Abstract

Optimization of an optical coherence imaging (OCI) system on the basis of task performance is a challenging undertaking. We present a mathematical framework based on task performance that uses statistical decision theory for the optimization and assessment of such a system. Specifically, we apply the framework to a relatively simple OCI system combined with a specimen model for a detection task and a resolution task. We consider three theoretical Gaussian sources of coherence lengths of 2, 20, and 40μm. For each of these coherence lengths we establish a benchmark performance that specifies the smallest change in index of refraction that can be detected by the system. We also quantify the dependence of the resolution performance on the specimen model being imaged.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (48)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription