Abstract

The intensity fluctuations of light scattered from a simple particle aggregate system consisting of two dipole-like particles separated by a fixed distance and floating freely in space are calculated numerically and analyzed statistically. The behavior of two statistical parameters, the second-order factorial moment of the intensity fluctuations and the probability of obtaining zero cross-polarized intensity, are studied as a function of both the particle polarizability and the interparticle distance. Effects of multiple-scattering processes on these statistical parameters are accounted for in particular.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. I. Mishchenko, J. W. Hovenier, L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, San Diego, Calif., 2000).
  2. M. J. McGill, “Lidar–remote sensing,” in Encyclopedia of Optical Engineering (Marcel Dekker, New York, 2003), pp. 1103–1113.
  3. G. Wurm, H. Relke, J. Dorschner, “Experimental study of light scattering by large dust aggregates consisting of micron-sized SiO2,” Astrophys. J. 595, 891–899 (2003).
    [CrossRef]
  4. P. Sheng, Scattering and Localisation of Clasical Waves in Random Media (World Scientific, Singapore, 1990).
  5. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, San Diego, Calif., 1978), Vols. 1 and 2.
  6. Y. Shkuratov, A. Ovcharenko, E. Zubko, O. Miloslavskaya, K. Muinonen, J. Piironen, R. Nelson, W. Smythe, V. Rosenbush, P. Helfenstein, “The opposition effect and negative polarization of structural analogs for planetary regoliths,” Icarus 159, 396–416 (2002).
    [CrossRef]
  7. P. N. Pusey, “Statistical properties of scattered radiation,” in Photon Correlation Spectroscopy and Velocimetry (Plenum, New York, 1977), pp. 45–141.
  8. G. Videen, D. R. Prabhu, M. Davies, F. González, F. Moreno, “Light scattering fluctuations of a soft spherical particle containing an inclusion,” Appl. Opt. 40, 4054–4057 (2001).
    [CrossRef]
  9. M. C. Pitter, K. I. Hopcraft, E. Jakeman, J. G. Walker, “Structure of polarization fluctuations and their relation to particle shape,” J. Quant. Spectrosc. Radiat. Transf. 63, 433–444 (1999).
    [CrossRef]
  10. A. P. Bates, K. I. Hopcraft, E. Jakeman, “Particle shape determination from polarization fluctuations of scattered radiation,” J. Opt. Soc. Am. A 14, 1–4 (1997).
    [CrossRef]
  11. A. P. Bates, K. I. Hopcraft, E. Jakeman, “Non-Gaussian fluctuations of stokes parameters in scattering by small particles,” Waves Random Media 8, 235–253 (1998).
    [CrossRef]
  12. E. Jakeman, “Polarization characteristics of non-Gaussian scattering by small particles,” Waves Random Media 5, 427–442 (1995).
    [CrossRef]
  13. E. M. Ortiz, F. González, J. M. Saiz, F. Moreno, “Experimental measurement of the statistics of the scattered intensity from particles on surfaces,” ACI Mater. J. 10, 190–195 (2002); www.opticsexpress.org .
  14. E. M. Ortiz, F. González, F. Moreno, “Intensity statistics of the light scattered by particles on surfaces,” in Light Scattering from Microstructures, F. González, F. Moreno, eds. (Springer-Verlag, Berlin, 2000), pp. 191–211.
  15. E. Jakeman, D. L. Jordan, G. D. Lewis, “Fluctuations in radiation scattered by small spheroids above an interface,” Waves Random Media 10, 317–336 (2000).
    [CrossRef]
  16. G. Videen, W. L. Wolfe, W. S. Bickel, “Light scattering mueller matrix for a surface contaminated by a single particle in the Rayleigh limit,” Opt. Eng. 31, 341–349 (1992).
    [CrossRef]
  17. K. Muinonen, “Electromagnetic scattering by two interacting dipoles,” in Proceedings of URSI Electromagnetic Theory Symposium (International Union of Radio Science, Ghent, Belgium, 1989), pp. 428–430; www.ursi.org .
  18. F. M. Ismagilov, Y. A. Kravtsov, “Backscattering enhancement polarization effects on a system of two small randomly oriented scatterers,” Waves Random Media 3, 17–24 (1993).
    [CrossRef]
  19. V. A. Markel, “Scattering of light from two interacting dipoles,” J. Mod. Opt. 39, 853–861 (1991).
    [CrossRef]
  20. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
    [CrossRef]
  21. S. B. Singham, C. F. Bohren, “Light scattering by an arbitrary particle: the scattering-order formulation of the coupled-dipole method,” J. Opt. Soc. Am. A 5, 1867–1872 (1988).
    [CrossRef] [PubMed]
  22. E. M. Purcell, C. R. Pennypacker, “Scattering and absorption of light by non-spherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
    [CrossRef]
  23. B. T. Draine, P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
    [CrossRef]
  24. F. Moreno, S. Cotera, F. González, J. M. Saiz, G. Videen, “Multiple scattering by two particle systems: statistics of the cross-polarized scattered intensity,” J. Quant. Spectrosc. Radiat. Transf. 79, 983–994 (2003).
    [CrossRef]
  25. H. C. van de Hulst, Light Scattering by Small Particles, 2nd ed. (Dover, New York, 1981).
  26. H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).
  27. F. Moreno, J. M. Saiz, P. J. Valle, F. González, “On the multiple scattering effects for small metallic particles on flat conducting substrates,” Waves Random Media 5, 73–88 (1995).
    [CrossRef]
  28. F. González, J. M. Saiz, P. J. Valle, F. Moreno, “Multiple scattering in particulate surfaces: cross-polarization ratios and shadowing effects,” Opt. Commun. 137, 359–366 (1997).
    [CrossRef]

2003 (2)

G. Wurm, H. Relke, J. Dorschner, “Experimental study of light scattering by large dust aggregates consisting of micron-sized SiO2,” Astrophys. J. 595, 891–899 (2003).
[CrossRef]

F. Moreno, S. Cotera, F. González, J. M. Saiz, G. Videen, “Multiple scattering by two particle systems: statistics of the cross-polarized scattered intensity,” J. Quant. Spectrosc. Radiat. Transf. 79, 983–994 (2003).
[CrossRef]

2002 (2)

Y. Shkuratov, A. Ovcharenko, E. Zubko, O. Miloslavskaya, K. Muinonen, J. Piironen, R. Nelson, W. Smythe, V. Rosenbush, P. Helfenstein, “The opposition effect and negative polarization of structural analogs for planetary regoliths,” Icarus 159, 396–416 (2002).
[CrossRef]

E. M. Ortiz, F. González, J. M. Saiz, F. Moreno, “Experimental measurement of the statistics of the scattered intensity from particles on surfaces,” ACI Mater. J. 10, 190–195 (2002); www.opticsexpress.org .

2001 (1)

2000 (1)

E. Jakeman, D. L. Jordan, G. D. Lewis, “Fluctuations in radiation scattered by small spheroids above an interface,” Waves Random Media 10, 317–336 (2000).
[CrossRef]

1999 (1)

M. C. Pitter, K. I. Hopcraft, E. Jakeman, J. G. Walker, “Structure of polarization fluctuations and their relation to particle shape,” J. Quant. Spectrosc. Radiat. Transf. 63, 433–444 (1999).
[CrossRef]

1998 (1)

A. P. Bates, K. I. Hopcraft, E. Jakeman, “Non-Gaussian fluctuations of stokes parameters in scattering by small particles,” Waves Random Media 8, 235–253 (1998).
[CrossRef]

1997 (2)

F. González, J. M. Saiz, P. J. Valle, F. Moreno, “Multiple scattering in particulate surfaces: cross-polarization ratios and shadowing effects,” Opt. Commun. 137, 359–366 (1997).
[CrossRef]

A. P. Bates, K. I. Hopcraft, E. Jakeman, “Particle shape determination from polarization fluctuations of scattered radiation,” J. Opt. Soc. Am. A 14, 1–4 (1997).
[CrossRef]

1995 (2)

F. Moreno, J. M. Saiz, P. J. Valle, F. González, “On the multiple scattering effects for small metallic particles on flat conducting substrates,” Waves Random Media 5, 73–88 (1995).
[CrossRef]

E. Jakeman, “Polarization characteristics of non-Gaussian scattering by small particles,” Waves Random Media 5, 427–442 (1995).
[CrossRef]

1994 (1)

1993 (1)

F. M. Ismagilov, Y. A. Kravtsov, “Backscattering enhancement polarization effects on a system of two small randomly oriented scatterers,” Waves Random Media 3, 17–24 (1993).
[CrossRef]

1992 (1)

G. Videen, W. L. Wolfe, W. S. Bickel, “Light scattering mueller matrix for a surface contaminated by a single particle in the Rayleigh limit,” Opt. Eng. 31, 341–349 (1992).
[CrossRef]

1991 (1)

V. A. Markel, “Scattering of light from two interacting dipoles,” J. Mod. Opt. 39, 853–861 (1991).
[CrossRef]

1988 (2)

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

S. B. Singham, C. F. Bohren, “Light scattering by an arbitrary particle: the scattering-order formulation of the coupled-dipole method,” J. Opt. Soc. Am. A 5, 1867–1872 (1988).
[CrossRef] [PubMed]

1973 (1)

E. M. Purcell, C. R. Pennypacker, “Scattering and absorption of light by non-spherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

Bates, A. P.

A. P. Bates, K. I. Hopcraft, E. Jakeman, “Non-Gaussian fluctuations of stokes parameters in scattering by small particles,” Waves Random Media 8, 235–253 (1998).
[CrossRef]

A. P. Bates, K. I. Hopcraft, E. Jakeman, “Particle shape determination from polarization fluctuations of scattered radiation,” J. Opt. Soc. Am. A 14, 1–4 (1997).
[CrossRef]

Bickel, W. S.

G. Videen, W. L. Wolfe, W. S. Bickel, “Light scattering mueller matrix for a surface contaminated by a single particle in the Rayleigh limit,” Opt. Eng. 31, 341–349 (1992).
[CrossRef]

Bohren, C. F.

Cotera, S.

F. Moreno, S. Cotera, F. González, J. M. Saiz, G. Videen, “Multiple scattering by two particle systems: statistics of the cross-polarized scattered intensity,” J. Quant. Spectrosc. Radiat. Transf. 79, 983–994 (2003).
[CrossRef]

Davies, M.

Dorschner, J.

G. Wurm, H. Relke, J. Dorschner, “Experimental study of light scattering by large dust aggregates consisting of micron-sized SiO2,” Astrophys. J. 595, 891–899 (2003).
[CrossRef]

Draine, B. T.

B. T. Draine, P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
[CrossRef]

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

Flatau, P. J.

González, F.

F. Moreno, S. Cotera, F. González, J. M. Saiz, G. Videen, “Multiple scattering by two particle systems: statistics of the cross-polarized scattered intensity,” J. Quant. Spectrosc. Radiat. Transf. 79, 983–994 (2003).
[CrossRef]

E. M. Ortiz, F. González, J. M. Saiz, F. Moreno, “Experimental measurement of the statistics of the scattered intensity from particles on surfaces,” ACI Mater. J. 10, 190–195 (2002); www.opticsexpress.org .

G. Videen, D. R. Prabhu, M. Davies, F. González, F. Moreno, “Light scattering fluctuations of a soft spherical particle containing an inclusion,” Appl. Opt. 40, 4054–4057 (2001).
[CrossRef]

F. González, J. M. Saiz, P. J. Valle, F. Moreno, “Multiple scattering in particulate surfaces: cross-polarization ratios and shadowing effects,” Opt. Commun. 137, 359–366 (1997).
[CrossRef]

F. Moreno, J. M. Saiz, P. J. Valle, F. González, “On the multiple scattering effects for small metallic particles on flat conducting substrates,” Waves Random Media 5, 73–88 (1995).
[CrossRef]

E. M. Ortiz, F. González, F. Moreno, “Intensity statistics of the light scattered by particles on surfaces,” in Light Scattering from Microstructures, F. González, F. Moreno, eds. (Springer-Verlag, Berlin, 2000), pp. 191–211.

Helfenstein, P.

Y. Shkuratov, A. Ovcharenko, E. Zubko, O. Miloslavskaya, K. Muinonen, J. Piironen, R. Nelson, W. Smythe, V. Rosenbush, P. Helfenstein, “The opposition effect and negative polarization of structural analogs for planetary regoliths,” Icarus 159, 396–416 (2002).
[CrossRef]

Hopcraft, K. I.

M. C. Pitter, K. I. Hopcraft, E. Jakeman, J. G. Walker, “Structure of polarization fluctuations and their relation to particle shape,” J. Quant. Spectrosc. Radiat. Transf. 63, 433–444 (1999).
[CrossRef]

A. P. Bates, K. I. Hopcraft, E. Jakeman, “Non-Gaussian fluctuations of stokes parameters in scattering by small particles,” Waves Random Media 8, 235–253 (1998).
[CrossRef]

A. P. Bates, K. I. Hopcraft, E. Jakeman, “Particle shape determination from polarization fluctuations of scattered radiation,” J. Opt. Soc. Am. A 14, 1–4 (1997).
[CrossRef]

Hovenier, J. W.

M. I. Mishchenko, J. W. Hovenier, L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, San Diego, Calif., 2000).

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, San Diego, Calif., 1978), Vols. 1 and 2.

Ismagilov, F. M.

F. M. Ismagilov, Y. A. Kravtsov, “Backscattering enhancement polarization effects on a system of two small randomly oriented scatterers,” Waves Random Media 3, 17–24 (1993).
[CrossRef]

Jakeman, E.

E. Jakeman, D. L. Jordan, G. D. Lewis, “Fluctuations in radiation scattered by small spheroids above an interface,” Waves Random Media 10, 317–336 (2000).
[CrossRef]

M. C. Pitter, K. I. Hopcraft, E. Jakeman, J. G. Walker, “Structure of polarization fluctuations and their relation to particle shape,” J. Quant. Spectrosc. Radiat. Transf. 63, 433–444 (1999).
[CrossRef]

A. P. Bates, K. I. Hopcraft, E. Jakeman, “Non-Gaussian fluctuations of stokes parameters in scattering by small particles,” Waves Random Media 8, 235–253 (1998).
[CrossRef]

A. P. Bates, K. I. Hopcraft, E. Jakeman, “Particle shape determination from polarization fluctuations of scattered radiation,” J. Opt. Soc. Am. A 14, 1–4 (1997).
[CrossRef]

E. Jakeman, “Polarization characteristics of non-Gaussian scattering by small particles,” Waves Random Media 5, 427–442 (1995).
[CrossRef]

Jordan, D. L.

E. Jakeman, D. L. Jordan, G. D. Lewis, “Fluctuations in radiation scattered by small spheroids above an interface,” Waves Random Media 10, 317–336 (2000).
[CrossRef]

Kravtsov, Y. A.

F. M. Ismagilov, Y. A. Kravtsov, “Backscattering enhancement polarization effects on a system of two small randomly oriented scatterers,” Waves Random Media 3, 17–24 (1993).
[CrossRef]

Lewis, G. D.

E. Jakeman, D. L. Jordan, G. D. Lewis, “Fluctuations in radiation scattered by small spheroids above an interface,” Waves Random Media 10, 317–336 (2000).
[CrossRef]

Markel, V. A.

V. A. Markel, “Scattering of light from two interacting dipoles,” J. Mod. Opt. 39, 853–861 (1991).
[CrossRef]

McGill, M. J.

M. J. McGill, “Lidar–remote sensing,” in Encyclopedia of Optical Engineering (Marcel Dekker, New York, 2003), pp. 1103–1113.

Miloslavskaya, O.

Y. Shkuratov, A. Ovcharenko, E. Zubko, O. Miloslavskaya, K. Muinonen, J. Piironen, R. Nelson, W. Smythe, V. Rosenbush, P. Helfenstein, “The opposition effect and negative polarization of structural analogs for planetary regoliths,” Icarus 159, 396–416 (2002).
[CrossRef]

Mishchenko, M. I.

M. I. Mishchenko, J. W. Hovenier, L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, San Diego, Calif., 2000).

Moreno, F.

F. Moreno, S. Cotera, F. González, J. M. Saiz, G. Videen, “Multiple scattering by two particle systems: statistics of the cross-polarized scattered intensity,” J. Quant. Spectrosc. Radiat. Transf. 79, 983–994 (2003).
[CrossRef]

E. M. Ortiz, F. González, J. M. Saiz, F. Moreno, “Experimental measurement of the statistics of the scattered intensity from particles on surfaces,” ACI Mater. J. 10, 190–195 (2002); www.opticsexpress.org .

G. Videen, D. R. Prabhu, M. Davies, F. González, F. Moreno, “Light scattering fluctuations of a soft spherical particle containing an inclusion,” Appl. Opt. 40, 4054–4057 (2001).
[CrossRef]

F. González, J. M. Saiz, P. J. Valle, F. Moreno, “Multiple scattering in particulate surfaces: cross-polarization ratios and shadowing effects,” Opt. Commun. 137, 359–366 (1997).
[CrossRef]

F. Moreno, J. M. Saiz, P. J. Valle, F. González, “On the multiple scattering effects for small metallic particles on flat conducting substrates,” Waves Random Media 5, 73–88 (1995).
[CrossRef]

E. M. Ortiz, F. González, F. Moreno, “Intensity statistics of the light scattered by particles on surfaces,” in Light Scattering from Microstructures, F. González, F. Moreno, eds. (Springer-Verlag, Berlin, 2000), pp. 191–211.

Muinonen, K.

Y. Shkuratov, A. Ovcharenko, E. Zubko, O. Miloslavskaya, K. Muinonen, J. Piironen, R. Nelson, W. Smythe, V. Rosenbush, P. Helfenstein, “The opposition effect and negative polarization of structural analogs for planetary regoliths,” Icarus 159, 396–416 (2002).
[CrossRef]

K. Muinonen, “Electromagnetic scattering by two interacting dipoles,” in Proceedings of URSI Electromagnetic Theory Symposium (International Union of Radio Science, Ghent, Belgium, 1989), pp. 428–430; www.ursi.org .

Nelson, R.

Y. Shkuratov, A. Ovcharenko, E. Zubko, O. Miloslavskaya, K. Muinonen, J. Piironen, R. Nelson, W. Smythe, V. Rosenbush, P. Helfenstein, “The opposition effect and negative polarization of structural analogs for planetary regoliths,” Icarus 159, 396–416 (2002).
[CrossRef]

Ortiz, E. M.

E. M. Ortiz, F. González, J. M. Saiz, F. Moreno, “Experimental measurement of the statistics of the scattered intensity from particles on surfaces,” ACI Mater. J. 10, 190–195 (2002); www.opticsexpress.org .

E. M. Ortiz, F. González, F. Moreno, “Intensity statistics of the light scattered by particles on surfaces,” in Light Scattering from Microstructures, F. González, F. Moreno, eds. (Springer-Verlag, Berlin, 2000), pp. 191–211.

Ovcharenko, A.

Y. Shkuratov, A. Ovcharenko, E. Zubko, O. Miloslavskaya, K. Muinonen, J. Piironen, R. Nelson, W. Smythe, V. Rosenbush, P. Helfenstein, “The opposition effect and negative polarization of structural analogs for planetary regoliths,” Icarus 159, 396–416 (2002).
[CrossRef]

Pennypacker, C. R.

E. M. Purcell, C. R. Pennypacker, “Scattering and absorption of light by non-spherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

Piironen, J.

Y. Shkuratov, A. Ovcharenko, E. Zubko, O. Miloslavskaya, K. Muinonen, J. Piironen, R. Nelson, W. Smythe, V. Rosenbush, P. Helfenstein, “The opposition effect and negative polarization of structural analogs for planetary regoliths,” Icarus 159, 396–416 (2002).
[CrossRef]

Pitter, M. C.

M. C. Pitter, K. I. Hopcraft, E. Jakeman, J. G. Walker, “Structure of polarization fluctuations and their relation to particle shape,” J. Quant. Spectrosc. Radiat. Transf. 63, 433–444 (1999).
[CrossRef]

Prabhu, D. R.

Purcell, E. M.

E. M. Purcell, C. R. Pennypacker, “Scattering and absorption of light by non-spherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

Pusey, P. N.

P. N. Pusey, “Statistical properties of scattered radiation,” in Photon Correlation Spectroscopy and Velocimetry (Plenum, New York, 1977), pp. 45–141.

Raether, H.

H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).

Relke, H.

G. Wurm, H. Relke, J. Dorschner, “Experimental study of light scattering by large dust aggregates consisting of micron-sized SiO2,” Astrophys. J. 595, 891–899 (2003).
[CrossRef]

Rosenbush, V.

Y. Shkuratov, A. Ovcharenko, E. Zubko, O. Miloslavskaya, K. Muinonen, J. Piironen, R. Nelson, W. Smythe, V. Rosenbush, P. Helfenstein, “The opposition effect and negative polarization of structural analogs for planetary regoliths,” Icarus 159, 396–416 (2002).
[CrossRef]

Saiz, J. M.

F. Moreno, S. Cotera, F. González, J. M. Saiz, G. Videen, “Multiple scattering by two particle systems: statistics of the cross-polarized scattered intensity,” J. Quant. Spectrosc. Radiat. Transf. 79, 983–994 (2003).
[CrossRef]

E. M. Ortiz, F. González, J. M. Saiz, F. Moreno, “Experimental measurement of the statistics of the scattered intensity from particles on surfaces,” ACI Mater. J. 10, 190–195 (2002); www.opticsexpress.org .

F. González, J. M. Saiz, P. J. Valle, F. Moreno, “Multiple scattering in particulate surfaces: cross-polarization ratios and shadowing effects,” Opt. Commun. 137, 359–366 (1997).
[CrossRef]

F. Moreno, J. M. Saiz, P. J. Valle, F. González, “On the multiple scattering effects for small metallic particles on flat conducting substrates,” Waves Random Media 5, 73–88 (1995).
[CrossRef]

Sheng, P.

P. Sheng, Scattering and Localisation of Clasical Waves in Random Media (World Scientific, Singapore, 1990).

Shkuratov, Y.

Y. Shkuratov, A. Ovcharenko, E. Zubko, O. Miloslavskaya, K. Muinonen, J. Piironen, R. Nelson, W. Smythe, V. Rosenbush, P. Helfenstein, “The opposition effect and negative polarization of structural analogs for planetary regoliths,” Icarus 159, 396–416 (2002).
[CrossRef]

Singham, S. B.

Smythe, W.

Y. Shkuratov, A. Ovcharenko, E. Zubko, O. Miloslavskaya, K. Muinonen, J. Piironen, R. Nelson, W. Smythe, V. Rosenbush, P. Helfenstein, “The opposition effect and negative polarization of structural analogs for planetary regoliths,” Icarus 159, 396–416 (2002).
[CrossRef]

Travis, L. D.

M. I. Mishchenko, J. W. Hovenier, L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, San Diego, Calif., 2000).

Valle, P. J.

F. González, J. M. Saiz, P. J. Valle, F. Moreno, “Multiple scattering in particulate surfaces: cross-polarization ratios and shadowing effects,” Opt. Commun. 137, 359–366 (1997).
[CrossRef]

F. Moreno, J. M. Saiz, P. J. Valle, F. González, “On the multiple scattering effects for small metallic particles on flat conducting substrates,” Waves Random Media 5, 73–88 (1995).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles, 2nd ed. (Dover, New York, 1981).

Videen, G.

F. Moreno, S. Cotera, F. González, J. M. Saiz, G. Videen, “Multiple scattering by two particle systems: statistics of the cross-polarized scattered intensity,” J. Quant. Spectrosc. Radiat. Transf. 79, 983–994 (2003).
[CrossRef]

G. Videen, D. R. Prabhu, M. Davies, F. González, F. Moreno, “Light scattering fluctuations of a soft spherical particle containing an inclusion,” Appl. Opt. 40, 4054–4057 (2001).
[CrossRef]

G. Videen, W. L. Wolfe, W. S. Bickel, “Light scattering mueller matrix for a surface contaminated by a single particle in the Rayleigh limit,” Opt. Eng. 31, 341–349 (1992).
[CrossRef]

Walker, J. G.

M. C. Pitter, K. I. Hopcraft, E. Jakeman, J. G. Walker, “Structure of polarization fluctuations and their relation to particle shape,” J. Quant. Spectrosc. Radiat. Transf. 63, 433–444 (1999).
[CrossRef]

Wolfe, W. L.

G. Videen, W. L. Wolfe, W. S. Bickel, “Light scattering mueller matrix for a surface contaminated by a single particle in the Rayleigh limit,” Opt. Eng. 31, 341–349 (1992).
[CrossRef]

Wurm, G.

G. Wurm, H. Relke, J. Dorschner, “Experimental study of light scattering by large dust aggregates consisting of micron-sized SiO2,” Astrophys. J. 595, 891–899 (2003).
[CrossRef]

Zubko, E.

Y. Shkuratov, A. Ovcharenko, E. Zubko, O. Miloslavskaya, K. Muinonen, J. Piironen, R. Nelson, W. Smythe, V. Rosenbush, P. Helfenstein, “The opposition effect and negative polarization of structural analogs for planetary regoliths,” Icarus 159, 396–416 (2002).
[CrossRef]

ACI Mater. J. (1)

E. M. Ortiz, F. González, J. M. Saiz, F. Moreno, “Experimental measurement of the statistics of the scattered intensity from particles on surfaces,” ACI Mater. J. 10, 190–195 (2002); www.opticsexpress.org .

Appl. Opt. (1)

Astrophys. J. (3)

E. M. Purcell, C. R. Pennypacker, “Scattering and absorption of light by non-spherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

G. Wurm, H. Relke, J. Dorschner, “Experimental study of light scattering by large dust aggregates consisting of micron-sized SiO2,” Astrophys. J. 595, 891–899 (2003).
[CrossRef]

Icarus (1)

Y. Shkuratov, A. Ovcharenko, E. Zubko, O. Miloslavskaya, K. Muinonen, J. Piironen, R. Nelson, W. Smythe, V. Rosenbush, P. Helfenstein, “The opposition effect and negative polarization of structural analogs for planetary regoliths,” Icarus 159, 396–416 (2002).
[CrossRef]

J. Mod. Opt. (1)

V. A. Markel, “Scattering of light from two interacting dipoles,” J. Mod. Opt. 39, 853–861 (1991).
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Quant. Spectrosc. Radiat. Transf. (2)

F. Moreno, S. Cotera, F. González, J. M. Saiz, G. Videen, “Multiple scattering by two particle systems: statistics of the cross-polarized scattered intensity,” J. Quant. Spectrosc. Radiat. Transf. 79, 983–994 (2003).
[CrossRef]

M. C. Pitter, K. I. Hopcraft, E. Jakeman, J. G. Walker, “Structure of polarization fluctuations and their relation to particle shape,” J. Quant. Spectrosc. Radiat. Transf. 63, 433–444 (1999).
[CrossRef]

Opt. Commun. (1)

F. González, J. M. Saiz, P. J. Valle, F. Moreno, “Multiple scattering in particulate surfaces: cross-polarization ratios and shadowing effects,” Opt. Commun. 137, 359–366 (1997).
[CrossRef]

Opt. Eng. (1)

G. Videen, W. L. Wolfe, W. S. Bickel, “Light scattering mueller matrix for a surface contaminated by a single particle in the Rayleigh limit,” Opt. Eng. 31, 341–349 (1992).
[CrossRef]

Waves Random Media (5)

E. Jakeman, D. L. Jordan, G. D. Lewis, “Fluctuations in radiation scattered by small spheroids above an interface,” Waves Random Media 10, 317–336 (2000).
[CrossRef]

F. M. Ismagilov, Y. A. Kravtsov, “Backscattering enhancement polarization effects on a system of two small randomly oriented scatterers,” Waves Random Media 3, 17–24 (1993).
[CrossRef]

A. P. Bates, K. I. Hopcraft, E. Jakeman, “Non-Gaussian fluctuations of stokes parameters in scattering by small particles,” Waves Random Media 8, 235–253 (1998).
[CrossRef]

E. Jakeman, “Polarization characteristics of non-Gaussian scattering by small particles,” Waves Random Media 5, 427–442 (1995).
[CrossRef]

F. Moreno, J. M. Saiz, P. J. Valle, F. González, “On the multiple scattering effects for small metallic particles on flat conducting substrates,” Waves Random Media 5, 73–88 (1995).
[CrossRef]

Other (9)

H. C. van de Hulst, Light Scattering by Small Particles, 2nd ed. (Dover, New York, 1981).

H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).

P. N. Pusey, “Statistical properties of scattered radiation,” in Photon Correlation Spectroscopy and Velocimetry (Plenum, New York, 1977), pp. 45–141.

P. Sheng, Scattering and Localisation of Clasical Waves in Random Media (World Scientific, Singapore, 1990).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, San Diego, Calif., 1978), Vols. 1 and 2.

M. I. Mishchenko, J. W. Hovenier, L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, San Diego, Calif., 2000).

M. J. McGill, “Lidar–remote sensing,” in Encyclopedia of Optical Engineering (Marcel Dekker, New York, 2003), pp. 1103–1113.

K. Muinonen, “Electromagnetic scattering by two interacting dipoles,” in Proceedings of URSI Electromagnetic Theory Symposium (International Union of Radio Science, Ghent, Belgium, 1989), pp. 428–430; www.ursi.org .

E. M. Ortiz, F. González, F. Moreno, “Intensity statistics of the light scattered by particles on surfaces,” in Light Scattering from Microstructures, F. González, F. Moreno, eds. (Springer-Verlag, Berlin, 2000), pp. 191–211.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scattering system and scattering geometry.

Fig. 2
Fig. 2

Scattered intensity by a RBS with identical components as a function of their polarizability, α / λ 3 . Squares, S incident polarization; circles, P incident polarization. d = λ and θ S = 30 ° . N = 10 4 random orientations of the RBS.

Fig. 3
Fig. 3

n co ( 2 ) of a RBS as a function of the polarizability, α / λ 3 and θ S , for S incident polarization (squares) and P incident polarization (circles). d = λ , and N = 10 4 random orientations of the RBS.

Fig. 4
Fig. 4

As in Fig. 2 but for n cross ( 2 ) .

Fig. 5
Fig. 5

n co ( 2 ) of a RBS as a function of α / d λ 2 , θ S = 30 ° and S incident polarization a) d λ , b) d < λ . N = 10 4 random orientations of the RBS.

Fig. 6
Fig. 6

As in Fig. 5 but for n cross ( 2 ) .

Fig. 7
Fig. 7

P ( I cross = 0 ) of a RBS as a function of α / d λ 2 , θ S = 30 ° for S or P incident polarization. (a) d λ , (b) d < λ . N = 10 4 random orientations of the RBS.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

α = 4 π a 3   - 1 + 2 ,
E i = E i o + α [ A E j + B ( E j     n ji ) n ji ] .
A = k 2 - 1 d 2 + ik d   exp ( ikd ) d ,
B = - k 2 + 3 d 2 - 3 ik d   exp ( ikd ) d .
E S = α   k 2 exp ( ikR ) R   ( I ˆ - n S     n S ) [ E 1 exp ( - ik n S     r 1 ) + E 2 exp ( - ik n S     r 2 ) ] ,
n exp ( 2 ) = N   i = 1 N I i 2 / i = 1 N I i 2 ,
P exp ( I cross = 0 ) = N o cross / N ,
p = α ( I ˆ - α C ˆ ) - 1 E o ,
L v α 3 × 10 - 5 λ 2 = 4 π a 3 3 × 10 - 5 λ 2   - 1 + 2 .

Metrics