Abstract

Optical switching effects of a guided-mode resonant grating (GMRG) with a Kerr medium have been simulated with the nonlinear finite differential time domain (FDTD) method. An asymmetric waveguide grating with a large second spatial harmonic component has been proposed for the optical switch. Resonant reflection occurs at both of the band-edge wavelengths. These wavelengths are used for the pump light and the probe light. The enhanced electric field of the pump light changes the resonant wavelength for the probe light as a result of the Kerr effect. We designed the GMRG with resonant wavelengths of 1489.6 and 1630 nm, which were used for the pump light and the probe light, respectively. When the grating material has a third-order susceptibility χ(3) of 8.5×10-10 esu, the transmittance of the probe light changes from 0 to 80% by increasing the intensity of the pump light from 0 to 60 kW/mm2.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription