Abstract

Chiral optical filters are characterized by circular Bragg effects, including the preferential reflection and transmission of circular polarization states. The selective response to circularly polarized light is caused by stratified birefringent plates twisted into a helical arrangement, as seen in cholesteric liquid crystals and columnar thin films produced by oblique-angle physical vapor deposition. A refinement of the latter, glancing angle deposition employs substrate rotation to control the optical anisotropy of columnar thin films, and was used in this study to suppress the reflection sidelobes of chiral optical filters by modulating the local birefringence of helically structured thin films using an apodization function. Both theoretical simulations based on Berreman formalism, and experimental results involving evaporated TiO2 thin films are presented and compared.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Macleod, Thin Film Optical Filters, 2nd ed. (McGraw-Hill, 1986).
    [CrossRef]
  2. I. J. Hodgkinson and Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1997).
    [CrossRef]
  3. K. Robbie, M. J. Brett, and A. Lakhtakia, "First thin film realization of a helicoidal bianisotropic medium," J. Vac. Sci. Technol. A 13, 2991-2993 (1995).
    [CrossRef]
  4. K. Robbie, M. J. Brett, and A. Lakhtakia, "Chiral sculptured thin films," Nature (London) 384, 616-616 (1996).
    [CrossRef]
  5. I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, "Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment," Opt. Commun. 184, 57-66 (2000).
    [CrossRef]
  6. A. C. van Popta, M. J. Brett, and J. C. Sit, "Double-handed circular Bragg phenomena in polygonal helix thin films," J. Appl. Phys. 98, 083517 (2005).
    [CrossRef]
  7. A. Khan, I. Shiyanovskaya, T. Schneider, N. Miller, T. Ernst, D. Marhefka, F. Nicholson, S. Green, and G. Magyar, "Reflective cholesteric displays: from rigid to flexible," J. Soc. Inf. Disp. 13, 469-474 (2005).
    [CrossRef]
  8. J. C. Sit, D. J. Broer, and M. J. Brett, "Liquid crystal alignment and switching in porous chiral thin films," Adv. Mater. (Weinheim, Ger.) 12, 371-373 (2000).
    [CrossRef]
  9. A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, "Sculptured-thin-film spectral holes for optical sensing of fluids," Opt. Commun. 194, 33-46 (2001).
    [CrossRef]
  10. P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, and R. Fedosejevs, "Optical properties of porous nanostructured Y2O3:Eu thin films," J. Vac. Sci. Technol. A 23, 856-861 (2005).
    [CrossRef]
  11. P. C. P. Hrudey, K. L. Westra, and M. J. Brett, "Highly ordered organic Alq3 chiral luminescent thin films fabricated by glancing-angle deposition," Adv. Mater. (Weinheim, Ger.) 18, 224-228 (2006).
    [CrossRef]
  12. J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, "Laser emission in a dye doped cholesteric polymer network," Adv. Mater. (Weinheim, Ger.) 14, 746-749 (2002).
    [CrossRef]
  13. W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, "Lasing thresholds of cholesteric liquid crystals lasers," Mol. Cryst. Liq. Cryst. 429, 101-110 (2005).
    [CrossRef]
  14. W. H. Southwell and R. L. Hall, "Rugate filter sidelobe suppression using quintic and rugated quintic matching layers," Appl. Opt. 28, 2949-2951 (1989).
    [CrossRef]
  15. W. H. Southwell, "Using apodization functions to reduce sidelobes in rugate filters," Appl. Opt. 28, 5091-5094 (1989).
    [CrossRef]
  16. I. Hodgkinson, Q. H. Wu, and J. Hazel, "Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium dioxide, and zirconium oxide," Appl. Opt. 37, 2653-2659 (1998).
    [CrossRef]
  17. F. Chiadini and A. Lakhtakia, "Gaussian model for refractive indexes of columnar thin films and Bragg multilayers," Opt. Commun. 231, 257-261 (2004).
    [CrossRef]
  18. S. Teitler and B. Henvis, "Refraction in stratified anisotropic media," J. Opt. Soc. Am. 60, 830-834 (1970).
    [CrossRef]
  19. D. W. Berreman and T. J. Scheffer, "Bragg reflection of light from single-domain cholesteric liquid-crystal films," Phys. Rev. Lett. 25, 577-581 (1970).
    [CrossRef]
  20. D. W. Berreman, "Optics in stratified and anisotropic media: 4×4-matrix formulation," J. Opt. Soc. Am. 62, 502-510 (1972).
    [CrossRef]
  21. P. Yeh, "Electromagnetic propagation in birefringent layered media," J. Opt. Soc. Am. 69, 742-756 (1979).
    [CrossRef]
  22. R. S. Weis and T. K. Gaylord, "Electromagnetic transmission and reflection characteristics of anisotropic multilayered structures," J. Opt. Soc. Am. A 4, 1720-1740 (1987).
    [CrossRef]
  23. M. Schubert, "Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems," Phys. Rev. B 53, 4265-4274 (1996).
    [CrossRef]
  24. M. Schubert, B. Rheinlander, C. Cramer, H. Schmiedel, J. A. Woollam, C. M. Herzinger, and B. Johs, "Generalized transmission ellipsometry for twisted biaxial dielectric media: application to chiral liquid crystals," J. Opt. Soc. Am. A 13, 1930-1940 (1996).
    [CrossRef]
  25. I. Abdulhalim, "Analytic propagation matrix method for linear optics of arbitrary biaxial layered media," J. Opt. A, Pure Appl. Opt. 1, 646-653 (1999).
    [CrossRef]
  26. M. Schubert and C. M. Herzinger, "Ellipsometry on anisotropic materials: Bragg conditions and phonons in dielectric helical thin films," Phys. Status Solidi A 188, 1563-1575 (2001).
    [CrossRef]
  27. K. L. Woon, M. O'Neill, G. J. Richards, M. P. Aldred, and S. M. Kelly, "Stokes-parameter analysis of the polarization of light transmitted through a chiral nematic liquid-crystal cell," J. Opt. Soc. Am. A 22, 760-766 (2005).
    [CrossRef]
  28. G. D. Landry and T. A. Maldonado, "Gaussian beam transmission and reflection from a general anisotropic multilayer structure," Appl. Opt. 35, 5870-5879 (1996).
    [CrossRef] [PubMed]
  29. T. Mavrudis, J. Mentel, and M. Schumann, "Representation of birefringent filters by directly composed 4×4 matrices," Appl. Opt. 34, 4217-4227 (1995).
    [CrossRef] [PubMed]
  30. P. J. Lin-Chung and S. Teitler, "4×4 matrix formalisms for optics in stratified anisotropic media," J. Opt. Soc. Am. A 1, 703-705 (1984).
    [CrossRef]
  31. I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, "Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances," Opt. Commun. 210, 201-211 (2002).
    [CrossRef]
  32. S. R. Kennedy and M. J. Brett, "Porous broadband antireflection coating by glancing angle deposition," Appl. Opt. 42, 4573-4579 (2003).
    [CrossRef] [PubMed]
  33. T. Motohiro and Y. Taga, "Thin film retardation plate by oblique deposition," Appl. Opt. 28, 2466-2482 (1989).
    [CrossRef] [PubMed]
  34. J. Gospodyn and J. C. Sit, "Characterization of dielectric columnar thin films by variable angle Mueller matrix and spectroscopic ellipsometry," Opt. Mater. (Amsterdam, Neth.) 29, 318-325 (2006).
    [CrossRef]
  35. D. Vick, T. Smy, and M. J. Brett, "Growth behavior of evaporated porous thin films," J. Mater. Res. 17, 2904-2911 (2002).
    [CrossRef]
  36. K. Robbie and M. J. Brett, "Sculptured thin films and glancing angle deposition: growth mechanics and applications," J. Vac. Sci. Technol. A 15, 1460-1465 (1997).
    [CrossRef]
  37. K. Robbie and M. J. Brett, "Method of depositing shadow sculpted thin films," U.S. Patent 5,866,204 (February 2, 1999).
  38. I. J. Hodgkinson, Q. H. Wu, M. J. Brett, and K. Robbie, "Vacuum deposition of biaxial films with surface-aligned principal axes and large birefringence Δn," in Optical Interference Coatings, Vol. 9 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), pp. 104-106.
  39. I. Hodgkinson and Q. H. Wu, "Serial bideposition of anisotropic thin films with enhanced linear birefringence," Appl. Opt. 38, 3621-3625 (1999).
    [CrossRef]
  40. I. Hodgkinson, Q. H. Wu, L. De Silva, and M. Arnold, "Inorganic positive uniaxial films fabricated by serial bideposition," Opt. Express 12, 3840-3847 (2004).
    [CrossRef] [PubMed]
  41. J. B. Sorge, A. C. van Popta, J. C. Sit, and M. J. Brett, "Circular birefringence dependence on chiral film porosity," Opt. Express 14, 10550-10557 (2006).
    [CrossRef] [PubMed]
  42. S. Y. Lu and R. A. Chipman, "Interpretation of Mueller matrices based on polar decomposition," J. Opt. Soc. Am. A 13, 1106-1113 (1996).
    [CrossRef]
  43. D. B. Chenault and R. A. Chipman, "Measurements of linear diattenuation and linear retardance spectra with a rotating sample spectropolarimeter," Appl. Opt. 32, 3513-3519 (1993).
    [CrossRef] [PubMed]

2006 (3)

P. C. P. Hrudey, K. L. Westra, and M. J. Brett, "Highly ordered organic Alq3 chiral luminescent thin films fabricated by glancing-angle deposition," Adv. Mater. (Weinheim, Ger.) 18, 224-228 (2006).
[CrossRef]

J. Gospodyn and J. C. Sit, "Characterization of dielectric columnar thin films by variable angle Mueller matrix and spectroscopic ellipsometry," Opt. Mater. (Amsterdam, Neth.) 29, 318-325 (2006).
[CrossRef]

J. B. Sorge, A. C. van Popta, J. C. Sit, and M. J. Brett, "Circular birefringence dependence on chiral film porosity," Opt. Express 14, 10550-10557 (2006).
[CrossRef] [PubMed]

2005 (5)

K. L. Woon, M. O'Neill, G. J. Richards, M. P. Aldred, and S. M. Kelly, "Stokes-parameter analysis of the polarization of light transmitted through a chiral nematic liquid-crystal cell," J. Opt. Soc. Am. A 22, 760-766 (2005).
[CrossRef]

W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, "Lasing thresholds of cholesteric liquid crystals lasers," Mol. Cryst. Liq. Cryst. 429, 101-110 (2005).
[CrossRef]

P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, and R. Fedosejevs, "Optical properties of porous nanostructured Y2O3:Eu thin films," J. Vac. Sci. Technol. A 23, 856-861 (2005).
[CrossRef]

A. C. van Popta, M. J. Brett, and J. C. Sit, "Double-handed circular Bragg phenomena in polygonal helix thin films," J. Appl. Phys. 98, 083517 (2005).
[CrossRef]

A. Khan, I. Shiyanovskaya, T. Schneider, N. Miller, T. Ernst, D. Marhefka, F. Nicholson, S. Green, and G. Magyar, "Reflective cholesteric displays: from rigid to flexible," J. Soc. Inf. Disp. 13, 469-474 (2005).
[CrossRef]

2004 (2)

F. Chiadini and A. Lakhtakia, "Gaussian model for refractive indexes of columnar thin films and Bragg multilayers," Opt. Commun. 231, 257-261 (2004).
[CrossRef]

I. Hodgkinson, Q. H. Wu, L. De Silva, and M. Arnold, "Inorganic positive uniaxial films fabricated by serial bideposition," Opt. Express 12, 3840-3847 (2004).
[CrossRef] [PubMed]

2003 (1)

2002 (3)

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, "Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances," Opt. Commun. 210, 201-211 (2002).
[CrossRef]

D. Vick, T. Smy, and M. J. Brett, "Growth behavior of evaporated porous thin films," J. Mater. Res. 17, 2904-2911 (2002).
[CrossRef]

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, "Laser emission in a dye doped cholesteric polymer network," Adv. Mater. (Weinheim, Ger.) 14, 746-749 (2002).
[CrossRef]

2001 (2)

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, "Sculptured-thin-film spectral holes for optical sensing of fluids," Opt. Commun. 194, 33-46 (2001).
[CrossRef]

M. Schubert and C. M. Herzinger, "Ellipsometry on anisotropic materials: Bragg conditions and phonons in dielectric helical thin films," Phys. Status Solidi A 188, 1563-1575 (2001).
[CrossRef]

2000 (2)

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, "Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment," Opt. Commun. 184, 57-66 (2000).
[CrossRef]

J. C. Sit, D. J. Broer, and M. J. Brett, "Liquid crystal alignment and switching in porous chiral thin films," Adv. Mater. (Weinheim, Ger.) 12, 371-373 (2000).
[CrossRef]

1999 (2)

I. Abdulhalim, "Analytic propagation matrix method for linear optics of arbitrary biaxial layered media," J. Opt. A, Pure Appl. Opt. 1, 646-653 (1999).
[CrossRef]

I. Hodgkinson and Q. H. Wu, "Serial bideposition of anisotropic thin films with enhanced linear birefringence," Appl. Opt. 38, 3621-3625 (1999).
[CrossRef]

1998 (1)

1997 (1)

K. Robbie and M. J. Brett, "Sculptured thin films and glancing angle deposition: growth mechanics and applications," J. Vac. Sci. Technol. A 15, 1460-1465 (1997).
[CrossRef]

1996 (5)

1995 (2)

T. Mavrudis, J. Mentel, and M. Schumann, "Representation of birefringent filters by directly composed 4×4 matrices," Appl. Opt. 34, 4217-4227 (1995).
[CrossRef] [PubMed]

K. Robbie, M. J. Brett, and A. Lakhtakia, "First thin film realization of a helicoidal bianisotropic medium," J. Vac. Sci. Technol. A 13, 2991-2993 (1995).
[CrossRef]

1993 (1)

1989 (3)

1987 (1)

1984 (1)

1979 (1)

1972 (1)

1970 (2)

S. Teitler and B. Henvis, "Refraction in stratified anisotropic media," J. Opt. Soc. Am. 60, 830-834 (1970).
[CrossRef]

D. W. Berreman and T. J. Scheffer, "Bragg reflection of light from single-domain cholesteric liquid-crystal films," Phys. Rev. Lett. 25, 577-581 (1970).
[CrossRef]

Abbate, G.

W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, "Lasing thresholds of cholesteric liquid crystals lasers," Mol. Cryst. Liq. Cryst. 429, 101-110 (2005).
[CrossRef]

Abdulhalim, I.

I. Abdulhalim, "Analytic propagation matrix method for linear optics of arbitrary biaxial layered media," J. Opt. A, Pure Appl. Opt. 1, 646-653 (1999).
[CrossRef]

Aldred, M. P.

Arnold, M.

I. Hodgkinson, Q. H. Wu, L. De Silva, and M. Arnold, "Inorganic positive uniaxial films fabricated by serial bideposition," Opt. Express 12, 3840-3847 (2004).
[CrossRef] [PubMed]

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, "Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances," Opt. Commun. 210, 201-211 (2002).
[CrossRef]

Berreman, D. W.

D. W. Berreman, "Optics in stratified and anisotropic media: 4×4-matrix formulation," J. Opt. Soc. Am. 62, 502-510 (1972).
[CrossRef]

D. W. Berreman and T. J. Scheffer, "Bragg reflection of light from single-domain cholesteric liquid-crystal films," Phys. Rev. Lett. 25, 577-581 (1970).
[CrossRef]

Brett, M. J.

J. B. Sorge, A. C. van Popta, J. C. Sit, and M. J. Brett, "Circular birefringence dependence on chiral film porosity," Opt. Express 14, 10550-10557 (2006).
[CrossRef] [PubMed]

P. C. P. Hrudey, K. L. Westra, and M. J. Brett, "Highly ordered organic Alq3 chiral luminescent thin films fabricated by glancing-angle deposition," Adv. Mater. (Weinheim, Ger.) 18, 224-228 (2006).
[CrossRef]

A. C. van Popta, M. J. Brett, and J. C. Sit, "Double-handed circular Bragg phenomena in polygonal helix thin films," J. Appl. Phys. 98, 083517 (2005).
[CrossRef]

S. R. Kennedy and M. J. Brett, "Porous broadband antireflection coating by glancing angle deposition," Appl. Opt. 42, 4573-4579 (2003).
[CrossRef] [PubMed]

D. Vick, T. Smy, and M. J. Brett, "Growth behavior of evaporated porous thin films," J. Mater. Res. 17, 2904-2911 (2002).
[CrossRef]

J. C. Sit, D. J. Broer, and M. J. Brett, "Liquid crystal alignment and switching in porous chiral thin films," Adv. Mater. (Weinheim, Ger.) 12, 371-373 (2000).
[CrossRef]

K. Robbie and M. J. Brett, "Sculptured thin films and glancing angle deposition: growth mechanics and applications," J. Vac. Sci. Technol. A 15, 1460-1465 (1997).
[CrossRef]

K. Robbie, M. J. Brett, and A. Lakhtakia, "Chiral sculptured thin films," Nature (London) 384, 616-616 (1996).
[CrossRef]

K. Robbie, M. J. Brett, and A. Lakhtakia, "First thin film realization of a helicoidal bianisotropic medium," J. Vac. Sci. Technol. A 13, 2991-2993 (1995).
[CrossRef]

K. Robbie and M. J. Brett, "Method of depositing shadow sculpted thin films," U.S. Patent 5,866,204 (February 2, 1999).

I. J. Hodgkinson, Q. H. Wu, M. J. Brett, and K. Robbie, "Vacuum deposition of biaxial films with surface-aligned principal axes and large birefringence Δn," in Optical Interference Coatings, Vol. 9 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), pp. 104-106.

Broer, D. J.

J. C. Sit, D. J. Broer, and M. J. Brett, "Liquid crystal alignment and switching in porous chiral thin films," Adv. Mater. (Weinheim, Ger.) 12, 371-373 (2000).
[CrossRef]

Cao, W.

W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, "Lasing thresholds of cholesteric liquid crystals lasers," Mol. Cryst. Liq. Cryst. 429, 101-110 (2005).
[CrossRef]

Chenault, D. B.

Chiadini, F.

F. Chiadini and A. Lakhtakia, "Gaussian model for refractive indexes of columnar thin films and Bragg multilayers," Opt. Commun. 231, 257-261 (2004).
[CrossRef]

Chipman, R. A.

Cramer, C.

De Silva, L.

Ernst, T.

A. Khan, I. Shiyanovskaya, T. Schneider, N. Miller, T. Ernst, D. Marhefka, F. Nicholson, S. Green, and G. Magyar, "Reflective cholesteric displays: from rigid to flexible," J. Soc. Inf. Disp. 13, 469-474 (2005).
[CrossRef]

Fedosejevs, R.

P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, and R. Fedosejevs, "Optical properties of porous nanostructured Y2O3:Eu thin films," J. Vac. Sci. Technol. A 23, 856-861 (2005).
[CrossRef]

Finkelmann, H.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, "Laser emission in a dye doped cholesteric polymer network," Adv. Mater. (Weinheim, Ger.) 14, 746-749 (2002).
[CrossRef]

Gaylord, T. K.

Gospodyn, J.

J. Gospodyn and J. C. Sit, "Characterization of dielectric columnar thin films by variable angle Mueller matrix and spectroscopic ellipsometry," Opt. Mater. (Amsterdam, Neth.) 29, 318-325 (2006).
[CrossRef]

Green, S.

A. Khan, I. Shiyanovskaya, T. Schneider, N. Miller, T. Ernst, D. Marhefka, F. Nicholson, S. Green, and G. Magyar, "Reflective cholesteric displays: from rigid to flexible," J. Soc. Inf. Disp. 13, 469-474 (2005).
[CrossRef]

Hall, R. L.

Hazel, J.

Henvis, B.

Herzinger, C. M.

Hodgkinson, I.

Hodgkinson, I. J.

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, "Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances," Opt. Commun. 210, 201-211 (2002).
[CrossRef]

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, "Sculptured-thin-film spectral holes for optical sensing of fluids," Opt. Commun. 194, 33-46 (2001).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, "Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment," Opt. Commun. 184, 57-66 (2000).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, M. J. Brett, and K. Robbie, "Vacuum deposition of biaxial films with surface-aligned principal axes and large birefringence Δn," in Optical Interference Coatings, Vol. 9 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), pp. 104-106.

I. J. Hodgkinson and Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1997).
[CrossRef]

Hrudey, P. C. P.

P. C. P. Hrudey, K. L. Westra, and M. J. Brett, "Highly ordered organic Alq3 chiral luminescent thin films fabricated by glancing-angle deposition," Adv. Mater. (Weinheim, Ger.) 18, 224-228 (2006).
[CrossRef]

P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, and R. Fedosejevs, "Optical properties of porous nanostructured Y2O3:Eu thin films," J. Vac. Sci. Technol. A 23, 856-861 (2005).
[CrossRef]

Johs, B.

Kelly, S. M.

Kennedy, S. R.

Khan, A.

A. Khan, I. Shiyanovskaya, T. Schneider, N. Miller, T. Ernst, D. Marhefka, F. Nicholson, S. Green, and G. Magyar, "Reflective cholesteric displays: from rigid to flexible," J. Soc. Inf. Disp. 13, 469-474 (2005).
[CrossRef]

Kim, S. T.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, "Laser emission in a dye doped cholesteric polymer network," Adv. Mater. (Weinheim, Ger.) 14, 746-749 (2002).
[CrossRef]

Lakhtakia, A.

F. Chiadini and A. Lakhtakia, "Gaussian model for refractive indexes of columnar thin films and Bragg multilayers," Opt. Commun. 231, 257-261 (2004).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, "Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances," Opt. Commun. 210, 201-211 (2002).
[CrossRef]

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, "Sculptured-thin-film spectral holes for optical sensing of fluids," Opt. Commun. 194, 33-46 (2001).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, "Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment," Opt. Commun. 184, 57-66 (2000).
[CrossRef]

K. Robbie, M. J. Brett, and A. Lakhtakia, "Chiral sculptured thin films," Nature (London) 384, 616-616 (1996).
[CrossRef]

K. Robbie, M. J. Brett, and A. Lakhtakia, "First thin film realization of a helicoidal bianisotropic medium," J. Vac. Sci. Technol. A 13, 2991-2993 (1995).
[CrossRef]

Landry, G. D.

Lin-Chung, P. J.

Lu, S. Y.

Macleod, A.

A. Macleod, Thin Film Optical Filters, 2nd ed. (McGraw-Hill, 1986).
[CrossRef]

Magyar, G.

A. Khan, I. Shiyanovskaya, T. Schneider, N. Miller, T. Ernst, D. Marhefka, F. Nicholson, S. Green, and G. Magyar, "Reflective cholesteric displays: from rigid to flexible," J. Soc. Inf. Disp. 13, 469-474 (2005).
[CrossRef]

Maldonado, T. A.

Marhefka, D.

A. Khan, I. Shiyanovskaya, T. Schneider, N. Miller, T. Ernst, D. Marhefka, F. Nicholson, S. Green, and G. Magyar, "Reflective cholesteric displays: from rigid to flexible," J. Soc. Inf. Disp. 13, 469-474 (2005).
[CrossRef]

Marino, A.

W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, "Lasing thresholds of cholesteric liquid crystals lasers," Mol. Cryst. Liq. Cryst. 429, 101-110 (2005).
[CrossRef]

Mavrudis, T.

McCall, M. W.

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, "Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances," Opt. Commun. 210, 201-211 (2002).
[CrossRef]

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, "Sculptured-thin-film spectral holes for optical sensing of fluids," Opt. Commun. 194, 33-46 (2001).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, "Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment," Opt. Commun. 184, 57-66 (2000).
[CrossRef]

Mentel, J.

Miller, N.

A. Khan, I. Shiyanovskaya, T. Schneider, N. Miller, T. Ernst, D. Marhefka, F. Nicholson, S. Green, and G. Magyar, "Reflective cholesteric displays: from rigid to flexible," J. Soc. Inf. Disp. 13, 469-474 (2005).
[CrossRef]

Motohiro, T.

Nicholson, F.

A. Khan, I. Shiyanovskaya, T. Schneider, N. Miller, T. Ernst, D. Marhefka, F. Nicholson, S. Green, and G. Magyar, "Reflective cholesteric displays: from rigid to flexible," J. Soc. Inf. Disp. 13, 469-474 (2005).
[CrossRef]

O'Neill, M.

Palffy-Muhoray, P.

W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, "Lasing thresholds of cholesteric liquid crystals lasers," Mol. Cryst. Liq. Cryst. 429, 101-110 (2005).
[CrossRef]

Rheinlander, B.

Richards, G. J.

Robbie, K.

K. Robbie and M. J. Brett, "Sculptured thin films and glancing angle deposition: growth mechanics and applications," J. Vac. Sci. Technol. A 15, 1460-1465 (1997).
[CrossRef]

K. Robbie, M. J. Brett, and A. Lakhtakia, "Chiral sculptured thin films," Nature (London) 384, 616-616 (1996).
[CrossRef]

K. Robbie, M. J. Brett, and A. Lakhtakia, "First thin film realization of a helicoidal bianisotropic medium," J. Vac. Sci. Technol. A 13, 2991-2993 (1995).
[CrossRef]

K. Robbie and M. J. Brett, "Method of depositing shadow sculpted thin films," U.S. Patent 5,866,204 (February 2, 1999).

I. J. Hodgkinson, Q. H. Wu, M. J. Brett, and K. Robbie, "Vacuum deposition of biaxial films with surface-aligned principal axes and large birefringence Δn," in Optical Interference Coatings, Vol. 9 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), pp. 104-106.

Scheffer, T. J.

D. W. Berreman and T. J. Scheffer, "Bragg reflection of light from single-domain cholesteric liquid-crystal films," Phys. Rev. Lett. 25, 577-581 (1970).
[CrossRef]

Schmidtke, J.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, "Laser emission in a dye doped cholesteric polymer network," Adv. Mater. (Weinheim, Ger.) 14, 746-749 (2002).
[CrossRef]

Schmiedel, H.

Schneider, T.

A. Khan, I. Shiyanovskaya, T. Schneider, N. Miller, T. Ernst, D. Marhefka, F. Nicholson, S. Green, and G. Magyar, "Reflective cholesteric displays: from rigid to flexible," J. Soc. Inf. Disp. 13, 469-474 (2005).
[CrossRef]

Schubert, M.

M. Schubert and C. M. Herzinger, "Ellipsometry on anisotropic materials: Bragg conditions and phonons in dielectric helical thin films," Phys. Status Solidi A 188, 1563-1575 (2001).
[CrossRef]

M. Schubert, B. Rheinlander, C. Cramer, H. Schmiedel, J. A. Woollam, C. M. Herzinger, and B. Johs, "Generalized transmission ellipsometry for twisted biaxial dielectric media: application to chiral liquid crystals," J. Opt. Soc. Am. A 13, 1930-1940 (1996).
[CrossRef]

M. Schubert, "Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems," Phys. Rev. B 53, 4265-4274 (1996).
[CrossRef]

Schumann, M.

Sherwin, J. A.

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, "Sculptured-thin-film spectral holes for optical sensing of fluids," Opt. Commun. 194, 33-46 (2001).
[CrossRef]

Shiyanovskaya, I.

A. Khan, I. Shiyanovskaya, T. Schneider, N. Miller, T. Ernst, D. Marhefka, F. Nicholson, S. Green, and G. Magyar, "Reflective cholesteric displays: from rigid to flexible," J. Soc. Inf. Disp. 13, 469-474 (2005).
[CrossRef]

Sit, J. C.

J. Gospodyn and J. C. Sit, "Characterization of dielectric columnar thin films by variable angle Mueller matrix and spectroscopic ellipsometry," Opt. Mater. (Amsterdam, Neth.) 29, 318-325 (2006).
[CrossRef]

J. B. Sorge, A. C. van Popta, J. C. Sit, and M. J. Brett, "Circular birefringence dependence on chiral film porosity," Opt. Express 14, 10550-10557 (2006).
[CrossRef] [PubMed]

A. C. van Popta, M. J. Brett, and J. C. Sit, "Double-handed circular Bragg phenomena in polygonal helix thin films," J. Appl. Phys. 98, 083517 (2005).
[CrossRef]

J. C. Sit, D. J. Broer, and M. J. Brett, "Liquid crystal alignment and switching in porous chiral thin films," Adv. Mater. (Weinheim, Ger.) 12, 371-373 (2000).
[CrossRef]

Smy, T.

D. Vick, T. Smy, and M. J. Brett, "Growth behavior of evaporated porous thin films," J. Mater. Res. 17, 2904-2911 (2002).
[CrossRef]

Sorge, J. B.

Southwell, W. H.

Stille, W.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, "Laser emission in a dye doped cholesteric polymer network," Adv. Mater. (Weinheim, Ger.) 14, 746-749 (2002).
[CrossRef]

Taga, Y.

Taheri, B.

W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, "Lasing thresholds of cholesteric liquid crystals lasers," Mol. Cryst. Liq. Cryst. 429, 101-110 (2005).
[CrossRef]

Taschuk, M.

P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, and R. Fedosejevs, "Optical properties of porous nanostructured Y2O3:Eu thin films," J. Vac. Sci. Technol. A 23, 856-861 (2005).
[CrossRef]

Teitler, S.

Thorn, K. E.

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, "Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment," Opt. Commun. 184, 57-66 (2000).
[CrossRef]

Tsui, Y. Y.

P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, and R. Fedosejevs, "Optical properties of porous nanostructured Y2O3:Eu thin films," J. Vac. Sci. Technol. A 23, 856-861 (2005).
[CrossRef]

van Popta, A. C.

J. B. Sorge, A. C. van Popta, J. C. Sit, and M. J. Brett, "Circular birefringence dependence on chiral film porosity," Opt. Express 14, 10550-10557 (2006).
[CrossRef] [PubMed]

A. C. van Popta, M. J. Brett, and J. C. Sit, "Double-handed circular Bragg phenomena in polygonal helix thin films," J. Appl. Phys. 98, 083517 (2005).
[CrossRef]

Vick, D.

D. Vick, T. Smy, and M. J. Brett, "Growth behavior of evaporated porous thin films," J. Mater. Res. 17, 2904-2911 (2002).
[CrossRef]

Weis, R. S.

Westra, K. L.

P. C. P. Hrudey, K. L. Westra, and M. J. Brett, "Highly ordered organic Alq3 chiral luminescent thin films fabricated by glancing-angle deposition," Adv. Mater. (Weinheim, Ger.) 18, 224-228 (2006).
[CrossRef]

Woollam, J. A.

Woon, K. L.

Wu, Q. H.

I. Hodgkinson, Q. H. Wu, L. De Silva, and M. Arnold, "Inorganic positive uniaxial films fabricated by serial bideposition," Opt. Express 12, 3840-3847 (2004).
[CrossRef] [PubMed]

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, "Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances," Opt. Commun. 210, 201-211 (2002).
[CrossRef]

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, "Sculptured-thin-film spectral holes for optical sensing of fluids," Opt. Commun. 194, 33-46 (2001).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, "Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment," Opt. Commun. 184, 57-66 (2000).
[CrossRef]

I. Hodgkinson and Q. H. Wu, "Serial bideposition of anisotropic thin films with enhanced linear birefringence," Appl. Opt. 38, 3621-3625 (1999).
[CrossRef]

I. Hodgkinson, Q. H. Wu, and J. Hazel, "Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium dioxide, and zirconium oxide," Appl. Opt. 37, 2653-2659 (1998).
[CrossRef]

I. J. Hodgkinson and Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1997).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, M. J. Brett, and K. Robbie, "Vacuum deposition of biaxial films with surface-aligned principal axes and large birefringence Δn," in Optical Interference Coatings, Vol. 9 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), pp. 104-106.

Yeh, P.

Adv. Mater. (Weinheim, Ger.) (3)

J. C. Sit, D. J. Broer, and M. J. Brett, "Liquid crystal alignment and switching in porous chiral thin films," Adv. Mater. (Weinheim, Ger.) 12, 371-373 (2000).
[CrossRef]

P. C. P. Hrudey, K. L. Westra, and M. J. Brett, "Highly ordered organic Alq3 chiral luminescent thin films fabricated by glancing-angle deposition," Adv. Mater. (Weinheim, Ger.) 18, 224-228 (2006).
[CrossRef]

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, "Laser emission in a dye doped cholesteric polymer network," Adv. Mater. (Weinheim, Ger.) 14, 746-749 (2002).
[CrossRef]

Appl. Opt. (9)

T. Motohiro and Y. Taga, "Thin film retardation plate by oblique deposition," Appl. Opt. 28, 2466-2482 (1989).
[CrossRef] [PubMed]

W. H. Southwell and R. L. Hall, "Rugate filter sidelobe suppression using quintic and rugated quintic matching layers," Appl. Opt. 28, 2949-2951 (1989).
[CrossRef]

W. H. Southwell, "Using apodization functions to reduce sidelobes in rugate filters," Appl. Opt. 28, 5091-5094 (1989).
[CrossRef]

D. B. Chenault and R. A. Chipman, "Measurements of linear diattenuation and linear retardance spectra with a rotating sample spectropolarimeter," Appl. Opt. 32, 3513-3519 (1993).
[CrossRef] [PubMed]

I. Hodgkinson, Q. H. Wu, and J. Hazel, "Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium dioxide, and zirconium oxide," Appl. Opt. 37, 2653-2659 (1998).
[CrossRef]

I. Hodgkinson and Q. H. Wu, "Serial bideposition of anisotropic thin films with enhanced linear birefringence," Appl. Opt. 38, 3621-3625 (1999).
[CrossRef]

T. Mavrudis, J. Mentel, and M. Schumann, "Representation of birefringent filters by directly composed 4×4 matrices," Appl. Opt. 34, 4217-4227 (1995).
[CrossRef] [PubMed]

G. D. Landry and T. A. Maldonado, "Gaussian beam transmission and reflection from a general anisotropic multilayer structure," Appl. Opt. 35, 5870-5879 (1996).
[CrossRef] [PubMed]

S. R. Kennedy and M. J. Brett, "Porous broadband antireflection coating by glancing angle deposition," Appl. Opt. 42, 4573-4579 (2003).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

A. C. van Popta, M. J. Brett, and J. C. Sit, "Double-handed circular Bragg phenomena in polygonal helix thin films," J. Appl. Phys. 98, 083517 (2005).
[CrossRef]

J. Mater. Res. (1)

D. Vick, T. Smy, and M. J. Brett, "Growth behavior of evaporated porous thin films," J. Mater. Res. 17, 2904-2911 (2002).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

I. Abdulhalim, "Analytic propagation matrix method for linear optics of arbitrary biaxial layered media," J. Opt. A, Pure Appl. Opt. 1, 646-653 (1999).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (5)

J. Soc. Inf. Disp. (1)

A. Khan, I. Shiyanovskaya, T. Schneider, N. Miller, T. Ernst, D. Marhefka, F. Nicholson, S. Green, and G. Magyar, "Reflective cholesteric displays: from rigid to flexible," J. Soc. Inf. Disp. 13, 469-474 (2005).
[CrossRef]

J. Vac. Sci. Technol. A (3)

K. Robbie, M. J. Brett, and A. Lakhtakia, "First thin film realization of a helicoidal bianisotropic medium," J. Vac. Sci. Technol. A 13, 2991-2993 (1995).
[CrossRef]

P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, and R. Fedosejevs, "Optical properties of porous nanostructured Y2O3:Eu thin films," J. Vac. Sci. Technol. A 23, 856-861 (2005).
[CrossRef]

K. Robbie and M. J. Brett, "Sculptured thin films and glancing angle deposition: growth mechanics and applications," J. Vac. Sci. Technol. A 15, 1460-1465 (1997).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, "Lasing thresholds of cholesteric liquid crystals lasers," Mol. Cryst. Liq. Cryst. 429, 101-110 (2005).
[CrossRef]

Nature (London) (1)

K. Robbie, M. J. Brett, and A. Lakhtakia, "Chiral sculptured thin films," Nature (London) 384, 616-616 (1996).
[CrossRef]

Opt. Commun. (4)

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, "Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: theory and experiment," Opt. Commun. 184, 57-66 (2000).
[CrossRef]

A. Lakhtakia, M. W. McCall, J. A. Sherwin, Q. H. Wu, and I. J. Hodgkinson, "Sculptured-thin-film spectral holes for optical sensing of fluids," Opt. Commun. 194, 33-46 (2001).
[CrossRef]

F. Chiadini and A. Lakhtakia, "Gaussian model for refractive indexes of columnar thin films and Bragg multilayers," Opt. Commun. 231, 257-261 (2004).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, "Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances," Opt. Commun. 210, 201-211 (2002).
[CrossRef]

Opt. Express (2)

Opt. Mater. (Amsterdam, Neth.) (1)

J. Gospodyn and J. C. Sit, "Characterization of dielectric columnar thin films by variable angle Mueller matrix and spectroscopic ellipsometry," Opt. Mater. (Amsterdam, Neth.) 29, 318-325 (2006).
[CrossRef]

Phys. Rev. B (1)

M. Schubert, "Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems," Phys. Rev. B 53, 4265-4274 (1996).
[CrossRef]

Phys. Rev. Lett. (1)

D. W. Berreman and T. J. Scheffer, "Bragg reflection of light from single-domain cholesteric liquid-crystal films," Phys. Rev. Lett. 25, 577-581 (1970).
[CrossRef]

Phys. Status Solidi A (1)

M. Schubert and C. M. Herzinger, "Ellipsometry on anisotropic materials: Bragg conditions and phonons in dielectric helical thin films," Phys. Status Solidi A 188, 1563-1575 (2001).
[CrossRef]

Other (4)

A. Macleod, Thin Film Optical Filters, 2nd ed. (McGraw-Hill, 1986).
[CrossRef]

I. J. Hodgkinson and Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1997).
[CrossRef]

K. Robbie and M. J. Brett, "Method of depositing shadow sculpted thin films," U.S. Patent 5,866,204 (February 2, 1999).

I. J. Hodgkinson, Q. H. Wu, M. J. Brett, and K. Robbie, "Vacuum deposition of biaxial films with surface-aligned principal axes and large birefringence Δn," in Optical Interference Coatings, Vol. 9 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), pp. 104-106.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Simulated reflectance and transmittance of circularly polarized light incident on a right-handed chiral optical filter composed of (a) 10 helical turns, (b) 20 helical turns. The sidelobes bordering the Bragg reflection band increase in frequency and magnitude as more turns are added to the chiral filter.

Fig. 2
Fig. 2

Simulated reflectance spectra for circularly polarized light incident on a right-handed, 20-turn, chiral optical filter, where the local birefringence has been continuously modulated by the following apodization functions (shown in the inset of each graph): (a) Gaussian, (b) Bartlett, (c) quintic.

Fig. 3
Fig. 3

Simulated transmittance of circularly polarized light, incident on a right-handed, 20-turn, chiral optical filter generated under the following conditions: (a) the local birefringence is kept constant at 0.16, (b) the local birefringence is modulated by a Gaussian apodization function, (c) the incident and exit media are replaced by index-matching layers, (d) a Gaussian apodization function and index-matching layers are applied simultaneously.

Fig. 4
Fig. 4

Various substrate rotation profiles, ranging from linear to steplike changes in the angular position of the φ motor.

Fig. 5
Fig. 5

Top–down SEM images, taken at a magnification of 10 4 , reveal how the thin-film columnar morphology becomes increasingly anisotropic as the substrate rotation profile (Inset; see also Fig. 4) becomes more steplike in nature. The titania films shown here were generated using the following e parameter values: (a) e = 1 ; (b) e = 0.45 ; (c) e = 0.25 ; (d) e = 0.9 . The scale bar in each image represents 200 nm .

Fig. 6
Fig. 6

Measured in-plane birefringence of a columnar thin film as a function of the e parameter, which governs the substrate rotation profile and the distribution of incident vapor flux during the deposition process.

Fig. 7
Fig. 7

Spectral dispersion of the thin-film birefringence for different substrate rotation profiles. In each case, the solid curve represents a Cauchy dispersion equation that has been fitted to the experimental data.

Fig. 8
Fig. 8

(a) Measured transmittance of circularly polarized light through a right-handed, Ti O 2 chiral filter composed of 12 helical turns, a pitch of 250 nm , and a constant local birefringence. (b) Measured selective transmittance of circularly polarized light emphasizes the sidelobes surrounding the polarization stopband. (c) Measured transmittance of circularly polarized light through a 12-turn, 275 nm pitch, Ti O 2 chiral filter, where the local birefringence has been tapered to exp ( 1 ) at the film boundaries by a Gaussian apodization function. (d) Measured selective transmittance of circularly polarized light underscores the effective suppression of sidelobes.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

ϵ ̃ = R 1 [ n 1 2 0 0 0 n 2 2 0 0 0 n 3 2 ] R ,
γ = 2 π z p
ϵ ̃ ( z ) = [ n 1 2 + n 2 2 2 + n 1 2 n 2 2 2 cos ( 4 π z p ) n 2 2 n 1 2 2 sin ( 4 π z p ) 0 n 2 2 n 1 2 2 sin ( 4 π z p ) n 1 2 + n 2 2 2 + n 2 2 n 1 2 2 cos ( 4 π z p ) 0 0 0 n 3 ] .
n ( z ) = n avg ± 1 2 Δ n cos ( 4 π z p ) ,
E ( r , t ) = E ( z ) exp [ i ( k r ω t ) ] ,
H ( r , t ) = H ( z ) exp [ i ( k r ω t ) ] ,
ψ ( z ) z = i ω c Δ ψ ( z ) .
Δ = [ k x ε z x ε z z 1 k x 2 ε z z k x ε z y ε z z 0 ε x x ε x z ε z x ε z z k x ε x z ε z z ε x y ε x z ε z y ε z z 0 0 0 0 1 ε y x ε y z ε z x ε z z k x ε y z ε z z ε y y k x 2 ε y z ε z y ε z z 0 ] .
ψ ( z + h ) = Ψ K ( h ) Ψ 1 ψ ( z ) = P ( h ) ψ ( z ) .
ψ inc = [ 1 1 0 0 n inc cos θ inc n inc cos θ inc 0 0 0 0 1 1 0 0 n inc cos θ inc n inc cos θ inc ] ( E x + ( 0 ) E x ( 0 ) E y + ( 0 ) E y ( 0 ) ) ,
ψ exit = [ 1 1 0 0 n exit cos θ exit n exit cos θ exit 0 0 0 0 1 1 0 0 n exit cos θ exit n exit cos θ exit ] ( E x + ( 0 ) E x ( 0 ) E y + ( 0 ) E y ( 0 ) ) ,
ϕ inc = Ψ inc 1 [ l = 1 N P l ( h l ) ] Ψ exit ϕ exit = M ϕ exit .
( b L b R ) = [ r L L r L R r R L r R R ] ( a L a R ) ,
( c L c R ) = [ t L L t L R t R L t R R ] ( a L a R ) ,
r L L = M 21 M 33 M 23 M 31 + M 11 M 43 M 13 M 41 2 ( M 11 M 33 M 13 M 31 ) + i M 11 M 23 M 13 M 21 M 33 M 41 + M 31 M 43 2 ( M 11 M 33 M 13 M 31 ) ,
r L R = M 21 M 33 M 23 M 31 M 11 M 43 + M 13 M 41 2 ( M 11 M 33 M 13 M 31 ) + i M 13 M 21 M 11 M 23 M 33 M 41 + M 31 M 43 2 ( M 11 M 33 M 13 M 31 ) ,
r R L = M 21 M 33 M 23 M 31 M 11 M 43 + M 13 M 41 2 ( M 11 M 33 M 13 M 31 ) + i M 11 M 23 M 13 M 21 + M 33 M 41 M 31 M 43 2 ( M 11 M 33 M 13 M 31 ) ,
r R R = M 21 M 33 M 23 M 31 + M 11 M 43 M 13 M 41 2 ( M 11 M 33 M 13 M 31 ) + i M 13 M 21 M 11 M 23 + M 33 M 41 M 31 M 43 2 ( M 11 M 33 M 13 M 31 ) ,
t L L = M 33 + M 11 i ( M 13 M 31 ) 2 ( M 11 M 33 M 13 M 31 ) ,
t R L = M 33 M 11 i ( M 13 + M 31 ) 2 ( M 11 M 33 M 13 M 31 ) ,
t L R = M 33 M 11 + i ( M 13 + M 31 ) 2 ( M 11 M 33 M 13 M 31 ) ,
t R R = M 33 + M 11 + i ( M 13 M 31 ) 2 ( M 11 M 33 M 13 M 31 ) .
d φ d z = N 1 cos ( 4 π z T ) 1 + e cos ( 4 π z T ) ,
S = τ [ 1 A D B D 0 A D A 2 + B 2 ( 1 D 2 ) 1 2 cos δ A B [ 1 ( 1 D 2 ) 1 2 cos δ ] B ( 1 D 2 ) 1 2 sin δ B D A B [ 1 ( 1 D 2 ) 1 2 cos δ ] B 2 + A 2 ( 1 D 2 ) 1 2 cos δ A ( 1 D 2 ) 1 2 sin δ 0 B ( 1 D 2 ) 1 2 sin δ A ( 1 D 2 ) 1 2 sin δ ( 1 D 2 ) 1 2 cos δ ] ,
τ = 1 2 ( T 1 + T 2 )
D = T 1 T 2 T 1 + T 2 .
Δ n = δ λ 0 2 π d .
Δ n ( λ 0 ) = C + D λ 0 2 .

Metrics