H. Guan and R. Gordon, "A projection access order for speedy convergence of ART (algebraic reconstruction technique): a multilevel scheme for computed tomography," Phys. Med. Biol. 39, 2005-2022 (1994).

[CrossRef]
[PubMed]

G. T. Herman and L. B. Meyer, "Algebraic reconstruction techniques can be made computationally efficient," IEEE Trans. Med. Imaging 12, 600-609 (1993).

[CrossRef]
[PubMed]

C. L. Byrne and M. A. Fiddy, "Image as power spectral; reconstruction as a Wiener filter approximation," Inverse Probl. 4, 399-409 (1988).

[CrossRef]

C. L. Byrne and R. M. Fitzgerald, "Spectral estimators that extend the maximum entropy and maximum likelihood methods," SIAM J. Appl. Math. 44, 425-442 (1984).

[CrossRef]

C. L. Byrne and R. M. Fitzgerald, "Reconstruction from partial information, with applications to tomography," SIAM J. Appl. Math. 42, 933-940 (1982).

[CrossRef]

M. R. Trummer, "Reconstructing pictures from projections: on the convergence of the ART algorithm with relaxation," Computing 26, 189-195 (1981).

[CrossRef]

P. Eggermont, G. T. Herman, and A. Lent, "Iterative algorithms for large partitioned linear systems, with applications to image reconstruction," Linear Algebr. Appl. 40, 37-67 (1981).

[CrossRef]

G. T. Herman, A. Lent, and P. H. Lutz, "Relaxation methods for image reconstruction," Commun. ACM 21, 152-158 (1978).

[CrossRef]

G. T. Herman and A. Lent, "Iterative reconstruction algorithms," Comput. Biol. Med. 6, 273-294 (1976).

[CrossRef]
[PubMed]

G. T. Herman, "A relaxation method for reconstructing objects from noisy X-rays," Math. Program. 8, 1-19 (1975).

[CrossRef]

R. Gordon, "A tutorial on ART," IEEE Trans. Nucl. Sci. NS-21, 78-93 (1974).

K. Tanabe, "Projection method for solving a singular system of linear equations and its applications," Numer. Math. 17, 203-214 (1971).

[CrossRef]

R. Gordon, R. Bender, and G. T. Herman, "Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography," J. Theor. Biol. 29, 471-481 (1970).

[CrossRef]
[PubMed]

S. Kaczmarz, "Angenaherte auflosung von system linearer gleichungen," Bull. Int. Acad. Pol. Sci. Lett., Cl. Sci. Math. Nat., Ser. A 35, 355-357 (1937).

R. Gordon, R. Bender, and G. T. Herman, "Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography," J. Theor. Biol. 29, 471-481 (1970).

[CrossRef]
[PubMed]

M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (Institute of Physics, 1998).

[CrossRef]

M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (Institute of Physics, 1998).

[CrossRef]

H. M. Shieh, C. L. Byrne, and M. A. Fiddy, "Image reconstruction: a unifying model for resolution enhancement and data extrapolation. Tutorial," J. Opt. Soc. Am. A 23, 258-266 (2006).

[CrossRef]

C. L. Byrne and M. A. Fiddy, "Image as power spectral; reconstruction as a Wiener filter approximation," Inverse Probl. 4, 399-409 (1988).

[CrossRef]

C. L. Byrne and R. M. Fitzgerald, "Spectral estimators that extend the maximum entropy and maximum likelihood methods," SIAM J. Appl. Math. 44, 425-442 (1984).

[CrossRef]

C. L. Byrne, R. M. Fitzgerald, M. A. Fiddy, T. J. Hall, and A. M. Darling, "Image restoration and resolution enhancement," J. Opt. Soc. Am. 73, 1481-1487 (1983).

[CrossRef]

C. L. Byrne and R. M. Fitzgerald, "Reconstruction from partial information, with applications to tomography," SIAM J. Appl. Math. 42, 933-940 (1982).

[CrossRef]

C. L. Byrne, Signal Processing: A Mathematical Approach (AK Peters, 2005).

P. Eggermont, G. T. Herman, and A. Lent, "Iterative algorithms for large partitioned linear systems, with applications to image reconstruction," Linear Algebr. Appl. 40, 37-67 (1981).

[CrossRef]

H. M. Shieh, C. L. Byrne, and M. A. Fiddy, "Image reconstruction: a unifying model for resolution enhancement and data extrapolation. Tutorial," J. Opt. Soc. Am. A 23, 258-266 (2006).

[CrossRef]

C. L. Byrne and M. A. Fiddy, "Image as power spectral; reconstruction as a Wiener filter approximation," Inverse Probl. 4, 399-409 (1988).

[CrossRef]

C. L. Byrne, R. M. Fitzgerald, M. A. Fiddy, T. J. Hall, and A. M. Darling, "Image restoration and resolution enhancement," J. Opt. Soc. Am. 73, 1481-1487 (1983).

[CrossRef]

C. L. Byrne and R. M. Fitzgerald, "Spectral estimators that extend the maximum entropy and maximum likelihood methods," SIAM J. Appl. Math. 44, 425-442 (1984).

[CrossRef]

C. L. Byrne, R. M. Fitzgerald, M. A. Fiddy, T. J. Hall, and A. M. Darling, "Image restoration and resolution enhancement," J. Opt. Soc. Am. 73, 1481-1487 (1983).

[CrossRef]

C. L. Byrne and R. M. Fitzgerald, "Reconstruction from partial information, with applications to tomography," SIAM J. Appl. Math. 42, 933-940 (1982).

[CrossRef]

H. Guan and R. Gordon, "A projection access order for speedy convergence of ART (algebraic reconstruction technique): a multilevel scheme for computed tomography," Phys. Med. Biol. 39, 2005-2022 (1994).

[CrossRef]
[PubMed]

R. Gordon, "A tutorial on ART," IEEE Trans. Nucl. Sci. NS-21, 78-93 (1974).

R. Gordon, R. Bender, and G. T. Herman, "Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography," J. Theor. Biol. 29, 471-481 (1970).

[CrossRef]
[PubMed]

H. Guan and R. Gordon, "A projection access order for speedy convergence of ART (algebraic reconstruction technique): a multilevel scheme for computed tomography," Phys. Med. Biol. 39, 2005-2022 (1994).

[CrossRef]
[PubMed]

G. T. Herman and L. B. Meyer, "Algebraic reconstruction techniques can be made computationally efficient," IEEE Trans. Med. Imaging 12, 600-609 (1993).

[CrossRef]
[PubMed]

P. Eggermont, G. T. Herman, and A. Lent, "Iterative algorithms for large partitioned linear systems, with applications to image reconstruction," Linear Algebr. Appl. 40, 37-67 (1981).

[CrossRef]

G. T. Herman, A. Lent, and P. H. Lutz, "Relaxation methods for image reconstruction," Commun. ACM 21, 152-158 (1978).

[CrossRef]

G. T. Herman and A. Lent, "Iterative reconstruction algorithms," Comput. Biol. Med. 6, 273-294 (1976).

[CrossRef]
[PubMed]

G. T. Herman, "A relaxation method for reconstructing objects from noisy X-rays," Math. Program. 8, 1-19 (1975).

[CrossRef]

R. Gordon, R. Bender, and G. T. Herman, "Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography," J. Theor. Biol. 29, 471-481 (1970).

[CrossRef]
[PubMed]

G. T. Herman and H. K. Tuy, "Image reconstruction from projections: an approach from mathematical analysis," in Basic Methods of Tomography and Inverse Problems., P.C.Sabatier, ed. (Hilger, 1987), pp. 1-124.

G. T. Herman, Image Reconstruction from Projections: The Fundamentals of Computerized Tomography (Academic, 1980).

S. Kaczmarz, "Angenaherte auflosung von system linearer gleichungen," Bull. Int. Acad. Pol. Sci. Lett., Cl. Sci. Math. Nat., Ser. A 35, 355-357 (1937).

P. Eggermont, G. T. Herman, and A. Lent, "Iterative algorithms for large partitioned linear systems, with applications to image reconstruction," Linear Algebr. Appl. 40, 37-67 (1981).

[CrossRef]

G. T. Herman, A. Lent, and P. H. Lutz, "Relaxation methods for image reconstruction," Commun. ACM 21, 152-158 (1978).

[CrossRef]

G. T. Herman and A. Lent, "Iterative reconstruction algorithms," Comput. Biol. Med. 6, 273-294 (1976).

[CrossRef]
[PubMed]

G. T. Herman, A. Lent, and P. H. Lutz, "Relaxation methods for image reconstruction," Commun. ACM 21, 152-158 (1978).

[CrossRef]

G. T. Herman and L. B. Meyer, "Algebraic reconstruction techniques can be made computationally efficient," IEEE Trans. Med. Imaging 12, 600-609 (1993).

[CrossRef]
[PubMed]

K. Tanabe, "Projection method for solving a singular system of linear equations and its applications," Numer. Math. 17, 203-214 (1971).

[CrossRef]

M. R. Trummer, "Reconstructing pictures from projections: on the convergence of the ART algorithm with relaxation," Computing 26, 189-195 (1981).

[CrossRef]

G. T. Herman and H. K. Tuy, "Image reconstruction from projections: an approach from mathematical analysis," in Basic Methods of Tomography and Inverse Problems., P.C.Sabatier, ed. (Hilger, 1987), pp. 1-124.

S. Kaczmarz, "Angenaherte auflosung von system linearer gleichungen," Bull. Int. Acad. Pol. Sci. Lett., Cl. Sci. Math. Nat., Ser. A 35, 355-357 (1937).

G. T. Herman, A. Lent, and P. H. Lutz, "Relaxation methods for image reconstruction," Commun. ACM 21, 152-158 (1978).

[CrossRef]

G. T. Herman and A. Lent, "Iterative reconstruction algorithms," Comput. Biol. Med. 6, 273-294 (1976).

[CrossRef]
[PubMed]

M. R. Trummer, "Reconstructing pictures from projections: on the convergence of the ART algorithm with relaxation," Computing 26, 189-195 (1981).

[CrossRef]

G. T. Herman and L. B. Meyer, "Algebraic reconstruction techniques can be made computationally efficient," IEEE Trans. Med. Imaging 12, 600-609 (1993).

[CrossRef]
[PubMed]

R. Gordon, "A tutorial on ART," IEEE Trans. Nucl. Sci. NS-21, 78-93 (1974).

C. L. Byrne and M. A. Fiddy, "Image as power spectral; reconstruction as a Wiener filter approximation," Inverse Probl. 4, 399-409 (1988).

[CrossRef]

R. Gordon, R. Bender, and G. T. Herman, "Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography," J. Theor. Biol. 29, 471-481 (1970).

[CrossRef]
[PubMed]

P. Eggermont, G. T. Herman, and A. Lent, "Iterative algorithms for large partitioned linear systems, with applications to image reconstruction," Linear Algebr. Appl. 40, 37-67 (1981).

[CrossRef]

G. T. Herman, "A relaxation method for reconstructing objects from noisy X-rays," Math. Program. 8, 1-19 (1975).

[CrossRef]

K. Tanabe, "Projection method for solving a singular system of linear equations and its applications," Numer. Math. 17, 203-214 (1971).

[CrossRef]

H. Guan and R. Gordon, "A projection access order for speedy convergence of ART (algebraic reconstruction technique): a multilevel scheme for computed tomography," Phys. Med. Biol. 39, 2005-2022 (1994).

[CrossRef]
[PubMed]

C. L. Byrne and R. M. Fitzgerald, "Reconstruction from partial information, with applications to tomography," SIAM J. Appl. Math. 42, 933-940 (1982).

[CrossRef]

C. L. Byrne and R. M. Fitzgerald, "Spectral estimators that extend the maximum entropy and maximum likelihood methods," SIAM J. Appl. Math. 44, 425-442 (1984).

[CrossRef]

C. L. Byrne, Signal Processing: A Mathematical Approach (AK Peters, 2005).

G. T. Herman and H. K. Tuy, "Image reconstruction from projections: an approach from mathematical analysis," in Basic Methods of Tomography and Inverse Problems., P.C.Sabatier, ed. (Hilger, 1987), pp. 1-124.

G. T. Herman, Image Reconstruction from Projections: The Fundamentals of Computerized Tomography (Academic, 1980).

M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (Institute of Physics, 1998).

[CrossRef]