Abstract

We used hue cancellation and focal naming to compare individual differences in stimuli selected for unique hues (e.g., pure blue or green) and binary hues (e.g., blue-green). Standard models assume that binary hues depend on the component responses of red–green and blue–yellow processes. However, variance was comparable for unique and binary hues, and settings across categories showed little correlation. Thus, the choices for the binary mixtures are poorly predicted by the unique hue settings. Hue scaling was used to compare individual differences both within and between categories. Ratings for distant stimuli were again independent, while neighboring stimuli covaried and revealed clusters near the poles of the LvsM and SvsLM cardinal axes. While individual differences were large, mean focal choices for red, blue-green, yellow-green, and (to a lesser extent) purple fall near the cardinal axes, such that the cardinal axes roughly delineate the boundaries for blue vs. green and yellow vs. green categories. This suggests a weak tie between the cone-opponent axes and the structure of color appearance.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. De Valois, “Neural coding of color,” in The Visual Neurosciences Vol. 2, L. M. Chalupa and J. S. Werner, eds. (MIT Press, 2003), pp. 1003–1016.
  2. J. Gordon, I. Abramov, “Color Vision,” in The Blackwell Handbook of Perception, E. B. Goldstein, ed. (Blackwell, 2001), pp. 92–127.
  3. P. Lennie, M. D’Zmura, “Mechanisms of color vision,” Crit. Rev. Neurobiol. 3, 333–400 (1988).
    [PubMed]
  4. M. A. Webster, “Human colour perception and its adaptation,” Network Comput. Neural Syst. 7, 587–634 (1996).
    [CrossRef]
  5. B. A. Wandell, Foundations of Vision (Sinauer, 1995).
  6. E. Hering, Outlines of a Theory of the Light Sense (Harvard U. Press, 1964).
  7. K. Fuld, B. R. Wooten, J. J. Whalen, “The elemental hues of short-wave and extra-spectral lights,” Percept. Psychophys. 29, 317–322 (1981).
    [CrossRef] [PubMed]
  8. C. S. Sternheim, R. M. Boynton, “Uniqueness of perceived hues investigated with a continuous judgemental technique,” J. Exp. Psychol. 72, 720–776 (1966).
    [CrossRef]
  9. R. G. Kuehni, “Determination of unique hues using Munsell color chips,” Color Res. Appl. 26, 61–66 (2001).
    [CrossRef]
  10. M. A. Webster, E. Miyahara, G. Malkoc, V. E. Raker, “Variations in normal color vision. II. Unique hues,” J. Opt. Soc. Am. A 17, 1545–1555 (2000).
    [CrossRef]
  11. B. Schefrin, J. S. Werner, “Loci of spectral unique hues throughout the lifespan,” J. Opt. Soc. Am. A 7, 305–311 (1990).
    [CrossRef] [PubMed]
  12. D. M. Purdy, “Spectral hues as a function of intensity,” J. Psychol. 43, 541–559 (1931).
    [CrossRef]
  13. D. Jameson, L. M. Hurvich, “Some quantitative aspects of an opponent-colors theory: I. Chromatic responses and spectral saturation,” J. Opt. Soc. Am. 45, 546–552 (1955).
    [CrossRef]
  14. I. Abramov, J. Gordon, H. Chan, “Using hue scaling to specify color appearances and to derive color differences,” Proc. SPIE 1250, 40–51 (1990).
    [CrossRef]
  15. R. M. Boynton, J. Gordon, “Bezold-Brucke hue shift measured by color-naming technique,” J. Opt. Soc. Am. 55, 78–86 (1965).
    [CrossRef]
  16. R. L. De Valois, K. K. De Valois, E. Switkes, L. E. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vision Res. 37, 885–897 (1997).
    [CrossRef] [PubMed]
  17. J. Gordon, I. Abramov, H. Chan, “Describing color appearance: hue and saturation scaling,” Percept. Psychophys. 56, 27–41 (1994).
    [CrossRef] [PubMed]
  18. B. Berlin, P. Kay, Basic Color Terms: Their Universality and Evolution (University of California Press, Berkeley, 1969).
  19. P. Kay, C. K. McDaniel, “The linguistic significance of the meanings of basic color terms,” Language 54, 610–646 (1978).
    [CrossRef]
  20. P. Kay, B. Berlin, L. Maffi, W. Merrifield, “Color naming across languages,” in Color Categories in Thought and Language, C. L. Hardin and L. Maffi, eds. (Cambridge U. Press, Cambridge, UK, 1997), pp. 21–56.
    [CrossRef]
  21. P. Kay, T. Regier, “Resolving the question of color naming universals,” Proc. Natl. Acad. Sci. USA 100, 9085–9089 (2003).
    [CrossRef] [PubMed]
  22. M. A. Webster, P. Kay, “Individual and population differences in focal colors,” in The Anthropology of Color, R. L. MacLaury, G. Paramei, and D. Dedrick, eds. (John Benjamins, to be published).
  23. J. Davidoff, “Language and perceptual categorization,” Trends Cogn. Sci. 5, 382–387 (2001).
    [CrossRef] [PubMed]
  24. E. Miyahara, “Focal colors and unique hues,” Percept. Mot. Skills 97, 1038–1042 (2003).
    [CrossRef]
  25. B. Wooten, D. L. Miller, “The psychophysics of color,” in Color Categories in Thought and Language, C. L. Hardin and L. Maffi, eds. (Cambridge U. Press, Cambridge, UK, 1997), pp. 59–88.
    [CrossRef]
  26. R. M. Boynton, C. X. Olson, “Salience of chromatic basic color terms confirmed by three measures,” Vision Res. 30, 1311–1317 (1990).
    [CrossRef] [PubMed]
  27. G. Jordan, J. D. Mollon, “Rayleigh matches and unique green,” Vision Res. 35, 613–620 (1995).
    [CrossRef] [PubMed]
  28. R. G. Kuehni, “Variability in unique hue selection: a surprising phenomenon,” Color Res. Appl. 29, 158–162 (2004).
    [CrossRef]
  29. B. E. Schefrin, J. S. Werner, “Loci of spectral unique hues throughout the life span,” J. Opt. Soc. Am. A 7, 305–311 (1990).
    [CrossRef] [PubMed]
  30. C. M. Cicerone, “Constraints placed on color vision models by the relative numbers of different cone classes in human fovea centralis,” Farbe 34, 59–66 (1987).
  31. M. A. Webster, S. M. Webster, S. Bharadwadj, R. Verma, J. Jaikumar, G. Madan, E. Vaithilingam, “Variations in normal color vision. III. Unique hues in Indian and United States observers,” J. Opt. Soc. Am. A 19, 1951–1962 (2002).
    [CrossRef]
  32. D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000).
    [CrossRef]
  33. E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vision Res. 38, 601–612 (1998).
    [CrossRef] [PubMed]
  34. J. Pokorny, V. C. Smith, “L/M cone ratios and the null point of the perceptual red/green opponent system,” Farbe 34, 53–57 (1987).
  35. B. E. Schefrin, A. J. Adams, J. S. Werner, “Anomalies beyond sites of chromatic opponency contribute to sensitivity losses of an S-cone pathway in diabetes,” Clin. Vision Sci. 6, 219–228 (1991).
  36. J. D. Mollon, “Color vision,” Annu. Rev. Psychol. 33, 41–85 (1982).
    [CrossRef] [PubMed]
  37. J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002).
    [CrossRef] [PubMed]
  38. J. S. Werner, “Visual problems of the retina during ageing: Compensation mechanisms and colour constancy across the life span,” Prog. Retin. Eye Res. 15, 621–645 (1996).
    [CrossRef]
  39. J. Pokorny, V. C. Smith, “Evaluation of single-pigment shift model of anomalous trichromacy,” J. Opt. Soc. Am. 67, 1196–1209 (1977).
    [CrossRef] [PubMed]
  40. M. A. Webster, J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vision Res. 40, 3801–3816 (2000).
    [CrossRef] [PubMed]
  41. S. M. Wuerger, “Color appearance changes resulting from iso-luminant chromatic adaptation,” Vision Res. 36, 3107–3118 (1996).
    [CrossRef] [PubMed]
  42. A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).
  43. D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
    [CrossRef] [PubMed]
  44. M. Neitz, J. Neitz, “A new mass screening test for color-vision deficiencies in children,” Color Res. Appl. 26, S239–S249 (2001).
    [CrossRef]
  45. M. A. Webster, E. Miyahara, G. Malkoc, V. E. Raker, “Variations in normal color vision. I. Cone-opponent axes,” J. Opt. Soc. Am. A 17, 1535–1544 (2000).
    [CrossRef]
  46. J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
    [CrossRef] [PubMed]
  47. M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994).
    [CrossRef] [PubMed]
  48. V. C. Smith, J. Pokorny, “Chromatic discrimination axes, CRT phosphor spectra, and individual variation in color vision,” Vision Res. 12, 27–35 (1995).
  49. R. L. De Valois, K. K. De Valois, L. E. Mahon, “Contribution of S opponent cells to color appearance,” Proc. Natl. Acad. Sci. USA 97, 512–517 (2000).
    [CrossRef] [PubMed]
  50. I. Abramov, J. Gordon, H. Chan, “Color appearance in the peripheral retina: effects of stimulus size,” J. Opt. Soc. Am. A 8, 404–414 (1991).
    [CrossRef] [PubMed]
  51. E. J. Chichilnisky, B. A. Wandell, “Trichromatic opponent color classification,” Vision Res. 39, 3444–3458 (1999).
    [CrossRef]
  52. R. Mausfeld, R. Niederee, “An inquiry into relational concepts of colour, based on incremental principles of colour coding for minimal relational stimuli,” Perception 22, 427–462 (1993).
    [CrossRef] [PubMed]
  53. K. Shinomori, L. Spillmann, J. S. Werner, “S-cone signals to temporal off-channels: possible asymmetrical connections to postreceptoral chromatic mechanisms,” Vision Res. 39, 39–49 (1998).
    [CrossRef]
  54. V. C. Smith, J. Pokorny, “Color contrast under controlled chromatic adaptation reveals opponent rectification,” Vision Res. 36, 3087–3105 (1996).
    [CrossRef] [PubMed]
  55. S. N. Yendrikhovskij, “Computing color categories from statistics of natural images,” J. Imaging Sci. Technol. 45, 409–417 (2001).
  56. G. Derefeldt, “Colour appearance systems,” in The Perception of Colour, P. Gouras, ed. (MacMillan, 1991).
  57. M. Ayama, P. Kaiser, T. Nakatsue, “Additivity of red chromatic valence,” Vision Res. 25, 1885–1891 (1985).
    [CrossRef] [PubMed]
  58. S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
    [CrossRef]
  59. J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity I: red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
    [CrossRef] [PubMed]
  60. J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
    [CrossRef] [PubMed]
  61. R. L. De Valois, I. Abramov, G. H. Jacobs, “Analysis of response patterns of LGN cells,” J. Opt. Soc. Am. 56, 966–977 (1966).
    [CrossRef] [PubMed]
  62. D. B. Judd, “Basic correlates of the visual stimulus,” in Handbook of Experimental Psychology, S. S. Stevens, ed. (Wiley, 1951), pp. 811–867.
  63. R. L. De Valois, K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053–1065 (1993).
    [CrossRef] [PubMed]
  64. S. L. Guth, “Model for color vision and light adaptation,” J. Opt. Soc. Am. A 8, 976–993 (1991).
    [CrossRef] [PubMed]
  65. K. R. Gegenfurtner, D. C. Kiper, “Color vision,” Annu. Rev. Neurosci. 26, 181–206 (2003).
    [CrossRef] [PubMed]
  66. P. Lennie, “Color coding in the cortex,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner, and L. T. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 1999), pp. 235–247.
  67. H.-C. Lee, “A computational model for opponent color encoding,” in Advance Conference Summaries, SPSE’s 43rd Annual Conference (Society for Imaging Science & Technology, 1990), pp. 178–181.
  68. G. H. Jacobs, “The distribution and nature of colour vision among the mammals,” Biol. Rev. Cambridge Philos. Soc. 68, 413–471 (1993).
    [CrossRef] [PubMed]
  69. S. Polyak, The Vertebrate Visual System (University of Chicago Press, 1957).
  70. B. C. Regan, C. Julliot, B. Simmen, F. Vienot, P. Charles-Dominique, J. D. Mollon, “Fruits, foliage and the evolution of primate colour vision,” Philos. Trans. R. Soc. London, Ser. B 356, 229–283 (2001).
    [CrossRef] [PubMed]

2004 (1)

R. G. Kuehni, “Variability in unique hue selection: a surprising phenomenon,” Color Res. Appl. 29, 158–162 (2004).
[CrossRef]

2003 (3)

P. Kay, T. Regier, “Resolving the question of color naming universals,” Proc. Natl. Acad. Sci. USA 100, 9085–9089 (2003).
[CrossRef] [PubMed]

E. Miyahara, “Focal colors and unique hues,” Percept. Mot. Skills 97, 1038–1042 (2003).
[CrossRef]

K. R. Gegenfurtner, D. C. Kiper, “Color vision,” Annu. Rev. Neurosci. 26, 181–206 (2003).
[CrossRef] [PubMed]

2002 (2)

M. A. Webster, S. M. Webster, S. Bharadwadj, R. Verma, J. Jaikumar, G. Madan, E. Vaithilingam, “Variations in normal color vision. III. Unique hues in Indian and United States observers,” J. Opt. Soc. Am. A 19, 1951–1962 (2002).
[CrossRef]

J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002).
[CrossRef] [PubMed]

2001 (5)

S. N. Yendrikhovskij, “Computing color categories from statistics of natural images,” J. Imaging Sci. Technol. 45, 409–417 (2001).

J. Davidoff, “Language and perceptual categorization,” Trends Cogn. Sci. 5, 382–387 (2001).
[CrossRef] [PubMed]

R. G. Kuehni, “Determination of unique hues using Munsell color chips,” Color Res. Appl. 26, 61–66 (2001).
[CrossRef]

M. Neitz, J. Neitz, “A new mass screening test for color-vision deficiencies in children,” Color Res. Appl. 26, S239–S249 (2001).
[CrossRef]

B. C. Regan, C. Julliot, B. Simmen, F. Vienot, P. Charles-Dominique, J. D. Mollon, “Fruits, foliage and the evolution of primate colour vision,” Philos. Trans. R. Soc. London, Ser. B 356, 229–283 (2001).
[CrossRef] [PubMed]

2000 (5)

1999 (1)

E. J. Chichilnisky, B. A. Wandell, “Trichromatic opponent color classification,” Vision Res. 39, 3444–3458 (1999).
[CrossRef]

1998 (2)

E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vision Res. 38, 601–612 (1998).
[CrossRef] [PubMed]

K. Shinomori, L. Spillmann, J. S. Werner, “S-cone signals to temporal off-channels: possible asymmetrical connections to postreceptoral chromatic mechanisms,” Vision Res. 39, 39–49 (1998).
[CrossRef]

1997 (1)

R. L. De Valois, K. K. De Valois, E. Switkes, L. E. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vision Res. 37, 885–897 (1997).
[CrossRef] [PubMed]

1996 (4)

M. A. Webster, “Human colour perception and its adaptation,” Network Comput. Neural Syst. 7, 587–634 (1996).
[CrossRef]

S. M. Wuerger, “Color appearance changes resulting from iso-luminant chromatic adaptation,” Vision Res. 36, 3107–3118 (1996).
[CrossRef] [PubMed]

J. S. Werner, “Visual problems of the retina during ageing: Compensation mechanisms and colour constancy across the life span,” Prog. Retin. Eye Res. 15, 621–645 (1996).
[CrossRef]

V. C. Smith, J. Pokorny, “Color contrast under controlled chromatic adaptation reveals opponent rectification,” Vision Res. 36, 3087–3105 (1996).
[CrossRef] [PubMed]

1995 (2)

V. C. Smith, J. Pokorny, “Chromatic discrimination axes, CRT phosphor spectra, and individual variation in color vision,” Vision Res. 12, 27–35 (1995).

G. Jordan, J. D. Mollon, “Rayleigh matches and unique green,” Vision Res. 35, 613–620 (1995).
[CrossRef] [PubMed]

1994 (2)

M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994).
[CrossRef] [PubMed]

J. Gordon, I. Abramov, H. Chan, “Describing color appearance: hue and saturation scaling,” Percept. Psychophys. 56, 27–41 (1994).
[CrossRef] [PubMed]

1993 (3)

R. Mausfeld, R. Niederee, “An inquiry into relational concepts of colour, based on incremental principles of colour coding for minimal relational stimuli,” Perception 22, 427–462 (1993).
[CrossRef] [PubMed]

R. L. De Valois, K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053–1065 (1993).
[CrossRef] [PubMed]

G. H. Jacobs, “The distribution and nature of colour vision among the mammals,” Biol. Rev. Cambridge Philos. Soc. 68, 413–471 (1993).
[CrossRef] [PubMed]

1991 (3)

I. Abramov, J. Gordon, H. Chan, “Color appearance in the peripheral retina: effects of stimulus size,” J. Opt. Soc. Am. A 8, 404–414 (1991).
[CrossRef] [PubMed]

S. L. Guth, “Model for color vision and light adaptation,” J. Opt. Soc. Am. A 8, 976–993 (1991).
[CrossRef] [PubMed]

B. E. Schefrin, A. J. Adams, J. S. Werner, “Anomalies beyond sites of chromatic opponency contribute to sensitivity losses of an S-cone pathway in diabetes,” Clin. Vision Sci. 6, 219–228 (1991).

1990 (4)

I. Abramov, J. Gordon, H. Chan, “Using hue scaling to specify color appearances and to derive color differences,” Proc. SPIE 1250, 40–51 (1990).
[CrossRef]

R. M. Boynton, C. X. Olson, “Salience of chromatic basic color terms confirmed by three measures,” Vision Res. 30, 1311–1317 (1990).
[CrossRef] [PubMed]

B. Schefrin, J. S. Werner, “Loci of spectral unique hues throughout the lifespan,” J. Opt. Soc. Am. A 7, 305–311 (1990).
[CrossRef] [PubMed]

B. E. Schefrin, J. S. Werner, “Loci of spectral unique hues throughout the life span,” J. Opt. Soc. Am. A 7, 305–311 (1990).
[CrossRef] [PubMed]

1988 (1)

P. Lennie, M. D’Zmura, “Mechanisms of color vision,” Crit. Rev. Neurobiol. 3, 333–400 (1988).
[PubMed]

1987 (2)

J. Pokorny, V. C. Smith, “L/M cone ratios and the null point of the perceptual red/green opponent system,” Farbe 34, 53–57 (1987).

C. M. Cicerone, “Constraints placed on color vision models by the relative numbers of different cone classes in human fovea centralis,” Farbe 34, 59–66 (1987).

1985 (1)

M. Ayama, P. Kaiser, T. Nakatsue, “Additivity of red chromatic valence,” Vision Res. 25, 1885–1891 (1985).
[CrossRef] [PubMed]

1984 (2)

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[CrossRef]

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

1982 (2)

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

J. D. Mollon, “Color vision,” Annu. Rev. Psychol. 33, 41–85 (1982).
[CrossRef] [PubMed]

1981 (1)

K. Fuld, B. R. Wooten, J. J. Whalen, “The elemental hues of short-wave and extra-spectral lights,” Percept. Psychophys. 29, 317–322 (1981).
[CrossRef] [PubMed]

1979 (1)

1978 (1)

P. Kay, C. K. McDaniel, “The linguistic significance of the meanings of basic color terms,” Language 54, 610–646 (1978).
[CrossRef]

1977 (1)

1975 (1)

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[CrossRef] [PubMed]

1974 (1)

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity I: red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[CrossRef] [PubMed]

1966 (2)

C. S. Sternheim, R. M. Boynton, “Uniqueness of perceived hues investigated with a continuous judgemental technique,” J. Exp. Psychol. 72, 720–776 (1966).
[CrossRef]

R. L. De Valois, I. Abramov, G. H. Jacobs, “Analysis of response patterns of LGN cells,” J. Opt. Soc. Am. 56, 966–977 (1966).
[CrossRef] [PubMed]

1965 (1)

1955 (1)

1931 (1)

D. M. Purdy, “Spectral hues as a function of intensity,” J. Psychol. 43, 541–559 (1931).
[CrossRef]

Abramov, I.

J. Gordon, I. Abramov, H. Chan, “Describing color appearance: hue and saturation scaling,” Percept. Psychophys. 56, 27–41 (1994).
[CrossRef] [PubMed]

I. Abramov, J. Gordon, H. Chan, “Color appearance in the peripheral retina: effects of stimulus size,” J. Opt. Soc. Am. A 8, 404–414 (1991).
[CrossRef] [PubMed]

I. Abramov, J. Gordon, H. Chan, “Using hue scaling to specify color appearances and to derive color differences,” Proc. SPIE 1250, 40–51 (1990).
[CrossRef]

R. L. De Valois, I. Abramov, G. H. Jacobs, “Analysis of response patterns of LGN cells,” J. Opt. Soc. Am. 56, 966–977 (1966).
[CrossRef] [PubMed]

J. Gordon, I. Abramov, “Color Vision,” in The Blackwell Handbook of Perception, E. B. Goldstein, ed. (Blackwell, 2001), pp. 92–127.

Adams, A. J.

B. E. Schefrin, A. J. Adams, J. S. Werner, “Anomalies beyond sites of chromatic opponency contribute to sensitivity losses of an S-cone pathway in diabetes,” Clin. Vision Sci. 6, 219–228 (1991).

Ayama, M.

M. Ayama, P. Kaiser, T. Nakatsue, “Additivity of red chromatic valence,” Vision Res. 25, 1885–1891 (1985).
[CrossRef] [PubMed]

Baron, E.

E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vision Res. 38, 601–612 (1998).
[CrossRef] [PubMed]

Baron, R.

E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vision Res. 38, 601–612 (1998).
[CrossRef] [PubMed]

Berlin, B.

B. Berlin, P. Kay, Basic Color Terms: Their Universality and Evolution (University of California Press, Berkeley, 1969).

P. Kay, B. Berlin, L. Maffi, W. Merrifield, “Color naming across languages,” in Color Categories in Thought and Language, C. L. Hardin and L. Maffi, eds. (Cambridge U. Press, Cambridge, UK, 1997), pp. 21–56.
[CrossRef]

Bharadwadj, S.

Boynton, R. M.

R. M. Boynton, C. X. Olson, “Salience of chromatic basic color terms confirmed by three measures,” Vision Res. 30, 1311–1317 (1990).
[CrossRef] [PubMed]

D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
[CrossRef] [PubMed]

C. S. Sternheim, R. M. Boynton, “Uniqueness of perceived hues investigated with a continuous judgemental technique,” J. Exp. Psychol. 72, 720–776 (1966).
[CrossRef]

R. M. Boynton, J. Gordon, “Bezold-Brucke hue shift measured by color-naming technique,” J. Opt. Soc. Am. 55, 78–86 (1965).
[CrossRef]

Brainard, D. H.

Burns, S. A.

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[CrossRef]

Calderone, J. B.

Carroll, J.

J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002).
[CrossRef] [PubMed]

Chan, H.

J. Gordon, I. Abramov, H. Chan, “Describing color appearance: hue and saturation scaling,” Percept. Psychophys. 56, 27–41 (1994).
[CrossRef] [PubMed]

I. Abramov, J. Gordon, H. Chan, “Color appearance in the peripheral retina: effects of stimulus size,” J. Opt. Soc. Am. A 8, 404–414 (1991).
[CrossRef] [PubMed]

I. Abramov, J. Gordon, H. Chan, “Using hue scaling to specify color appearances and to derive color differences,” Proc. SPIE 1250, 40–51 (1990).
[CrossRef]

Charles-Dominique, P.

B. C. Regan, C. Julliot, B. Simmen, F. Vienot, P. Charles-Dominique, J. D. Mollon, “Fruits, foliage and the evolution of primate colour vision,” Philos. Trans. R. Soc. London, Ser. B 356, 229–283 (2001).
[CrossRef] [PubMed]

Chichilnisky, E. J.

E. J. Chichilnisky, B. A. Wandell, “Trichromatic opponent color classification,” Vision Res. 39, 3444–3458 (1999).
[CrossRef]

Cicerone, C. M.

C. M. Cicerone, “Constraints placed on color vision models by the relative numbers of different cone classes in human fovea centralis,” Farbe 34, 59–66 (1987).

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[CrossRef] [PubMed]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity I: red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[CrossRef] [PubMed]

D’Zmura, M.

P. Lennie, M. D’Zmura, “Mechanisms of color vision,” Crit. Rev. Neurobiol. 3, 333–400 (1988).
[PubMed]

Davidoff, J.

J. Davidoff, “Language and perceptual categorization,” Trends Cogn. Sci. 5, 382–387 (2001).
[CrossRef] [PubMed]

De Valois, K. K.

R. L. De Valois, K. K. De Valois, L. E. Mahon, “Contribution of S opponent cells to color appearance,” Proc. Natl. Acad. Sci. USA 97, 512–517 (2000).
[CrossRef] [PubMed]

R. L. De Valois, K. K. De Valois, E. Switkes, L. E. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vision Res. 37, 885–897 (1997).
[CrossRef] [PubMed]

R. L. De Valois, K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053–1065 (1993).
[CrossRef] [PubMed]

De Valois, R. L.

R. L. De Valois, K. K. De Valois, L. E. Mahon, “Contribution of S opponent cells to color appearance,” Proc. Natl. Acad. Sci. USA 97, 512–517 (2000).
[CrossRef] [PubMed]

R. L. De Valois, K. K. De Valois, E. Switkes, L. E. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vision Res. 37, 885–897 (1997).
[CrossRef] [PubMed]

R. L. De Valois, K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053–1065 (1993).
[CrossRef] [PubMed]

R. L. De Valois, I. Abramov, G. H. Jacobs, “Analysis of response patterns of LGN cells,” J. Opt. Soc. Am. 56, 966–977 (1966).
[CrossRef] [PubMed]

R. L. De Valois, “Neural coding of color,” in The Visual Neurosciences Vol. 2, L. M. Chalupa and J. S. Werner, eds. (MIT Press, 2003), pp. 1003–1016.

Derefeldt, G.

G. Derefeldt, “Colour appearance systems,” in The Perception of Colour, P. Gouras, ed. (MacMillan, 1991).

Derrington, A. M.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

Elsner, A. E.

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[CrossRef]

Fuld, K.

K. Fuld, B. R. Wooten, J. J. Whalen, “The elemental hues of short-wave and extra-spectral lights,” Percept. Psychophys. 29, 317–322 (1981).
[CrossRef] [PubMed]

Gegenfurtner, K. R.

K. R. Gegenfurtner, D. C. Kiper, “Color vision,” Annu. Rev. Neurosci. 26, 181–206 (2003).
[CrossRef] [PubMed]

Gordon, J.

J. Gordon, I. Abramov, H. Chan, “Describing color appearance: hue and saturation scaling,” Percept. Psychophys. 56, 27–41 (1994).
[CrossRef] [PubMed]

I. Abramov, J. Gordon, H. Chan, “Color appearance in the peripheral retina: effects of stimulus size,” J. Opt. Soc. Am. A 8, 404–414 (1991).
[CrossRef] [PubMed]

I. Abramov, J. Gordon, H. Chan, “Using hue scaling to specify color appearances and to derive color differences,” Proc. SPIE 1250, 40–51 (1990).
[CrossRef]

R. M. Boynton, J. Gordon, “Bezold-Brucke hue shift measured by color-naming technique,” J. Opt. Soc. Am. 55, 78–86 (1965).
[CrossRef]

J. Gordon, I. Abramov, “Color Vision,” in The Blackwell Handbook of Perception, E. B. Goldstein, ed. (Blackwell, 2001), pp. 92–127.

Guth, S. L.

Heeley, D. W.

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

Hering, E.

E. Hering, Outlines of a Theory of the Light Sense (Harvard U. Press, 1964).

Hurvich, L. M.

Jacobs, G. H.

Jaikumar, J.

Jameson, D.

Jordan, G.

G. Jordan, J. D. Mollon, “Rayleigh matches and unique green,” Vision Res. 35, 613–620 (1995).
[CrossRef] [PubMed]

Judd, D. B.

D. B. Judd, “Basic correlates of the visual stimulus,” in Handbook of Experimental Psychology, S. S. Stevens, ed. (Wiley, 1951), pp. 811–867.

Julliot, C.

B. C. Regan, C. Julliot, B. Simmen, F. Vienot, P. Charles-Dominique, J. D. Mollon, “Fruits, foliage and the evolution of primate colour vision,” Philos. Trans. R. Soc. London, Ser. B 356, 229–283 (2001).
[CrossRef] [PubMed]

Kaiser, P.

M. Ayama, P. Kaiser, T. Nakatsue, “Additivity of red chromatic valence,” Vision Res. 25, 1885–1891 (1985).
[CrossRef] [PubMed]

Kay, P.

P. Kay, T. Regier, “Resolving the question of color naming universals,” Proc. Natl. Acad. Sci. USA 100, 9085–9089 (2003).
[CrossRef] [PubMed]

P. Kay, C. K. McDaniel, “The linguistic significance of the meanings of basic color terms,” Language 54, 610–646 (1978).
[CrossRef]

B. Berlin, P. Kay, Basic Color Terms: Their Universality and Evolution (University of California Press, Berkeley, 1969).

P. Kay, B. Berlin, L. Maffi, W. Merrifield, “Color naming across languages,” in Color Categories in Thought and Language, C. L. Hardin and L. Maffi, eds. (Cambridge U. Press, Cambridge, UK, 1997), pp. 21–56.
[CrossRef]

M. A. Webster, P. Kay, “Individual and population differences in focal colors,” in The Anthropology of Color, R. L. MacLaury, G. Paramei, and D. Dedrick, eds. (John Benjamins, to be published).

Kiper, D. C.

K. R. Gegenfurtner, D. C. Kiper, “Color vision,” Annu. Rev. Neurosci. 26, 181–206 (2003).
[CrossRef] [PubMed]

Krantz, D. H.

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[CrossRef] [PubMed]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity I: red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[CrossRef] [PubMed]

Krauskopf, J.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

Kuehni, R. G.

R. G. Kuehni, “Variability in unique hue selection: a surprising phenomenon,” Color Res. Appl. 29, 158–162 (2004).
[CrossRef]

R. G. Kuehni, “Determination of unique hues using Munsell color chips,” Color Res. Appl. 26, 61–66 (2001).
[CrossRef]

Larimer, J.

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[CrossRef] [PubMed]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity I: red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[CrossRef] [PubMed]

Lee, H.-C.

H.-C. Lee, “A computational model for opponent color encoding,” in Advance Conference Summaries, SPSE’s 43rd Annual Conference (Society for Imaging Science & Technology, 1990), pp. 178–181.

Lennie, P.

P. Lennie, M. D’Zmura, “Mechanisms of color vision,” Crit. Rev. Neurobiol. 3, 333–400 (1988).
[PubMed]

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

P. Lennie, “Color coding in the cortex,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner, and L. T. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 1999), pp. 235–247.

MacLeod, D. I. A.

Madan, G.

Maffi, L.

P. Kay, B. Berlin, L. Maffi, W. Merrifield, “Color naming across languages,” in Color Categories in Thought and Language, C. L. Hardin and L. Maffi, eds. (Cambridge U. Press, Cambridge, UK, 1997), pp. 21–56.
[CrossRef]

Mahon, L. E.

R. L. De Valois, K. K. De Valois, L. E. Mahon, “Contribution of S opponent cells to color appearance,” Proc. Natl. Acad. Sci. USA 97, 512–517 (2000).
[CrossRef] [PubMed]

R. L. De Valois, K. K. De Valois, E. Switkes, L. E. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vision Res. 37, 885–897 (1997).
[CrossRef] [PubMed]

Malkoc, G.

Mausfeld, R.

R. Mausfeld, R. Niederee, “An inquiry into relational concepts of colour, based on incremental principles of colour coding for minimal relational stimuli,” Perception 22, 427–462 (1993).
[CrossRef] [PubMed]

McDaniel, C. K.

P. Kay, C. K. McDaniel, “The linguistic significance of the meanings of basic color terms,” Language 54, 610–646 (1978).
[CrossRef]

Merrifield, W.

P. Kay, B. Berlin, L. Maffi, W. Merrifield, “Color naming across languages,” in Color Categories in Thought and Language, C. L. Hardin and L. Maffi, eds. (Cambridge U. Press, Cambridge, UK, 1997), pp. 21–56.
[CrossRef]

Metha, A.

Miller, D. L.

B. Wooten, D. L. Miller, “The psychophysics of color,” in Color Categories in Thought and Language, C. L. Hardin and L. Maffi, eds. (Cambridge U. Press, Cambridge, UK, 1997), pp. 59–88.
[CrossRef]

Miyahara, E.

E. Miyahara, “Focal colors and unique hues,” Percept. Mot. Skills 97, 1038–1042 (2003).
[CrossRef]

M. A. Webster, E. Miyahara, G. Malkoc, V. E. Raker, “Variations in normal color vision. I. Cone-opponent axes,” J. Opt. Soc. Am. A 17, 1535–1544 (2000).
[CrossRef]

M. A. Webster, E. Miyahara, G. Malkoc, V. E. Raker, “Variations in normal color vision. II. Unique hues,” J. Opt. Soc. Am. A 17, 1545–1555 (2000).
[CrossRef]

E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vision Res. 38, 601–612 (1998).
[CrossRef] [PubMed]

Mollon, J. D.

B. C. Regan, C. Julliot, B. Simmen, F. Vienot, P. Charles-Dominique, J. D. Mollon, “Fruits, foliage and the evolution of primate colour vision,” Philos. Trans. R. Soc. London, Ser. B 356, 229–283 (2001).
[CrossRef] [PubMed]

G. Jordan, J. D. Mollon, “Rayleigh matches and unique green,” Vision Res. 35, 613–620 (1995).
[CrossRef] [PubMed]

M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994).
[CrossRef] [PubMed]

J. D. Mollon, “Color vision,” Annu. Rev. Psychol. 33, 41–85 (1982).
[CrossRef] [PubMed]

Nakatsue, T.

M. Ayama, P. Kaiser, T. Nakatsue, “Additivity of red chromatic valence,” Vision Res. 25, 1885–1891 (1985).
[CrossRef] [PubMed]

Neitz, J.

J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002).
[CrossRef] [PubMed]

M. Neitz, J. Neitz, “A new mass screening test for color-vision deficiencies in children,” Color Res. Appl. 26, S239–S249 (2001).
[CrossRef]

D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000).
[CrossRef]

Neitz, M.

J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002).
[CrossRef] [PubMed]

M. Neitz, J. Neitz, “A new mass screening test for color-vision deficiencies in children,” Color Res. Appl. 26, S239–S249 (2001).
[CrossRef]

D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000).
[CrossRef]

Niederee, R.

R. Mausfeld, R. Niederee, “An inquiry into relational concepts of colour, based on incremental principles of colour coding for minimal relational stimuli,” Perception 22, 427–462 (1993).
[CrossRef] [PubMed]

Olson, C. X.

R. M. Boynton, C. X. Olson, “Salience of chromatic basic color terms confirmed by three measures,” Vision Res. 30, 1311–1317 (1990).
[CrossRef] [PubMed]

Pokorny, J.

E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vision Res. 38, 601–612 (1998).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Color contrast under controlled chromatic adaptation reveals opponent rectification,” Vision Res. 36, 3087–3105 (1996).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Chromatic discrimination axes, CRT phosphor spectra, and individual variation in color vision,” Vision Res. 12, 27–35 (1995).

J. Pokorny, V. C. Smith, “L/M cone ratios and the null point of the perceptual red/green opponent system,” Farbe 34, 53–57 (1987).

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[CrossRef]

J. Pokorny, V. C. Smith, “Evaluation of single-pigment shift model of anomalous trichromacy,” J. Opt. Soc. Am. 67, 1196–1209 (1977).
[CrossRef] [PubMed]

Polyak, S.

S. Polyak, The Vertebrate Visual System (University of Chicago Press, 1957).

Purdy, D. M.

D. M. Purdy, “Spectral hues as a function of intensity,” J. Psychol. 43, 541–559 (1931).
[CrossRef]

Raker, V. E.

Regan, B. C.

B. C. Regan, C. Julliot, B. Simmen, F. Vienot, P. Charles-Dominique, J. D. Mollon, “Fruits, foliage and the evolution of primate colour vision,” Philos. Trans. R. Soc. London, Ser. B 356, 229–283 (2001).
[CrossRef] [PubMed]

Regier, T.

P. Kay, T. Regier, “Resolving the question of color naming universals,” Proc. Natl. Acad. Sci. USA 100, 9085–9089 (2003).
[CrossRef] [PubMed]

Roorda, A.

Schefrin, B.

Schefrin, B. E.

B. E. Schefrin, A. J. Adams, J. S. Werner, “Anomalies beyond sites of chromatic opponency contribute to sensitivity losses of an S-cone pathway in diabetes,” Clin. Vision Sci. 6, 219–228 (1991).

B. E. Schefrin, J. S. Werner, “Loci of spectral unique hues throughout the life span,” J. Opt. Soc. Am. A 7, 305–311 (1990).
[CrossRef] [PubMed]

Shinomori, K.

K. Shinomori, L. Spillmann, J. S. Werner, “S-cone signals to temporal off-channels: possible asymmetrical connections to postreceptoral chromatic mechanisms,” Vision Res. 39, 39–49 (1998).
[CrossRef]

Simmen, B.

B. C. Regan, C. Julliot, B. Simmen, F. Vienot, P. Charles-Dominique, J. D. Mollon, “Fruits, foliage and the evolution of primate colour vision,” Philos. Trans. R. Soc. London, Ser. B 356, 229–283 (2001).
[CrossRef] [PubMed]

Smith, V. C.

E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vision Res. 38, 601–612 (1998).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Color contrast under controlled chromatic adaptation reveals opponent rectification,” Vision Res. 36, 3087–3105 (1996).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Chromatic discrimination axes, CRT phosphor spectra, and individual variation in color vision,” Vision Res. 12, 27–35 (1995).

J. Pokorny, V. C. Smith, “L/M cone ratios and the null point of the perceptual red/green opponent system,” Farbe 34, 53–57 (1987).

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[CrossRef]

J. Pokorny, V. C. Smith, “Evaluation of single-pigment shift model of anomalous trichromacy,” J. Opt. Soc. Am. 67, 1196–1209 (1977).
[CrossRef] [PubMed]

Spillmann, L.

K. Shinomori, L. Spillmann, J. S. Werner, “S-cone signals to temporal off-channels: possible asymmetrical connections to postreceptoral chromatic mechanisms,” Vision Res. 39, 39–49 (1998).
[CrossRef]

Sternheim, C. S.

C. S. Sternheim, R. M. Boynton, “Uniqueness of perceived hues investigated with a continuous judgemental technique,” J. Exp. Psychol. 72, 720–776 (1966).
[CrossRef]

Switkes, E.

R. L. De Valois, K. K. De Valois, E. Switkes, L. E. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vision Res. 37, 885–897 (1997).
[CrossRef] [PubMed]

Vaithilingam, E.

Verma, R.

Vienot, F.

B. C. Regan, C. Julliot, B. Simmen, F. Vienot, P. Charles-Dominique, J. D. Mollon, “Fruits, foliage and the evolution of primate colour vision,” Philos. Trans. R. Soc. London, Ser. B 356, 229–283 (2001).
[CrossRef] [PubMed]

Wandell, B. A.

E. J. Chichilnisky, B. A. Wandell, “Trichromatic opponent color classification,” Vision Res. 39, 3444–3458 (1999).
[CrossRef]

B. A. Wandell, Foundations of Vision (Sinauer, 1995).

Webster, M. A.

M. A. Webster, S. M. Webster, S. Bharadwadj, R. Verma, J. Jaikumar, G. Madan, E. Vaithilingam, “Variations in normal color vision. III. Unique hues in Indian and United States observers,” J. Opt. Soc. Am. A 19, 1951–1962 (2002).
[CrossRef]

M. A. Webster, E. Miyahara, G. Malkoc, V. E. Raker, “Variations in normal color vision. II. Unique hues,” J. Opt. Soc. Am. A 17, 1545–1555 (2000).
[CrossRef]

M. A. Webster, E. Miyahara, G. Malkoc, V. E. Raker, “Variations in normal color vision. I. Cone-opponent axes,” J. Opt. Soc. Am. A 17, 1535–1544 (2000).
[CrossRef]

M. A. Webster, J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vision Res. 40, 3801–3816 (2000).
[CrossRef] [PubMed]

M. A. Webster, “Human colour perception and its adaptation,” Network Comput. Neural Syst. 7, 587–634 (1996).
[CrossRef]

M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994).
[CrossRef] [PubMed]

M. A. Webster, P. Kay, “Individual and population differences in focal colors,” in The Anthropology of Color, R. L. MacLaury, G. Paramei, and D. Dedrick, eds. (John Benjamins, to be published).

Webster, S. M.

Werner, J. S.

K. Shinomori, L. Spillmann, J. S. Werner, “S-cone signals to temporal off-channels: possible asymmetrical connections to postreceptoral chromatic mechanisms,” Vision Res. 39, 39–49 (1998).
[CrossRef]

J. S. Werner, “Visual problems of the retina during ageing: Compensation mechanisms and colour constancy across the life span,” Prog. Retin. Eye Res. 15, 621–645 (1996).
[CrossRef]

B. E. Schefrin, A. J. Adams, J. S. Werner, “Anomalies beyond sites of chromatic opponency contribute to sensitivity losses of an S-cone pathway in diabetes,” Clin. Vision Sci. 6, 219–228 (1991).

B. E. Schefrin, J. S. Werner, “Loci of spectral unique hues throughout the life span,” J. Opt. Soc. Am. A 7, 305–311 (1990).
[CrossRef] [PubMed]

B. Schefrin, J. S. Werner, “Loci of spectral unique hues throughout the lifespan,” J. Opt. Soc. Am. A 7, 305–311 (1990).
[CrossRef] [PubMed]

Whalen, J. J.

K. Fuld, B. R. Wooten, J. J. Whalen, “The elemental hues of short-wave and extra-spectral lights,” Percept. Psychophys. 29, 317–322 (1981).
[CrossRef] [PubMed]

Williams, D. R.

J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002).
[CrossRef] [PubMed]

D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000).
[CrossRef]

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

Wilson, J. A.

M. A. Webster, J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vision Res. 40, 3801–3816 (2000).
[CrossRef] [PubMed]

Wooten, B.

B. Wooten, D. L. Miller, “The psychophysics of color,” in Color Categories in Thought and Language, C. L. Hardin and L. Maffi, eds. (Cambridge U. Press, Cambridge, UK, 1997), pp. 59–88.
[CrossRef]

Wooten, B. R.

K. Fuld, B. R. Wooten, J. J. Whalen, “The elemental hues of short-wave and extra-spectral lights,” Percept. Psychophys. 29, 317–322 (1981).
[CrossRef] [PubMed]

Wuerger, S. M.

S. M. Wuerger, “Color appearance changes resulting from iso-luminant chromatic adaptation,” Vision Res. 36, 3107–3118 (1996).
[CrossRef] [PubMed]

Yamauchi, Y.

J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002).
[CrossRef] [PubMed]

D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000).
[CrossRef]

Yendrikhovskij, S. N.

S. N. Yendrikhovskij, “Computing color categories from statistics of natural images,” J. Imaging Sci. Technol. 45, 409–417 (2001).

Annu. Rev. Neurosci. (1)

K. R. Gegenfurtner, D. C. Kiper, “Color vision,” Annu. Rev. Neurosci. 26, 181–206 (2003).
[CrossRef] [PubMed]

Annu. Rev. Psychol. (1)

J. D. Mollon, “Color vision,” Annu. Rev. Psychol. 33, 41–85 (1982).
[CrossRef] [PubMed]

Biol. Rev. Cambridge Philos. Soc. (1)

G. H. Jacobs, “The distribution and nature of colour vision among the mammals,” Biol. Rev. Cambridge Philos. Soc. 68, 413–471 (1993).
[CrossRef] [PubMed]

Clin. Vision Sci. (1)

B. E. Schefrin, A. J. Adams, J. S. Werner, “Anomalies beyond sites of chromatic opponency contribute to sensitivity losses of an S-cone pathway in diabetes,” Clin. Vision Sci. 6, 219–228 (1991).

Color Res. Appl. (3)

M. Neitz, J. Neitz, “A new mass screening test for color-vision deficiencies in children,” Color Res. Appl. 26, S239–S249 (2001).
[CrossRef]

R. G. Kuehni, “Variability in unique hue selection: a surprising phenomenon,” Color Res. Appl. 29, 158–162 (2004).
[CrossRef]

R. G. Kuehni, “Determination of unique hues using Munsell color chips,” Color Res. Appl. 26, 61–66 (2001).
[CrossRef]

Crit. Rev. Neurobiol. (1)

P. Lennie, M. D’Zmura, “Mechanisms of color vision,” Crit. Rev. Neurobiol. 3, 333–400 (1988).
[PubMed]

Farbe (2)

C. M. Cicerone, “Constraints placed on color vision models by the relative numbers of different cone classes in human fovea centralis,” Farbe 34, 59–66 (1987).

J. Pokorny, V. C. Smith, “L/M cone ratios and the null point of the perceptual red/green opponent system,” Farbe 34, 53–57 (1987).

J. Exp. Psychol. (1)

C. S. Sternheim, R. M. Boynton, “Uniqueness of perceived hues investigated with a continuous judgemental technique,” J. Exp. Psychol. 72, 720–776 (1966).
[CrossRef]

J. Imaging Sci. Technol. (1)

S. N. Yendrikhovskij, “Computing color categories from statistics of natural images,” J. Imaging Sci. Technol. 45, 409–417 (2001).

J. Opt. Soc. Am. (5)

J. Opt. Soc. Am. A (8)

J. Physiol. (London) (1)

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

J. Psychol. (1)

D. M. Purdy, “Spectral hues as a function of intensity,” J. Psychol. 43, 541–559 (1931).
[CrossRef]

Language (1)

P. Kay, C. K. McDaniel, “The linguistic significance of the meanings of basic color terms,” Language 54, 610–646 (1978).
[CrossRef]

Network Comput. Neural Syst. (1)

M. A. Webster, “Human colour perception and its adaptation,” Network Comput. Neural Syst. 7, 587–634 (1996).
[CrossRef]

Neuron (1)

J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002).
[CrossRef] [PubMed]

Percept. Mot. Skills (1)

E. Miyahara, “Focal colors and unique hues,” Percept. Mot. Skills 97, 1038–1042 (2003).
[CrossRef]

Percept. Psychophys. (2)

K. Fuld, B. R. Wooten, J. J. Whalen, “The elemental hues of short-wave and extra-spectral lights,” Percept. Psychophys. 29, 317–322 (1981).
[CrossRef] [PubMed]

J. Gordon, I. Abramov, H. Chan, “Describing color appearance: hue and saturation scaling,” Percept. Psychophys. 56, 27–41 (1994).
[CrossRef] [PubMed]

Perception (1)

R. Mausfeld, R. Niederee, “An inquiry into relational concepts of colour, based on incremental principles of colour coding for minimal relational stimuli,” Perception 22, 427–462 (1993).
[CrossRef] [PubMed]

Philos. Trans. R. Soc. London, Ser. B (1)

B. C. Regan, C. Julliot, B. Simmen, F. Vienot, P. Charles-Dominique, J. D. Mollon, “Fruits, foliage and the evolution of primate colour vision,” Philos. Trans. R. Soc. London, Ser. B 356, 229–283 (2001).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (2)

R. L. De Valois, K. K. De Valois, L. E. Mahon, “Contribution of S opponent cells to color appearance,” Proc. Natl. Acad. Sci. USA 97, 512–517 (2000).
[CrossRef] [PubMed]

P. Kay, T. Regier, “Resolving the question of color naming universals,” Proc. Natl. Acad. Sci. USA 100, 9085–9089 (2003).
[CrossRef] [PubMed]

Proc. SPIE (1)

I. Abramov, J. Gordon, H. Chan, “Using hue scaling to specify color appearances and to derive color differences,” Proc. SPIE 1250, 40–51 (1990).
[CrossRef]

Prog. Retin. Eye Res. (1)

J. S. Werner, “Visual problems of the retina during ageing: Compensation mechanisms and colour constancy across the life span,” Prog. Retin. Eye Res. 15, 621–645 (1996).
[CrossRef]

Trends Cogn. Sci. (1)

J. Davidoff, “Language and perceptual categorization,” Trends Cogn. Sci. 5, 382–387 (2001).
[CrossRef] [PubMed]

Vision Res. (17)

E. J. Chichilnisky, B. A. Wandell, “Trichromatic opponent color classification,” Vision Res. 39, 3444–3458 (1999).
[CrossRef]

M. A. Webster, J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vision Res. 40, 3801–3816 (2000).
[CrossRef] [PubMed]

S. M. Wuerger, “Color appearance changes resulting from iso-luminant chromatic adaptation,” Vision Res. 36, 3107–3118 (1996).
[CrossRef] [PubMed]

E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vision Res. 38, 601–612 (1998).
[CrossRef] [PubMed]

R. M. Boynton, C. X. Olson, “Salience of chromatic basic color terms confirmed by three measures,” Vision Res. 30, 1311–1317 (1990).
[CrossRef] [PubMed]

G. Jordan, J. D. Mollon, “Rayleigh matches and unique green,” Vision Res. 35, 613–620 (1995).
[CrossRef] [PubMed]

R. L. De Valois, K. K. De Valois, E. Switkes, L. E. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vision Res. 37, 885–897 (1997).
[CrossRef] [PubMed]

K. Shinomori, L. Spillmann, J. S. Werner, “S-cone signals to temporal off-channels: possible asymmetrical connections to postreceptoral chromatic mechanisms,” Vision Res. 39, 39–49 (1998).
[CrossRef]

V. C. Smith, J. Pokorny, “Color contrast under controlled chromatic adaptation reveals opponent rectification,” Vision Res. 36, 3087–3105 (1996).
[CrossRef] [PubMed]

M. Ayama, P. Kaiser, T. Nakatsue, “Additivity of red chromatic valence,” Vision Res. 25, 1885–1891 (1985).
[CrossRef] [PubMed]

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[CrossRef]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity I: red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[CrossRef] [PubMed]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[CrossRef] [PubMed]

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Chromatic discrimination axes, CRT phosphor spectra, and individual variation in color vision,” Vision Res. 12, 27–35 (1995).

R. L. De Valois, K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053–1065 (1993).
[CrossRef] [PubMed]

Other (13)

G. Derefeldt, “Colour appearance systems,” in The Perception of Colour, P. Gouras, ed. (MacMillan, 1991).

D. B. Judd, “Basic correlates of the visual stimulus,” in Handbook of Experimental Psychology, S. S. Stevens, ed. (Wiley, 1951), pp. 811–867.

S. Polyak, The Vertebrate Visual System (University of Chicago Press, 1957).

P. Lennie, “Color coding in the cortex,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner, and L. T. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 1999), pp. 235–247.

H.-C. Lee, “A computational model for opponent color encoding,” in Advance Conference Summaries, SPSE’s 43rd Annual Conference (Society for Imaging Science & Technology, 1990), pp. 178–181.

B. Berlin, P. Kay, Basic Color Terms: Their Universality and Evolution (University of California Press, Berkeley, 1969).

M. A. Webster, P. Kay, “Individual and population differences in focal colors,” in The Anthropology of Color, R. L. MacLaury, G. Paramei, and D. Dedrick, eds. (John Benjamins, to be published).

P. Kay, B. Berlin, L. Maffi, W. Merrifield, “Color naming across languages,” in Color Categories in Thought and Language, C. L. Hardin and L. Maffi, eds. (Cambridge U. Press, Cambridge, UK, 1997), pp. 21–56.
[CrossRef]

R. L. De Valois, “Neural coding of color,” in The Visual Neurosciences Vol. 2, L. M. Chalupa and J. S. Werner, eds. (MIT Press, 2003), pp. 1003–1016.

J. Gordon, I. Abramov, “Color Vision,” in The Blackwell Handbook of Perception, E. B. Goldstein, ed. (Blackwell, 2001), pp. 92–127.

B. A. Wandell, Foundations of Vision (Sinauer, 1995).

E. Hering, Outlines of a Theory of the Light Sense (Harvard U. Press, 1964).

B. Wooten, D. L. Miller, “The psychophysics of color,” in Color Categories in Thought and Language, C. L. Hardin and L. Maffi, eds. (Cambridge U. Press, Cambridge, UK, 1997), pp. 59–88.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Mean hue angles selected by individual observers for the eight different color terms. (a) all observers, (b) settings for the subset of observers who selected the hues most consistently.

Fig. 2
Fig. 2

Individual settings for the hue and lightness of each of the eight color terms. For each term, the top panel plots the selected hue angle projected onto the isoluminant plane (i.e., independent of the subject’s lightness setting), while the bottom panel shows the elevation out of the isoluminant plane (i.e., independent of the subject’s selected hue angle). Settings for stimuli of increasing contrast are plotted along circles of increasing radii. (Continues on next page.)

Fig. 3
Fig. 3

(a) Average hue scaling function. Points plot the judged angle in a red–green versus blue–yellow perceptual color space as a function of the stimulus angle in the LvsM and SvsLM plane. Arrows point to the perceived hues of stimuli lying along the cardinal axes and the closest unique or binary color term. (b) Relationship between individual differences in the hue scaling and the local slope of the average hue scaling function.

Fig. 4
Fig. 4

Distribution of color labels for the 24 stimuli used in the hue scaling task. Each panel shows the number of times subjects chose a given color term as the label for the stimulus. The eight panels show results for the four unique hue terms or the four binary terms.

Fig. 5
Fig. 5

Clustering in the correlations between the scaled hues for different stimuli. Clusters for each stimulus angle were calculated by averaging the stimulus angles weighted by the correlation coefficients (excluding nonsignificant or negative coefficients). (a) All subjects, (b) most consistent subjects.

Tables (8)

Tables Icon

Table 1 Mean Hue Angles for Unique and Binary Hues in the Scaled LvsM and SvsLM Space and the Range and Standard Deviation (SD) across Observers

Tables Icon

Table 2 Mean and Standard Deviation (SD) of the Hue Angles within the u v Uniform Color Space

Tables Icon

Table 3 Correlations between Hue Angles Chosen for Different Color Terms a

Tables Icon

Table 4 Correlation between the Angles Chosen for Each Term and the Mean of the Angles for the Two Bounding Terms a

Tables Icon

Table 5 Correlations between Hue Angles (below Diagonal) and Lightness Levels (above Diagonal) for Different Color Terms

Tables Icon

Table 6 Correlations among the Hue Angles and Lightness Levels Chosen for Focal Red across Different Contrast Levels

Tables Icon

Table 7 Correlations between the Rated Hues for Each of the 24 Stimuli in the Hue Scaling Task

Tables Icon

Table 8 Correlations between Scaled Hues for Stimuli That Fell Closest to Each of the Four Unique Hues or Four Binary Colors

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

LvsM contrast = ( r mb 0.6568 ) * 2754 ,
SvsLM contrast = ( b mb 0.01825 ) * 4099 ,
LUM = 3 * L c .

Metrics