Abstract

The depth resolution and the recordable object depth range, obtainable with parallel, toed-in and sliding aperture camera configurations for multiview image acquisition in the three-dimensional imaging systems, are found by assuming that the camera lens resolution is diffraction limited and the resolution of the recorded image is limited by a pixel pitch of the imaging sensor. The depth resolution for the holographic image is calculated and compared with that of the multiview images for the same parameter values. The influence of the viewer’s eye resolution limit on the depth resolution of the multiview images and hologram is also found.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Matoba, T. Naughton, Y. Frauel, N. Bertaux, B. Javidi, “Real-time three-dimensional object reconstruction using a phase-encoded digital hologram,” Appl. Opt. 41, 6187–6192 (2002).
    [CrossRef] [PubMed]
  2. J.-Y. Son, “Autostereoscopic imaging systems based on special optical plates,” in Three-Dimensional Television, Video, and Display Technique, B. Javidi and F. Okano, eds. (Springer, 2002).
  3. F. Okano, H. Hosino, J. Arai, M. Yamada, I. Yuyama, “Three dimensional television system based on integral photography,” in Three-Dimensional Television, Video, and Display Technique, B. Javidi and F. Okano, eds. (Springer, 2002).
  4. T. Izumi, ed., Fundamentals of 3-D Imaging Technique (NHK Science and Technology Laboratory, 1995), Chap. 4, pp. 72–75.
  5. S. A. Shestak, J.-Y. Son, H.-W. Jeon, V. G. Komar, “Sliding aperture multiview 3-D camera-projector system and its application for 3-D image transmission and IR to visible conversion,” Proc. SPIE 3012, 96–106 (1997).
    [CrossRef]
  6. R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, 1971), Chap. 8, pp. 204–217.
  7. K. Lizuka, Engineering Optics (Springer-Verlag, 1985), Chap. 6, pp. 161–164.
  8. T. Okoshi, Three Dimensional Imaging Technique (Academic, 1976), Chap. 7, pp. 299–302.
  9. E. Hecht, A. Zajac, Optics (Addison-Wesley, 1979), Chap. 5, pp. 157–160.
  10. I. T. Hwang, S. Shestak, J.-Y. Son, S.-K. Kim, J.-S. Kim, S.-S. Kim, S.-K. Hahn, C.-U. Kang, “Multiview image acquisition and display by pupil segmentation” (submitted to Opt. Lett.).
  11. M. Born, E. Wolf, Principles of Optics (Pergamon, 1980), Chap. 7, pp. 333–338.
  12. T. Okoshi, Three-Dimensional Imaging Engineering (Asakura Book Store, 1991), Chap. 3, pp. 33–39.

2002

1997

S. A. Shestak, J.-Y. Son, H.-W. Jeon, V. G. Komar, “Sliding aperture multiview 3-D camera-projector system and its application for 3-D image transmission and IR to visible conversion,” Proc. SPIE 3012, 96–106 (1997).
[CrossRef]

Arai, J.

F. Okano, H. Hosino, J. Arai, M. Yamada, I. Yuyama, “Three dimensional television system based on integral photography,” in Three-Dimensional Television, Video, and Display Technique, B. Javidi and F. Okano, eds. (Springer, 2002).

Bertaux, N.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, 1980), Chap. 7, pp. 333–338.

Burckhardt, C. B.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, 1971), Chap. 8, pp. 204–217.

Collier, R. J.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, 1971), Chap. 8, pp. 204–217.

Frauel, Y.

Hahn, S.-K.

I. T. Hwang, S. Shestak, J.-Y. Son, S.-K. Kim, J.-S. Kim, S.-S. Kim, S.-K. Hahn, C.-U. Kang, “Multiview image acquisition and display by pupil segmentation” (submitted to Opt. Lett.).

Hecht, E.

E. Hecht, A. Zajac, Optics (Addison-Wesley, 1979), Chap. 5, pp. 157–160.

Hosino, H.

F. Okano, H. Hosino, J. Arai, M. Yamada, I. Yuyama, “Three dimensional television system based on integral photography,” in Three-Dimensional Television, Video, and Display Technique, B. Javidi and F. Okano, eds. (Springer, 2002).

Hwang, I. T.

I. T. Hwang, S. Shestak, J.-Y. Son, S.-K. Kim, J.-S. Kim, S.-S. Kim, S.-K. Hahn, C.-U. Kang, “Multiview image acquisition and display by pupil segmentation” (submitted to Opt. Lett.).

Javidi, B.

Jeon, H.-W.

S. A. Shestak, J.-Y. Son, H.-W. Jeon, V. G. Komar, “Sliding aperture multiview 3-D camera-projector system and its application for 3-D image transmission and IR to visible conversion,” Proc. SPIE 3012, 96–106 (1997).
[CrossRef]

Kang, C.-U.

I. T. Hwang, S. Shestak, J.-Y. Son, S.-K. Kim, J.-S. Kim, S.-S. Kim, S.-K. Hahn, C.-U. Kang, “Multiview image acquisition and display by pupil segmentation” (submitted to Opt. Lett.).

Kim, J.-S.

I. T. Hwang, S. Shestak, J.-Y. Son, S.-K. Kim, J.-S. Kim, S.-S. Kim, S.-K. Hahn, C.-U. Kang, “Multiview image acquisition and display by pupil segmentation” (submitted to Opt. Lett.).

Kim, S.-K.

I. T. Hwang, S. Shestak, J.-Y. Son, S.-K. Kim, J.-S. Kim, S.-S. Kim, S.-K. Hahn, C.-U. Kang, “Multiview image acquisition and display by pupil segmentation” (submitted to Opt. Lett.).

Kim, S.-S.

I. T. Hwang, S. Shestak, J.-Y. Son, S.-K. Kim, J.-S. Kim, S.-S. Kim, S.-K. Hahn, C.-U. Kang, “Multiview image acquisition and display by pupil segmentation” (submitted to Opt. Lett.).

Komar, V. G.

S. A. Shestak, J.-Y. Son, H.-W. Jeon, V. G. Komar, “Sliding aperture multiview 3-D camera-projector system and its application for 3-D image transmission and IR to visible conversion,” Proc. SPIE 3012, 96–106 (1997).
[CrossRef]

Lin, L. H.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, 1971), Chap. 8, pp. 204–217.

Lizuka, K.

K. Lizuka, Engineering Optics (Springer-Verlag, 1985), Chap. 6, pp. 161–164.

Matoba, O.

Naughton, T.

Okano, F.

F. Okano, H. Hosino, J. Arai, M. Yamada, I. Yuyama, “Three dimensional television system based on integral photography,” in Three-Dimensional Television, Video, and Display Technique, B. Javidi and F. Okano, eds. (Springer, 2002).

Okoshi, T.

T. Okoshi, Three Dimensional Imaging Technique (Academic, 1976), Chap. 7, pp. 299–302.

T. Okoshi, Three-Dimensional Imaging Engineering (Asakura Book Store, 1991), Chap. 3, pp. 33–39.

Shestak, S.

I. T. Hwang, S. Shestak, J.-Y. Son, S.-K. Kim, J.-S. Kim, S.-S. Kim, S.-K. Hahn, C.-U. Kang, “Multiview image acquisition and display by pupil segmentation” (submitted to Opt. Lett.).

Shestak, S. A.

S. A. Shestak, J.-Y. Son, H.-W. Jeon, V. G. Komar, “Sliding aperture multiview 3-D camera-projector system and its application for 3-D image transmission and IR to visible conversion,” Proc. SPIE 3012, 96–106 (1997).
[CrossRef]

Son, J.-Y.

S. A. Shestak, J.-Y. Son, H.-W. Jeon, V. G. Komar, “Sliding aperture multiview 3-D camera-projector system and its application for 3-D image transmission and IR to visible conversion,” Proc. SPIE 3012, 96–106 (1997).
[CrossRef]

J.-Y. Son, “Autostereoscopic imaging systems based on special optical plates,” in Three-Dimensional Television, Video, and Display Technique, B. Javidi and F. Okano, eds. (Springer, 2002).

I. T. Hwang, S. Shestak, J.-Y. Son, S.-K. Kim, J.-S. Kim, S.-S. Kim, S.-K. Hahn, C.-U. Kang, “Multiview image acquisition and display by pupil segmentation” (submitted to Opt. Lett.).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, 1980), Chap. 7, pp. 333–338.

Yamada, M.

F. Okano, H. Hosino, J. Arai, M. Yamada, I. Yuyama, “Three dimensional television system based on integral photography,” in Three-Dimensional Television, Video, and Display Technique, B. Javidi and F. Okano, eds. (Springer, 2002).

Yuyama, I.

F. Okano, H. Hosino, J. Arai, M. Yamada, I. Yuyama, “Three dimensional television system based on integral photography,” in Three-Dimensional Television, Video, and Display Technique, B. Javidi and F. Okano, eds. (Springer, 2002).

Zajac, A.

E. Hecht, A. Zajac, Optics (Addison-Wesley, 1979), Chap. 5, pp. 157–160.

Appl. Opt.

Proc. SPIE

S. A. Shestak, J.-Y. Son, H.-W. Jeon, V. G. Komar, “Sliding aperture multiview 3-D camera-projector system and its application for 3-D image transmission and IR to visible conversion,” Proc. SPIE 3012, 96–106 (1997).
[CrossRef]

Other

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, 1971), Chap. 8, pp. 204–217.

K. Lizuka, Engineering Optics (Springer-Verlag, 1985), Chap. 6, pp. 161–164.

T. Okoshi, Three Dimensional Imaging Technique (Academic, 1976), Chap. 7, pp. 299–302.

E. Hecht, A. Zajac, Optics (Addison-Wesley, 1979), Chap. 5, pp. 157–160.

I. T. Hwang, S. Shestak, J.-Y. Son, S.-K. Kim, J.-S. Kim, S.-S. Kim, S.-K. Hahn, C.-U. Kang, “Multiview image acquisition and display by pupil segmentation” (submitted to Opt. Lett.).

M. Born, E. Wolf, Principles of Optics (Pergamon, 1980), Chap. 7, pp. 333–338.

T. Okoshi, Three-Dimensional Imaging Engineering (Asakura Book Store, 1991), Chap. 3, pp. 33–39.

J.-Y. Son, “Autostereoscopic imaging systems based on special optical plates,” in Three-Dimensional Television, Video, and Display Technique, B. Javidi and F. Okano, eds. (Springer, 2002).

F. Okano, H. Hosino, J. Arai, M. Yamada, I. Yuyama, “Three dimensional television system based on integral photography,” in Three-Dimensional Television, Video, and Display Technique, B. Javidi and F. Okano, eds. (Springer, 2002).

T. Izumi, ed., Fundamentals of 3-D Imaging Technique (NHK Science and Technology Laboratory, 1995), Chap. 4, pp. 72–75.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Optical geometry of a parallel camera configuration.

Fig. 2
Fig. 2

Focusing of a diffraction-limited beam by a lens. The beam trajectory is approximated as a hyperbola.

Fig. 3
Fig. 3

Optical geometry of toed-in camera configuration.

Fig. 4
Fig. 4

Optical geometry of a sliding-aperture camera configuration.

Fig. 5
Fig. 5

Reconstruction geometry of an image point in a hologram.

Fig. 6
Fig. 6

Graphical comparison of depth resolutions of hologram and multiview images.

Fig. 7
Fig. 7

Depth resolution imposed by a viewer’s eyes.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

S = L F L F , S 1 = ( L + Δ L ) F L + Δ L F .
Δ x = S Δ h L , Δ h = Δ L t L + Δ L .
Δ x = Δ L t L + Δ L L F L F 1 L = t F Δ L ( L + Δ L ) ( L F ) .
Δ L min = p L ( L F ) t F p ( L F ) .
δ 2 = ( D S 1 ) 2 y 2 + δ dif 2 ,
S 1 + = S D D + ( p 2 G 2 S 2 ) 1 2 , S 1 = S D D ( p 2 G 2 S 2 ) 1 2 ,
L 1 = L F D F D + [ p 2 ( L F ) 2 G 2 L 2 F 2 ] 1 2 ,
L 2 = L F D F D [ p 2 ( L F ) 2 G 2 L 2 F 2 ] 1 2 .
OD = L 2 L 1 = 2 D L F [ ( L F ) 2 p 2 G 2 L 2 F 2 ] 1 2 F 2 D 2 [ p 2 ( L F ) 2 G 2 L 2 F 2 ] .
N max = L 1 L 2 d L Δ L = L 1 L 2 t F p ( L F ) L p ( L F ) d L = t p ln ( L 2 F ) L 1 ( L 1 F ) L 2 ln L 2 L 1 .
N max = L 1 L 2 d L Δ L L 1 L 2 F t p L 2 d L = F t p ( 1 L 1 1 L 2 ) ln L 2 L 1 .
N max = 2 t ( p 2 G 2 F 2 ) 1 2 p D ln F D + L ( p 2 G 2 F 2 ) 1 2 F D L ( p 2 G 2 F 2 ) 1 2 .
Δ x = t Δ L F ( L F ) [ L + Δ L L ( L 2 t 2 ) 1 2 ] .
Δ L = L ( L F ) Δ x t F Δ x L F L ( L 2 t 2 ) 1 2 .
Δ L min = p L ( L F ) t F p L F L ( L 2 t 2 ) 1 2 .
S = L F L F , S 1 = ( L + Δ L ) F L + Δ L F .
Δ x t = S S 1 S 1 = Δ L F ( L + Δ L ) ( L F ) .
Δ L = Δ x L ( L F ) F t Δ x ( L F ) .
Δ L min = p L ( L F ) F t p ( L F ) .
Δ L min = 2 p L 2 F D 2 p L .
E O = S hol E h exp ( i φ h i k r 0 ) r 0 d S h ,
E P = S hol E h exp [ i ( k r 0 k r 1 + φ 0 ) ] r 1 d S h ,
r 0 = ( H 2 + ρ 2 ) 1 2 , r 1 = [ ( H + x ) 2 + ρ 2 ] 1 2 .
k r 0 k r 1 k ( H + ρ 2 2 H ) k ( H + x + ρ 2 2 ( H + x ) ) k ρ 2 x 2 H 2 k x .
E P exp [ i ( k x φ 0 ) ] H 0 2 π 0 R E h exp ( i k ρ 2 x 2 H 2 ) ρ d ρ d ψ = π E h exp [ i ( k x φ 0 ) ] H 0 R 2 exp ( i k u x 2 H 2 ) d u ,
E P π E h exp [ i ( k x R 2 4 H 2 k x + φ 0 ) ] H [ exp ( i k x R 2 4 H 2 ) exp ( i k x R 2 4 H 2 ) i k x 2 H 2 ] = Q sinc ( k R 2 4 H 2 x ) ,
Q = π R 2 E h exp [ i ( k x R 2 4 H 2 k x + φ 0 ) ] H .
x 0 = 4 π H 2 k R 2 = 2 λ H 2 R 2 .
k [ ρ 4 8 H 3 ρ 4 8 ( H + x ) 3 ] 3 k x ρ 4 8 H 4 .
Δ D = p D b E D = 0.000145 D 2 b E ,

Metrics