Abstract

An illumination system is described that comprises a glass or plastic sphere, an embedded light-emitting diode (LED) source, and a reflecting or scattering mirror. The rays from the LED are either refracted in the forward direction or totally internally reflected by the sphere. The mirror breaks the total internal reflection and thus sends the rays in the forward direction. The illumination pattern and efficiency of the system are analyzed. This system is extremely compact and efficient and is a good starting point for a complex illumination system design.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, "Illumination with solid state lighting technology," IEEE J. Sel. Top. Quantum Electron. 8, 310-320 (2002).
    [CrossRef]
  2. K. Streubel, N. Linder, R. Wirth, and A. Jaeger, "High brightness AlGalnP light-emitting diodes," IEEE J. Sel. Top. Quantum Electron. 8, 321-332 (2002).
    [CrossRef]
  3. C. Huh, K. Lee, E. Kang, and S. Park, "Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface," J. Appl. Phys. 93, 9383-9385 (2003).
    [CrossRef]
  4. A. R. Duggal, J. J. Shiang, C. M. Heller, and D. F. Foust, "Organic light-emitting devices for illumination quality white light," Appl. Phys. Lett. 80, 3470-3472 (2002).
    [CrossRef]
  5. I.T.Ferguson, J.C.Carrano, T.Taguchi, and I. E. Ashdown, eds., Fifth International Conference on Solid State Lighting, Proc. SPIE 5941 (2005).
  6. H.W.Yao, I.T.Ferguson, and E.F.Schubert, eds., Light-Emitting Diodes: Research, Manufacturing, and Applications IV, Proc. SPIE 3938 (2005).
  7. Z.H.Kafafi, ed., Organic Light-Emitting Materials and Devices, Proc. SPIE 3148 (1997).
  8. Zemax Development Corporation, http://www.zemax.com.

2005

I.T.Ferguson, J.C.Carrano, T.Taguchi, and I. E. Ashdown, eds., Fifth International Conference on Solid State Lighting, Proc. SPIE 5941 (2005).

H.W.Yao, I.T.Ferguson, and E.F.Schubert, eds., Light-Emitting Diodes: Research, Manufacturing, and Applications IV, Proc. SPIE 3938 (2005).

2003

C. Huh, K. Lee, E. Kang, and S. Park, "Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface," J. Appl. Phys. 93, 9383-9385 (2003).
[CrossRef]

2002

A. R. Duggal, J. J. Shiang, C. M. Heller, and D. F. Foust, "Organic light-emitting devices for illumination quality white light," Appl. Phys. Lett. 80, 3470-3472 (2002).
[CrossRef]

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, "Illumination with solid state lighting technology," IEEE J. Sel. Top. Quantum Electron. 8, 310-320 (2002).
[CrossRef]

K. Streubel, N. Linder, R. Wirth, and A. Jaeger, "High brightness AlGalnP light-emitting diodes," IEEE J. Sel. Top. Quantum Electron. 8, 321-332 (2002).
[CrossRef]

1997

Z.H.Kafafi, ed., Organic Light-Emitting Materials and Devices, Proc. SPIE 3148 (1997).

Bhat, J. C.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, "Illumination with solid state lighting technology," IEEE J. Sel. Top. Quantum Electron. 8, 310-320 (2002).
[CrossRef]

Collins, D.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, "Illumination with solid state lighting technology," IEEE J. Sel. Top. Quantum Electron. 8, 310-320 (2002).
[CrossRef]

Duggal, A. R.

A. R. Duggal, J. J. Shiang, C. M. Heller, and D. F. Foust, "Organic light-emitting devices for illumination quality white light," Appl. Phys. Lett. 80, 3470-3472 (2002).
[CrossRef]

Fletcher, R. M.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, "Illumination with solid state lighting technology," IEEE J. Sel. Top. Quantum Electron. 8, 310-320 (2002).
[CrossRef]

Foust, D. F.

A. R. Duggal, J. J. Shiang, C. M. Heller, and D. F. Foust, "Organic light-emitting devices for illumination quality white light," Appl. Phys. Lett. 80, 3470-3472 (2002).
[CrossRef]

Heller, C. M.

A. R. Duggal, J. J. Shiang, C. M. Heller, and D. F. Foust, "Organic light-emitting devices for illumination quality white light," Appl. Phys. Lett. 80, 3470-3472 (2002).
[CrossRef]

Holcomb, M. O.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, "Illumination with solid state lighting technology," IEEE J. Sel. Top. Quantum Electron. 8, 310-320 (2002).
[CrossRef]

Huh, C.

C. Huh, K. Lee, E. Kang, and S. Park, "Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface," J. Appl. Phys. 93, 9383-9385 (2003).
[CrossRef]

Jaeger, A.

K. Streubel, N. Linder, R. Wirth, and A. Jaeger, "High brightness AlGalnP light-emitting diodes," IEEE J. Sel. Top. Quantum Electron. 8, 321-332 (2002).
[CrossRef]

Kang, E.

C. Huh, K. Lee, E. Kang, and S. Park, "Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface," J. Appl. Phys. 93, 9383-9385 (2003).
[CrossRef]

Lee, K.

C. Huh, K. Lee, E. Kang, and S. Park, "Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface," J. Appl. Phys. 93, 9383-9385 (2003).
[CrossRef]

Linder, N.

K. Streubel, N. Linder, R. Wirth, and A. Jaeger, "High brightness AlGalnP light-emitting diodes," IEEE J. Sel. Top. Quantum Electron. 8, 321-332 (2002).
[CrossRef]

Ludowise, M. J.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, "Illumination with solid state lighting technology," IEEE J. Sel. Top. Quantum Electron. 8, 310-320 (2002).
[CrossRef]

Martin, P. S.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, "Illumination with solid state lighting technology," IEEE J. Sel. Top. Quantum Electron. 8, 310-320 (2002).
[CrossRef]

Park, S.

C. Huh, K. Lee, E. Kang, and S. Park, "Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface," J. Appl. Phys. 93, 9383-9385 (2003).
[CrossRef]

Rudaz, S. L.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, "Illumination with solid state lighting technology," IEEE J. Sel. Top. Quantum Electron. 8, 310-320 (2002).
[CrossRef]

Shiang, J. J.

A. R. Duggal, J. J. Shiang, C. M. Heller, and D. F. Foust, "Organic light-emitting devices for illumination quality white light," Appl. Phys. Lett. 80, 3470-3472 (2002).
[CrossRef]

Steigerwald, D. A.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, "Illumination with solid state lighting technology," IEEE J. Sel. Top. Quantum Electron. 8, 310-320 (2002).
[CrossRef]

Streubel, K.

K. Streubel, N. Linder, R. Wirth, and A. Jaeger, "High brightness AlGalnP light-emitting diodes," IEEE J. Sel. Top. Quantum Electron. 8, 321-332 (2002).
[CrossRef]

Wirth, R.

K. Streubel, N. Linder, R. Wirth, and A. Jaeger, "High brightness AlGalnP light-emitting diodes," IEEE J. Sel. Top. Quantum Electron. 8, 321-332 (2002).
[CrossRef]

Appl. Phys. Lett.

A. R. Duggal, J. J. Shiang, C. M. Heller, and D. F. Foust, "Organic light-emitting devices for illumination quality white light," Appl. Phys. Lett. 80, 3470-3472 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, "Illumination with solid state lighting technology," IEEE J. Sel. Top. Quantum Electron. 8, 310-320 (2002).
[CrossRef]

K. Streubel, N. Linder, R. Wirth, and A. Jaeger, "High brightness AlGalnP light-emitting diodes," IEEE J. Sel. Top. Quantum Electron. 8, 321-332 (2002).
[CrossRef]

J. Appl. Phys.

C. Huh, K. Lee, E. Kang, and S. Park, "Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface," J. Appl. Phys. 93, 9383-9385 (2003).
[CrossRef]

Other

I.T.Ferguson, J.C.Carrano, T.Taguchi, and I. E. Ashdown, eds., Fifth International Conference on Solid State Lighting, Proc. SPIE 5941 (2005).

H.W.Yao, I.T.Ferguson, and E.F.Schubert, eds., Light-Emitting Diodes: Research, Manufacturing, and Applications IV, Proc. SPIE 3938 (2005).

Z.H.Kafafi, ed., Organic Light-Emitting Materials and Devices, Proc. SPIE 3148 (1997).

Zemax Development Corporation, http://www.zemax.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Ray tracing diagram of a condensing sphere. (1) LED, (2) dielectric sphere, (3) scattering mirror.

Fig. 2
Fig. 2

Simplified model of Fig. 1.

Fig. 3
Fig. 3

Illumination angle θ versus the ray angle θ 1 inside the sphere (four difference cases).

Fig. 4
Fig. 4

Relative intensity versus angles of the far-field illumination pattern. The intensity ( W m 2 ) is calculated on a far-field plane perpendicular to the optical axis.

Fig. 5
Fig. 5

Light collecting efficiency versus refractive index of sphere.

Fig. 6
Fig. 6

Illumination pattern of condensing spheres with a finite-sized LED. The intensity ( W m 2 ) is calculated on a far-field plane perpendicular to the optical axis.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

θ = 2 θ 1 arcsin ( n sin θ 1 ) ,
θ 1 θ 1 max = arcsin ( 1 n )
θ L = 2 arcsin ( 4 n 2 3 n 2 ) 1 2 arcsin ( 4 n 2 3 ) 1 2 ,
θ S = θ L + α ,
T ( θ 1 ) = 1 1 2 [ ( n cos θ 1 1 n 2 sin 2 θ 1 n cos θ 1 + 1 n 2 sin 2 θ 1 ) 2 + ( cos θ 1 n 1 n 2 sin 2 θ 1 cos θ 1 + n 1 n 2 sin 2 θ 1 ) 2 ] .
η = 2 π 0 θ 1 max T ( θ 1 ) sin θ 1 d θ 1 2 π 0 θ 1 max sin θ 1 d θ 1 .

Metrics