resolution of gratings,” J. Physiol. (London) 187, 427-436 (1966).
  40. S. Appelle, “Perception and discrimination as a function of stimulus orientation: the 'oblique effect' in man and animals,” Psychol. Bull. 78, 266-278 (1972).
    [CrossRef] [PubMed]
  41. L. Maffei and F. W. Campbell, “Neurophysiological localization of the vertical and horizontal visual coordinates in man,” Science 167, 386-387 (1970).
    [CrossRef] [PubMed]
  42. F. W. Campbell and J. J. Kulikowski, “Orientational selectivity of the human visual system,” J. Physiol. (London) 187, 437-445 (1966).
  43. R. S. Anderson, M. O. Wilkinson, and L. N. Thibos, “Psychophysical localization of the human visual streak,” Optom. Vision Sci. 69, 171-174 (1992).
    [CrossRef]

2008

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13, 024008 (2008).
[CrossRef] [PubMed]

T. Y. Chui, H. Song, and S. A. Burns, “Individual variations in human cone photoreceptor packing density: variations with refractive error,” Invest. Ophthalmol. Visual Sci. 49, 4679-4687 (2008).
[CrossRef]

D. H. Wojtas, B. Wu, P. K. Ahnelt, P. J. Bones, and R. P. Millane, “Automated analysis of differential interference contrast microscopy images of the foveal cone mosaic,” J. Opt. Soc. Am. A 25, 1181-1189 (2008).
[CrossRef]

2007

2006

N. J. Coletta and T. Watson, “Effect of myopia on visual acuity measured with laser interference fringes,” Vision Res. 46, 636-651 (2006).
[CrossRef]

2005

S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE 5288, 145-151 (2005).
[CrossRef]

2004

R. Montes-Mico, A. Caliz, and J. L. Alio, “Wavefront analysis of higher order aberrations in dry eye patients,” J. Refract. Surg. 20, 243-247 (2004).
[PubMed]

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vision 4, 329-351 (2004).
[CrossRef]

2002

R. Navarro, “Measurement, modeling and improvement of optical image quality in human eyes,” Acta Phys. Pol. A 101, 147-158 (2002).

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115-117 (2002).
[CrossRef] [PubMed]

A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405-412 (2002).
[PubMed]

2000

A. Roorda, “Adaptive optics ophthalmoscopy,” J. Refract. Surg. 16, S602-S607 (2000).
[PubMed]

1997

1996

L. N. Thibos, D. L. Still, and A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vision Res. 36, 249-258 (1996).
[CrossRef] [PubMed]

1994

1992

R. S. Anderson, M. O. Wilkinson, and L. N. Thibos, “Psychophysical localization of the human visual streak,” Optom. Vision Sci. 69, 171-174 (1992).
[CrossRef]

C. A. Curcio and K. R. Sloan, “Packing geometry of human cone photoreceptors: variation with eccentricity and evidence for local anistropy,” Vision Res. 9, 169-180 (1992).

1991

S. J. Anderson, K. T. Mullen, and R. F. Hess, “Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors,” J. Physiol. (London) 442, 47-64 (1991).

1990

S. J. Anderson and R. F. Hess, “Post-receptoral undersampling in normal human peripheral-vision,” Vision Res. 30, 1507-1515 (1990).
[CrossRef] [PubMed]

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

1989

J. Hirsch and C. A. Curcio, “The spatial resolution capacity of human fovea,” Vision Res. 29, 1095-1101 (1989).
[CrossRef] [PubMed]

1987

C. A. Curcio, K. R. Sloan, Jr., O. Packer, A. E. Hendrickson, and R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236, 579-582 (1987).
[CrossRef] [PubMed]

P. K. Ahnelt, H. Kolb, and R. Pflug, “Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina,” J. Comp. Neurol. 255, 18-34 (1987).
[CrossRef] [PubMed]

N. J. Coletta and D. R. Williams, “Psychophysical estimation of extrafoveal cone spacing,” J. Opt. Soc. Am. A 4, 1503-1513 (1987).
[CrossRef] [PubMed]

D. R. Williams and N. J. Coletta, “Cone spacing and the visual resolution limit,” J. Opt. Soc. Am. A 4, 1514-1523 (1987).
[CrossRef] [PubMed]

L. N. Thibos, F. E. Cheney, and D. J. Walsh, “Retinal limits to the detection and resolution of gratings,” J. Opt. Soc. Am. A 4, 1524-1529 (1987).
[CrossRef] [PubMed]

1986

C. Yuodelis and A. Hendrickson, “A qualitative and quantitative analysis of the human fovea during development,” Vision Res. 26, 847-855 (1986).
[CrossRef] [PubMed]

D. R. Williams, “Seeing through the photoreceptor mosaic,” Trends Neurosci. 9, 193-198 (1986).
[CrossRef]

1985

D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25, 195-205 (1985).
[CrossRef] [PubMed]

1984

J. Hirsch and R. Hylton, “Quality of the primate photoreceptor lattice and limits of spatial vision,” Vision Res. 24, 347-356 (1984).
[CrossRef] [PubMed]

1983

J. I. Yellott, “Spectral consequences of photoreceptor sampling in the rhesus retina,” Science 221, 382-385 (1983).
[CrossRef] [PubMed]

D. R. Williams and R. Collier, “Consequences of spatial sampling by a human photoreceptor mosaic,” Science 221, 385-387 (1983).
[CrossRef] [PubMed]

1982

J. Rovamo, V. Virsu, P. Laurinen, and L. Hyvarinen, “Resolution of gratings oriented along and across meridians in peripheral vision,” Invest. Ophthalmol. Visual Sci. 23, 666-670 (1982).

1975

M. A. Berkley, F. Kitterle, and D. W. Watkins, “Grating visibility as a function of orientation and retinal eccentricity,” Vision Res. 15, 239-244 (1975).
[CrossRef] [PubMed]

1972

S. Appelle, “Perception and discrimination as a function of stimulus orientation: the 'oblique effect' in man and animals,” Psychol. Bull. 78, 266-278 (1972).
[CrossRef] [PubMed]

1970

L. Maffei and F. W. Campbell, “Neurophysiological localization of the vertical and horizontal visual coordinates in man,” Science 167, 386-387 (1970).
[CrossRef] [PubMed]

1966

F. W. Campbell and J. J. Kulikowski, “Orientational selectivity of the human visual system,” J. Physiol. (London) 187, 437-445 (1966).

F. W. Campbell, J. J. Kulikowski, and J. Levinson, “The effect of orientation on the visual resolution of gratings,” J. Physiol. (London) 187, 427-436 (1966).

1965

F. W. Campbell and D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576-593 (1965).

1935

G. A. Osterberg, “Topography of the layer of rods and cones in the human retina,” Acta Ophthalmol. 13 Suppl 6, 1-97 (1935).

Ahnelt, P. K.

D. H. Wojtas, B. Wu, P. K. Ahnelt, P. J. Bones, and R. P. Millane, “Automated analysis of differential interference contrast microscopy images of the foveal cone mosaic,” J. Opt. Soc. Am. A 25, 1181-1189 (2008).
[CrossRef]

P. K. Ahnelt, H. Kolb, and R. Pflug, “Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina,” J. Comp. Neurol. 255, 18-34 (1987).
[CrossRef] [PubMed]

Alio, J. L.

R. Montes-Mico, A. Caliz, and J. L. Alio, “Wavefront analysis of higher order aberrations in dry eye patients,” J. Refract. Surg. 20, 243-247 (2004).
[PubMed]

Anderson, R. S.

R. S. Anderson, M. O. Wilkinson, and L. N. Thibos, “Psychophysical localization of the human visual streak,” Optom. Vision Sci. 69, 171-174 (1992).
[CrossRef]

Anderson, S. J.

S. J. Anderson, K. T. Mullen, and R. F. Hess, “Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors,” J. Physiol. (London) 442, 47-64 (1991).

S. J. Anderson and R. F. Hess, “Post-receptoral undersampling in normal human peripheral-vision,” Vision Res. 30, 1507-1515 (1990).
[CrossRef] [PubMed]

Appelle, S.

S. Appelle, “Perception and discrimination as a function of stimulus orientation: the 'oblique effect' in man and animals,” Psychol. Bull. 78, 266-278 (1972).
[CrossRef] [PubMed]

Applegate, R. A.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vision 4, 329-351 (2004).
[CrossRef]

Ashman, R.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13, 024008 (2008).
[CrossRef] [PubMed]

Bedggood, P.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13, 024008 (2008).
[CrossRef] [PubMed]

Berkley, M. A.

M. A. Berkley, F. Kitterle, and D. W. Watkins, “Grating visibility as a function of orientation and retinal eccentricity,” Vision Res. 15, 239-244 (1975).
[CrossRef] [PubMed]

Bille, J. F.

Bones, P. J.

Bradley, A.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vision 4, 329-351 (2004).
[CrossRef]

L. N. Thibos, D. L. Still, and A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vision Res. 36, 249-258 (1996).
[CrossRef] [PubMed]

Burns, S. A.

T. Y. Chui, H. Song, and S. A. Burns, “Individual variations in human cone photoreceptor packing density: variations with refractive error,” Invest. Ophthalmol. Visual Sci. 49, 4679-4687 (2008).
[CrossRef]

S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 24, 1313-1326 (2007).
[CrossRef]

Caliz, A.

R. Montes-Mico, A. Caliz, and J. L. Alio, “Wavefront analysis of higher order aberrations in dry eye patients,” J. Refract. Surg. 20, 243-247 (2004).
[PubMed]

Campbell, F. W.

L. Maffei and F. W. Campbell, “Neurophysiological localization of the vertical and horizontal visual coordinates in man,” Science 167, 386-387 (1970).
[CrossRef] [PubMed]

F. W. Campbell, J. J. Kulikowski, and J. Levinson, “The effect of orientation on the visual resolution of gratings,” J. Physiol. (London) 187, 427-436 (1966).

F. W. Campbell and J. J. Kulikowski, “Orientational selectivity of the human visual system,” J. Physiol. (London) 187, 437-445 (1966).

F. W. Campbell and D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576-593 (1965).

Campbell, M. C. W.

Cheney, F. E.

Chui, T. Y.

T. Y. Chui, H. Song, and S. A. Burns, “Individual variations in human cone photoreceptor packing density: variations with refractive error,” Invest. Ophthalmol. Visual Sci. 49, 4679-4687 (2008).
[CrossRef]

Coletta, N. J.

Collier, R.

D. R. Williams and R. Collier, “Consequences of spatial sampling by a human photoreceptor mosaic,” Science 221, 385-387 (1983).
[CrossRef] [PubMed]

Curcio, C. A.

C. A. Curcio and K. R. Sloan, “Packing geometry of human cone photoreceptors: variation with eccentricity and evidence for local anistropy,” Vision Res. 9, 169-180 (1992).

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

J. Hirsch and C. A. Curcio, “The spatial resolution capacity of human fovea,” Vision Res. 29, 1095-1101 (1989).
[CrossRef] [PubMed]

C. A. Curcio, K. R. Sloan, Jr., O. Packer, A. E. Hendrickson, and R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236, 579-582 (1987).
[CrossRef] [PubMed]

Daaboul, M.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13, 024008 (2008).
[CrossRef] [PubMed]

Donnelly, W. J.

Elsner, A. E.

Ferguson, D.

Fujikado, T.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115-117 (2002).
[CrossRef] [PubMed]

Goetz, S.

Green, D. G.

F. W. Campbell and D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576-593 (1965).

Grimm, B.

Hammer, D. X.

Hebert, T. J.

Hendrickson, A.

C. Yuodelis and A. Hendrickson, “A qualitative and quantitative analysis of the human fovea during development,” Vision Res. 26, 847-855 (1986).
[CrossRef] [PubMed]

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

C. A. Curcio, K. R. Sloan, Jr., O. Packer, A. E. Hendrickson, and R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236, 579-582 (1987).
[CrossRef] [PubMed]

Hess, R. F.

S. J. Anderson, K. T. Mullen, and R. F. Hess, “Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors,” J. Physiol. (London) 442, 47-64 (1991).

S. J. Anderson and R. F. Hess, “Post-receptoral undersampling in normal human peripheral-vision,” Vision Res. 30, 1507-1515 (1990).
[CrossRef] [PubMed]

Hirohara, Y.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115-117 (2002).
[CrossRef] [PubMed]

Hirsch, J.

J. Hirsch and C. A. Curcio, “The spatial resolution capacity of human fovea,” Vision Res. 29, 1095-1101 (1989).
[CrossRef] [PubMed]

J. Hirsch and R. Hylton, “Quality of the primate photoreceptor lattice and limits of spatial vision,” Vision Res. 24, 347-356 (1984).
[CrossRef] [PubMed]

Hong, X.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vision 4, 329-351 (2004).
[CrossRef]

Hori, Y.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115-117 (2002).
[CrossRef] [PubMed]

Hylton, R.

J. Hirsch and R. Hylton, “Quality of the primate photoreceptor lattice and limits of spatial vision,” Vision Res. 24, 347-356 (1984).
[CrossRef] [PubMed]

Hyvarinen, L.

J. Rovamo, V. Virsu, P. Laurinen, and L. Hyvarinen, “Resolution of gratings oriented along and across meridians in peripheral vision,” Invest. Ophthalmol. Visual Sci. 23, 666-670 (1982).

Kalina, R. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

C. A. Curcio, K. R. Sloan, Jr., O. Packer, A. E. Hendrickson, and R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236, 579-582 (1987).
[CrossRef] [PubMed]

Kitterle, F.

M. A. Berkley, F. Kitterle, and D. W. Watkins, “Grating visibility as a function of orientation and retinal eccentricity,” Vision Res. 15, 239-244 (1975).
[CrossRef] [PubMed]

Koh, S.

S. Koh and N. Maeda, “Wavefront sensing and the dynamics of tear film,” Cornea 26, S41-S45 (2007).
[CrossRef] [PubMed]

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115-117 (2002).
[CrossRef] [PubMed]

Kolb, H.

P. K. Ahnelt, H. Kolb, and R. Pflug, “Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina,” J. Comp. Neurol. 255, 18-34 (1987).
[CrossRef] [PubMed]

Kulikowski, J. J.

F. W. Campbell and J. J. Kulikowski, “Orientational selectivity of the human visual system,” J. Physiol. (London) 187, 437-445 (1966).

F. W. Campbell, J. J. Kulikowski, and J. Levinson, “The effect of orientation on the visual resolution of gratings,” J. Physiol. (London) 187, 427-436 (1966).

Kuroda, T.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115-117 (2002).
[CrossRef] [PubMed]

Laurinen, P.

J. Rovamo, V. Virsu, P. Laurinen, and L. Hyvarinen, “Resolution of gratings oriented along and across meridians in peripheral vision,” Invest. Ophthalmol. Visual Sci. 23, 666-670 (1982).

Levinson, J.

F. W. Campbell, J. J. Kulikowski, and J. Levinson, “The effect of orientation on the visual resolution of gratings,” J. Physiol. (London) 187, 427-436 (1966).

Li, K. Y.

Liang, J.

Maeda, N.

S. Koh and N. Maeda, “Wavefront sensing and the dynamics of tear film,” Cornea 26, S41-S45 (2007).
[CrossRef] [PubMed]

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115-117 (2002).
[CrossRef] [PubMed]

Maffei, L.

L. Maffei and F. W. Campbell, “Neurophysiological localization of the vertical and horizontal visual coordinates in man,” Science 167, 386-387 (1970).
[CrossRef] [PubMed]

Metha, A.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13, 024008 (2008).
[CrossRef] [PubMed]

Mihashi, T.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115-117 (2002).
[CrossRef] [PubMed]

Millane, R. P.

Miller, D. T.

Montes-Mico, R.

R. Montes-Mico, A. Caliz, and J. L. Alio, “Wavefront analysis of higher order aberrations in dry eye patients,” J. Refract. Surg. 20, 243-247 (2004).
[PubMed]

Mullen, K. T.

S. J. Anderson, K. T. Mullen, and R. F. Hess, “Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors,” J. Physiol. (London) 442, 47-64 (1991).

Navarro, R.

R. Navarro, “Measurement, modeling and improvement of optical image quality in human eyes,” Acta Phys. Pol. A 101, 147-158 (2002).

Osterberg, G. A.

G. A. Osterberg, “Topography of the layer of rods and cones in the human retina,” Acta Ophthalmol. 13 Suppl 6, 1-97 (1935).

Packer, O.

C. A. Curcio, K. R. Sloan, Jr., O. Packer, A. E. Hendrickson, and R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236, 579-582 (1987).
[CrossRef] [PubMed]

Pflug, R.

P. K. Ahnelt, H. Kolb, and R. Pflug, “Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina,” J. Comp. Neurol. 255, 18-34 (1987).
[CrossRef] [PubMed]

Polyak, S. L.

S. L. Polyak, The Retina (U. Chicago Press, 1941).

Queener, H.

Romero-Borja, F.

Roorda, A.

K. Y. Li and A. Roorda, “Automated identification of cone photoreceptors in adaptive optics retinal images,” J. Opt. Soc. Am. A 24, 1358-1363 (2007).
[CrossRef]

S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE 5288, 145-151 (2005).
[CrossRef]

A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405-412 (2002).
[PubMed]

A. Roorda, “Adaptive optics ophthalmoscopy,” J. Refract. Surg. 16, S602-S607 (2000).
[PubMed]

Rovamo, J.

J. Rovamo, V. Virsu, P. Laurinen, and L. Hyvarinen, “Resolution of gratings oriented along and across meridians in peripheral vision,” Invest. Ophthalmol. Visual Sci. 23, 666-670 (1982).

Sloan, K. R.

C. A. Curcio and K. R. Sloan, “Packing geometry of human cone photoreceptors: variation with eccentricity and evidence for local anistropy,” Vision Res. 9, 169-180 (1992).

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

C. A. Curcio, K. R. Sloan, Jr., O. Packer, A. E. Hendrickson, and R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236, 579-582 (1987).
[CrossRef] [PubMed]

Smith, G.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13, 024008 (2008).
[CrossRef] [PubMed]

Song, H.

T. Y. Chui, H. Song, and S. A. Burns, “Individual variations in human cone photoreceptor packing density: variations with refractive error,” Invest. Ophthalmol. Visual Sci. 49, 4679-4687 (2008).
[CrossRef]

Stevenson, S. B.

S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE 5288, 145-151 (2005).
[CrossRef]

Still, D. L.

L. N. Thibos, D. L. Still, and A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vision Res. 36, 249-258 (1996).
[CrossRef] [PubMed]

Tano, Y.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115-117 (2002).
[CrossRef] [PubMed]

Thibos, L. N.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vision 4, 329-351 (2004).
[CrossRef]

L. N. Thibos, D. L. Still, and A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vision Res. 36, 249-258 (1996).
[CrossRef] [PubMed]

R. S. Anderson, M. O. Wilkinson, and L. N. Thibos, “Psychophysical localization of the human visual streak,” Optom. Vision Sci. 69, 171-174 (1992).
[CrossRef]

L. N. Thibos, F. E. Cheney, and D. J. Walsh, “Retinal limits to the detection and resolution of gratings,” J. Opt. Soc. Am. A 4, 1524-1529 (1987).
[CrossRef] [PubMed]

Tumbar, R.

Virsu, V.

J. Rovamo, V. Virsu, P. Laurinen, and L. Hyvarinen, “Resolution of gratings oriented along and across meridians in peripheral vision,” Invest. Ophthalmol. Visual Sci. 23, 666-670 (1982).

Walsh, D. J.

Watanabe, H.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115-117 (2002).
[CrossRef] [PubMed]

Watkins, D. W.

M. A. Berkley, F. Kitterle, and D. W. Watkins, “Grating visibility as a function of orientation and retinal eccentricity,” Vision Res. 15, 239-244 (1975).
[CrossRef] [PubMed]

Watson, T.

N. J. Coletta and T. Watson, “Effect of myopia on visual acuity measured with laser interference fringes,” Vision Res. 46, 636-651 (2006).
[CrossRef]

Wilkinson, M. O.

R. S. Anderson, M. O. Wilkinson, and L. N. Thibos, “Psychophysical localization of the human visual streak,” Optom. Vision Sci. 69, 171-174 (1992).
[CrossRef]

Williams, D. R.

Wojtas, D. H.

Wu, B.

Yellott, J. I.

J. I. Yellott, “Spectral consequences of photoreceptor sampling in the rhesus retina,” Science 221, 382-385 (1983).
[CrossRef] [PubMed]

Yuodelis, C.

C. Yuodelis and A. Hendrickson, “A qualitative and quantitative analysis of the human fovea during development,” Vision Res. 26, 847-855 (1986).
[CrossRef] [PubMed]

Acta Ophthalmol.

G. A. Osterberg, “Topography of the layer of rods and cones in the human retina,” Acta Ophthalmol. 13 Suppl 6, 1-97 (1935).

Acta Phys. Pol. A

R. Navarro, “Measurement, modeling and improvement of optical image quality in human eyes,” Acta Phys. Pol. A 101, 147-158 (2002).

Am. J. Ophthalmol.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, and T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115-117 (2002).
[CrossRef] [PubMed]

Cornea

S. Koh and N. Maeda, “Wavefront sensing and the dynamics of tear film,” Cornea 26, S41-S45 (2007).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci.

T. Y. Chui, H. Song, and S. A. Burns, “Individual variations in human cone photoreceptor packing density: variations with refractive error,” Invest. Ophthalmol. Visual Sci. 49, 4679-4687 (2008).
[CrossRef]

J. Rovamo, V. Virsu, P. Laurinen, and L. Hyvarinen, “Resolution of gratings oriented along and across meridians in peripheral vision,” Invest. Ophthalmol. Visual Sci. 23, 666-670 (1982).

J. Biomed. Opt.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13, 024008 (2008).
[CrossRef] [PubMed]

J. Comp. Neurol.

P. K. Ahnelt, H. Kolb, and R. Pflug, “Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina,” J. Comp. Neurol. 255, 18-34 (1987).
[CrossRef] [PubMed]

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Physiol. (London)

F. W. Campbell, J. J. Kulikowski, and J. Levinson, “The effect of orientation on the visual resolution of gratings,” J. Physiol. (London) 187, 427-436 (1966).

F. W. Campbell and J. J. Kulikowski, “Orientational selectivity of the human visual system,” J. Physiol. (London) 187, 437-445 (1966).

F. W. Campbell and D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576-593 (1965).

S. J. Anderson, K. T. Mullen, and R. F. Hess, “Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors,” J. Physiol. (London) 442, 47-64 (1991).

J. Refract. Surg.

A. Roorda, “Adaptive optics ophthalmoscopy,” J. Refract. Surg. 16, S602-S607 (2000).
[PubMed]

R. Montes-Mico, A. Caliz, and J. L. Alio, “Wavefront analysis of higher order aberrations in dry eye patients,” J. Refract. Surg. 20, 243-247 (2004).
[PubMed]

J. Vision

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vision 4, 329-351 (2004).
[CrossRef]

Opt. Express

Optom. Vision Sci.

R. S. Anderson, M. O. Wilkinson, and L. N. Thibos, “Psychophysical localization of the human visual streak,” Optom. Vision Sci. 69, 171-174 (1992).
[CrossRef]

Proc. SPIE

S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE 5288, 145-151 (2005).
[CrossRef]

Psychol. Bull.

S. Appelle, “Perception and discrimination as a function of stimulus orientation: the 'oblique effect' in man and animals,” Psychol. Bull. 78, 266-278 (1972).
[CrossRef] [PubMed]

Science

L. Maffei and F. W. Campbell, “Neurophysiological localization of the vertical and horizontal visual coordinates in man,” Science 167, 386-387 (1970).
[CrossRef] [PubMed]

J. I. Yellott, “Spectral consequences of photoreceptor sampling in the rhesus retina,” Science 221, 382-385 (1983).
[CrossRef] [PubMed]

C. A. Curcio, K. R. Sloan, Jr., O. Packer, A. E. Hendrickson, and R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236, 579-582 (1987).
[CrossRef] [PubMed]

D. R. Williams and R. Collier, “Consequences of spatial sampling by a human photoreceptor mosaic,” Science 221, 385-387 (1983).
[CrossRef] [PubMed]

Trends Neurosci.

D. R. Williams, “Seeing through the photoreceptor mosaic,” Trends Neurosci. 9, 193-198 (1986).
[CrossRef]

Vision Res.

M. A. Berkley, F. Kitterle, and D. W. Watkins, “Grating visibility as a function of orientation and retinal eccentricity,” Vision Res. 15, 239-244 (1975).
[CrossRef] [PubMed]

J. Hirsch and R. Hylton, “Quality of the primate photoreceptor lattice and limits of spatial vision,” Vision Res. 24, 347-356 (1984).
[CrossRef] [PubMed]

J. Hirsch and C. A. Curcio, “The spatial resolution capacity of human fovea,” Vision Res. 29, 1095-1101 (1989).
[CrossRef] [PubMed]

D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25, 195-205 (1985).
[CrossRef] [PubMed]

S. J. Anderson and R. F. Hess, “Post-receptoral undersampling in normal human peripheral-vision,” Vision Res. 30, 1507-1515 (1990).
[CrossRef] [PubMed]

L. N. Thibos, D. L. Still, and A. Bradley, “Characterization of spatial aliasing and contrast sensitivity in peripheral vision,” Vision Res. 36, 249-258 (1996).
[CrossRef] [PubMed]

N. J. Coletta and T. Watson, “Effect of myopia on visual acuity measured with laser interference fringes,” Vision Res. 46, 636-651 (2006).
[CrossRef]

C. A. Curcio and K. R. Sloan, “Packing geometry of human cone photoreceptors: variation with eccentricity and evidence for local anistropy,” Vision Res. 9, 169-180 (1992).

C. Yuodelis and A. Hendrickson, “A qualitative and quantitative analysis of the human fovea during development,” Vision Res. 26, 847-855 (1986).
[CrossRef] [PubMed]

Other

S. L. Polyak, The Retina (U. Chicago Press, 1941).

Supplementary Material (4)

» Media 1: CSV (1532 KB)     
» Media 2: CSV (2000 KB)     
» Media 3: CSV (2062 KB)     
» Media 4: CSV (1936 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Retinal montages were created by imaging the cone photoreceptors in five different regions. The regions are shown schematically on a normal resolution SLO view of the retina of subject 01. (b) Montage illustrating a retinal area subtending 12 ° × 13 ° in subject 01. Asterisk indicates the fovea.

Fig. 2
Fig. 2

Retinal montages subtending 13° to 16° retinal eccentricity from four emmetropes (View 1). Only right eyes were tested. Asterisks indicate the foveas and are present only in the PDF file, not in the high-resolution interactive views.

Fig. 3
Fig. 3

Left panel, foveal image illustrating an area subtending approximately 2° in subject 01. Foveal cones are not resolved due to system resolution ( 2.8 μ m diffraction limited). Cones from 200 μ m outward are resolved (View 2)The scale bar represents 100 μ m . Right panel, magnified view of a single-frame adaptive-optics image as indicated on the left panel (View 3). The scale bar represents 50 μ m .

Fig. 4
Fig. 4

Cone density contours for four emmetropes (View 4). The x and y axes represent retinal eccentricity with the origin centered at the fovea. Cone density estimates within the central 500 μ m have been removed due to the resolution limit of our system. The color bar indicates cone density at intervals of 5,000 cones mm 2 . Upper left, cone density contour map of subject 01 (Media 1) (S, superior retina; I, inferior retina; T, temporal retina; N, nasal retina). In this subject, cone density decreases from 30,000 to 15,000 cones mm 2 from the retinal eccentricity of 500 to 1,500 μ m along the temporal meridian. Meanwhile, cone packing density decreases from 25,000 to 10,000 cones mm 2 from the retinal eccentricity of 500 to 1,500 μ m along the superior meridian. The horizontally elongated contour lines indicate a higher cone density along the horizontal meridian. Other panels, cone density contour maps for subjects 02–04 (Media 2, Media 3, Media 4), as indicated.

Fig. 5
Fig. 5

Change in sampling properties with retinal position for subject 01. First row, 1° retinal eccentricity; second row, 5° eccentricity. Panels (a) and (b) show the sampling arrays of subject 01 at 1° and 5° retinal eccentricities at the temporal meridian. (c) and (d) show the spatial autocorrelograms of the corresponding sampling arrays in (a) and (b), respectively. (c) A distinct hexagonal cluster of points indicates a hexagonal arrangement of cones in the spatial autocorrelogram at 1°. (d) This hexagonal symmetry no longer exists at 5°, which suggests a disorder of the cone packing of the peripheral retina. (e) A relatively hexagonal shape at 1° temporal retina after Fourier transformation, suggesting the sampling array is arranged in a regular fashion with hexagonal cone packing geometry. (f) A vertically elongated ring is observed, indicating a local anisotropy at 5° temporal retina with a higher modal Nyquist frequency for a horizontally oriented target than for vertically oriented frequencies.

Fig. 6
Fig. 6

Nominal Nyquist frequency as a function of retinal eccentricity at temporal (left panel), superior (middle panel), and 135° (right panel) meridians. Nyquist frequencies for horizontally, vertically, and obliquely oriented targets were computed from the Fourier power spectra at different retinal eccentricities and meridians. The Nyquist frequency at the temporal retina is the highest in the horizontally oriented frequencies, followed by the obliquely and vertically oriented frequencies. The difference is less obvious in the superior and 135° meridians.

Fig. 7
Fig. 7

Mean of the nominal Nyquist frequency as a function of retinal eccentricity at the temporal, superior, and 135° meridians. The mean Nyquist frequency is higher in the temporal meridian than that in the superior and 135° meridians, indicating a higher cone packing density at the temporal meridian than that in the other two meridians

Datasets

Datasets associated with ISP articles are stored in an online database called MIDAS. Clicking a "View" link in an OSA ISP article will launch the ISP software (if installed) and pull the relevant data from MIDAS. Visit MIDAS to browse and download the datasets directly. A package containing the PDF article and full datasets is available in MIDAS for offline viewing.

Questions or Problems? See the ISP FAQ. Already used the ISP software? Take a quick survey to tell us what you think.

Metrics