Abstract

Effects of incident illumination on phase-contrast images obtained by means of free-space propagation are investigated under the “transport-of-intensity” approximation. Analytical expressions for image intensity distribution are derived in the cases of coherent quasi-plane and quasi-spherical incident waves, as well as for spatially incoherent and quasi-homogeneous sources and some other types of sources. Practical methods for measuring the relevant parameters of the incident radiation are discussed together with formulas allowing one to calculate the effect of these parameters on the image intensity distribution. The results are expected to be useful in quantitative in-line imaging, phase retrieval, and tomography with polychromatic and spatially partially coherent radiation. As an application we present a method for simultaneous “automatic” phase retrieval and spatial deconvolution in in-line imaging of homogeneous objects using extended polychromatic x-ray sources.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (42)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription