Abstract

We present evidence that steady achromatic adapting fields can produce response saturation in color-opponent pathways. We measured tvi (log increment threshold illuminance versus log background illuminance) functions at four test wavelengths (430, 490, 575, and 660nm) and nine background illuminances from 4.0  to  5.6logTd. Foveal, 2° diameter, 1s duration test stimuli were presented on a concentric, perceptually white (5128°K color temperature), 7° diameter, steady background. Thresholds were obtained by the method of adjustment, after which the test stimulus illuminances were increased 0.6log unit and the subject estimated percentages of red, yellow, green, blue, and white. Average tvi slopes for two subjects were 2.06 for 430nm, 1.6 for 490nm, 1.11 for 575nm and 1.34 for 660nm, consistent with the estimated ratios of chromatic to achromatic sensitivity at the same wavelengths. Also, the percentage of white seen in the suprathreshold increments increased with increasing background illuminance despite increases in excitation purity. These findings imply that steady, intense, achromatic backgrounds can produce response saturation in color-opponent mechanisms at wavelengths across the visible spectrum. The saturation was more extreme at short wavelengths than at middle or long wavelengths, producing a tritanopic condition at the highest background illuminances. The tritanopia reduced color space to a predominately red–blue dichromacy, in agreement with previous findings. The results support a multistage opponent-color model in which precortical koniocellular and parvocellular opponent pathways interact to produce the observed red–green and yellow–blue color-opponent channels at a cortical level.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. The term “saturation” in the color vision literature may refer either to response saturation, the loss of responsiveness at high stimulus levels, or to chromatic saturation, the relative amount of hue perceived in a colored stimulus. In order to minimize confusion, “saturation” consistently means response saturation in this paper. We refer to chromatic saturation by alternate descriptive terms, e.g., chromatic/achromatic ratio or chromatic “response,” “component,” “strength,” or “content.”
  2. M. Aguilar, W. S. Stiles, “Saturation of the rod mechanism of the retina at high levels of stimulation,” Opt. Acta 1, 59–65 (1954).
    [CrossRef]
  3. C. B. Blakemore, W. A. H. Rushton, “Dark adaptation and increment threshold in a rod monochromat,” J. Physiol. (London) 181, 612–628 (1965a).
  4. C. B. Blakemore, W. A. H. Rushton, “The rod increment threshold during dark adaptation in normal and rod monochromat,” J. Physiol. (London) 181, 629–640 (1965b).
  5. W. S. Stiles, “Adaptation, chromatic adaptation, colour transformation,” An. R. Soc. Esp. Fis. Quim. 57, 149–175 (1961).
  6. J. D. Mollon, P. G. Polden, “Saturation of a retinal cone mechanism,” Nature (London) 265, 243–246 (1977).
    [CrossRef]
  7. E. N. Pugh, J. D. Mollon, “A theory of the Π1 and Π3 color mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
    [CrossRef]
  8. C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, “Response saturation of short-wavelength cone pathways controlled by color-opponent mechanisms,” Vision Res. 19, 1025–1040 (1979).
    [CrossRef] [PubMed]
  9. B. Drum, “Color scaling of chromatic increments on achromatic backgrounds: implications for hue signals from individual classes of cones,” Color Res. Appl. 14, 293–308 (1989).
    [CrossRef]
  10. M. Kalloniatis, R. S. Harwerth, “Spectral sensitivity and adaptation characteristics of cone mechanisms under white-light adaptation,” J. Opt. Soc. Am. A 7, 1912–1928 (1990).
    [CrossRef] [PubMed]
  11. B. Drum, “Saturation and purity of near-threshold increments on achromatic backgrounds,” Optom. Vision Sci. 67, 595–599 (1989).
    [CrossRef]
  12. W. E. K. Middleton, E. G. Mayo, “The appearance of colors in twilight,” J. Opt. Soc. Am. 42, 116–121 (1952).
    [CrossRef] [PubMed]
  13. C. R. Ingling, H. M. O. Schiebner, R. M. Boynton, “Color naming of small foveal fields,” Vision Res. 10, 501–511 (1970).
    [CrossRef] [PubMed]
  14. J. Gordon, I. Abramov, “Color vision in the peripheral retina. I. Hue and saturation,” J. Opt. Soc. Am. 67, 202–207 (1977).
    [CrossRef] [PubMed]
  15. M. Alpern, K. Kitahara, D. H. Krantz, “Perception of colour in unilateral tritanopia,” J. Physiol. (London) 335, 683–697 (1983).
  16. B. Drum, “Hue signals from short-and middle-wavelength-sensitive cones,” J. Opt. Soc. Am. A 6, 153–157 (1989).
    [CrossRef] [PubMed]
  17. R. L. De Valois, K. K. De Valois, L. E. Mahon, “Contribution of S opponent cells to color appearance,” Proc. Natl. Acad. Sci. U.S.A. 97, 512–517 (2000).
    [CrossRef] [PubMed]
  18. J. A. Schirillo, A. Reeves, “Color-naming of M-cone incremental flashes,” Color Res. Appl. 26, 132–140 (2001).
    [CrossRef]
  19. A. L. Lewis, M. Katz, C. Oehrlein, “A modified achromatizing lens,” Am. J. Optom. Physiol. Opt. 59, 909–911 (1982).
    [CrossRef] [PubMed]
  20. We chose large, long-duration test stimuli in order to maximize chromatic sensitivity relative to both parvo- cellular and magnocellular achromatic sensitivity.[21, 22, 23]
  21. C. R. Ingling, B. Drum, “Retinal receptive fields: correlations between psychophysics and electrophysiology,” Vision Res. 13, 1151–1163 (1973).
    [CrossRef] [PubMed]
  22. C. R. Ingling, E. Martinez–Uriegas, “The spatiotemporal properties of the r-g X-channel,” Vision Res. 25, 33–38 (1985).
    [CrossRef]
  23. B. Drum, “Chromatic saturation derived from increment thresholds for white and colored targets,” Mod. Probl. Ophthalmol. 17, 79–85 (1976).
  24. C. E. Sternheim, B. Drum, “Achromatic and chromatic sensation as a function of color temperature and retinal illuminance,” J. Opt. Soc. Am. A 10, 838–843 (1993).
    [CrossRef] [PubMed]
  25. R. M. Boynton, Human Color Vision (Optical Society of America, 1992), p. 173.
  26. Wyszecki and Stiles [G. Wyszecki, W. S. Stiles, “High-level trichromatic color matching and the pigment-bleaching hypothesis,” Vision Res. 20, 23–37 (1980)] found that S-cone spectral sensitivity as assessed by color matching was virtually unchanged from 1000 to 100,000 Td and concluded that S cones either did not bleach over this illuminance range or that S-cone photopigment was already dilute at the lower illuminance, making bleaching undetectable by their method. Here we make the conservative assumption that the S-cone half-bleach constant is the same as that of L and M cones. Assuming that S cones are immune from bleaching would predict even steeper 430 nm (and perhaps 490 nm) slopes than those shown in Figs. 2, 3.
    [CrossRef] [PubMed]
  27. P. E. King-Smith, D. Carden, “Luminance and opponent-color contributions to visual detection and adaptation and to temporal and spatial integration,” J. Opt. Soc. Am. 66, 709–717 (1976).
    [CrossRef] [PubMed]
  28. G. H. Jacobs, R. H. Yolton, “Center-surround balance in receptive fields of cells in the lateral geniculate nucleus,” Vision Res. 10, 1127–1144 (1970).
    [CrossRef] [PubMed]
  29. F. M. de Monasterio, P. Gouras, D. J. Tolhurst, “Concealed colour opponency in ganglion cells of macaque retina,” J. Physiol. (London) 251, 217–229 (1975).
  30. F. M. de Monasterio, “Electrophysiology of color vision. I. Cellular level,” in Colour Vision Deficiencies VII, G. Verriest, ed., Doc. Ophthalmol. Proc. Ser.39, 9–28 (1984).
  31. V. Billock, “The relationship between simple and double opponent cells,” Vision Res. 31, 33–42 (1991).
    [CrossRef] [PubMed]
  32. V. Billock, “Cortical simple cells can extract achromatic information from the multiplexed chromatic and achromatic signals in the parvocellular pathway,” Vision Res. 35, 2359–2369 (1995).
    [CrossRef] [PubMed]
  33. P. Gouras, H. Eggers, “Ganglion cells mediating the signals of blue sensitive cones in primate retina detect white-yellow borders independently of brightness,” Vision Res. 22, 675–679 (1982).
    [CrossRef] [PubMed]
  34. B. B. Lee, V. Virsu, A. Elepfandt, “Cell responses in dorsal layers of macaque lateral geniculate nucleus as a function of intensity and wavelength,” J. Neurophysiol. 50, 849–863 (1983).
    [PubMed]
  35. B. B. Lee, A. Valberg, D. A. Tigwell, J. Tryti, “An account of responses of spectrally opponent neurons in macaque lateral geniculate nucleus to successive contrast,” Proc. R. Soc. London, Ser. B 230, 293–314 (1987).
    [CrossRef]
  36. B. Drum, “Forced-choice colour discrimination in the dark-adapted parafovea,” in Colour Vision Deficiencies, V. G. Verriest, ed. (Hilger, 1980), pp. 365–370.
  37. B. Drum, C. E. Sternheim, “Loss of chromatic response to monochromatic increments on intense achromatic pedestal backgrounds,” in Colour Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, 1993).
    [CrossRef]
  38. L. M. Hurvich, D. Jameson, “Some quantitative aspects of an opponent-colors theory. II. Brightness, saturation, and hue in normal and dichromatic vision,” J. Opt. Soc. Am. 45, 602–616 (1955).
    [CrossRef] [PubMed]
  39. L. Guth, R. W. Massof, T. Benzschawel, “Vector model for normal and dichromatic color vision,” J. Opt. Soc. Am. 70, 197–212 (1980).
    [CrossRef] [PubMed]
  40. R. M. Boynton, Human Color Vision (Holt, Rinehart & Winston, 1979).
  41. C. R. Ingling, B. Tsou, “Orthogonal combination of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
    [CrossRef] [PubMed]
  42. E. Hering, Outlines of a Theory of the Light Sense (Julius Springer, 1920), translated by L. M. Hurvich and D. Jameson (Harvard U. Press, 1964).
  43. D. Jameson, L. M. Hurvich, “Some quantitative aspects of an opponent-colors theory. I. Chromatic responses and spectral saturation,” J. Opt. Soc. Am. 45, 546–552 (1955).
    [CrossRef]
  44. L. M. Hurvich, D. Jameson, “An opponent process theory of color vision,” Psychol. Rev. 64, 384–404 (1957).
    [CrossRef]
  45. L. Guth, N. J. Donley, R. T. Marrocco, “On luminance additivity and related topics,” Vision Res. 9, 537–575 (1969).
    [CrossRef] [PubMed]
  46. L. Guth, H. R. Lodge, “Heterochromatic additivity, foveal spectral sensitivity, and a new color model,” J. Opt. Soc. Am. 63, 450–462 (1973).
    [CrossRef] [PubMed]
  47. R. L. De Valois, I. Abramov, G. H. Jacobs, “Analysis of response patterns of LGN cells,” J. Opt. Soc. Am. 56, 966–977 (1966).
    [CrossRef] [PubMed]
  48. T. N. Wiesel, D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
    [PubMed]
  49. P. Gouras, “Identification of cone mechanisms in monkey ganglion cells,” J. Physiol. (London) 199, 533–547 (1968).
  50. J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
    [CrossRef] [PubMed]
  51. C. R. Ingling, “The spectral sensitivity of the opponent-color channels,” Vision Res. 17, 1083–1089 (1977).
    [CrossRef] [PubMed]
  52. C. R. Ingling, E. Martinez-Uriegas, “The relationship between spectral sensitivity and spatial sensitivity for the primate r-g X-channel,” Vision Res. 23, 1495–1500 (1983).
    [CrossRef] [PubMed]
  53. J. Neitz, M. Neitz, “A neural mechanism that is plastic in adults and its implications for coding of color,” J. Vision 4, 33a (2004), http://journalofvision.org/4/11/33/, doi: 10.1167/4.11.33. (Abstract of talk, 2004 Fall Vision Meeting, Rochester, New York).
    [CrossRef]
  54. R. L. De Valois, K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053–1065 (1993).
    [CrossRef] [PubMed]
  55. R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. U.S.A. 97, 4997–5002 (2000).
    [CrossRef] [PubMed]
  56. S. L. Guth, “Model for color vision and light adaptation,” J. Opt. Soc. Am. A 8, 976–993 (1991).
    [CrossRef] [PubMed]
  57. S. L. Guth, “The constancy myth, the vocabulary of color perception and the ATD04 model,” Proc. SPIE 5292, 1–14 (2004).
    [CrossRef]
  58. B. Drum, C. E. Sternheim, “Saturation of chromatic increments on intense achromatic backgrounds,” in Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, 1990), p. 184.

2004 (2)

J. Neitz, M. Neitz, “A neural mechanism that is plastic in adults and its implications for coding of color,” J. Vision 4, 33a (2004), http://journalofvision.org/4/11/33/, doi: 10.1167/4.11.33. (Abstract of talk, 2004 Fall Vision Meeting, Rochester, New York).
[CrossRef]

S. L. Guth, “The constancy myth, the vocabulary of color perception and the ATD04 model,” Proc. SPIE 5292, 1–14 (2004).
[CrossRef]

2001 (1)

J. A. Schirillo, A. Reeves, “Color-naming of M-cone incremental flashes,” Color Res. Appl. 26, 132–140 (2001).
[CrossRef]

2000 (2)

R. L. De Valois, K. K. De Valois, L. E. Mahon, “Contribution of S opponent cells to color appearance,” Proc. Natl. Acad. Sci. U.S.A. 97, 512–517 (2000).
[CrossRef] [PubMed]

R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. U.S.A. 97, 4997–5002 (2000).
[CrossRef] [PubMed]

1995 (1)

V. Billock, “Cortical simple cells can extract achromatic information from the multiplexed chromatic and achromatic signals in the parvocellular pathway,” Vision Res. 35, 2359–2369 (1995).
[CrossRef] [PubMed]

1993 (2)

1991 (2)

S. L. Guth, “Model for color vision and light adaptation,” J. Opt. Soc. Am. A 8, 976–993 (1991).
[CrossRef] [PubMed]

V. Billock, “The relationship between simple and double opponent cells,” Vision Res. 31, 33–42 (1991).
[CrossRef] [PubMed]

1990 (1)

1989 (3)

B. Drum, “Saturation and purity of near-threshold increments on achromatic backgrounds,” Optom. Vision Sci. 67, 595–599 (1989).
[CrossRef]

B. Drum, “Color scaling of chromatic increments on achromatic backgrounds: implications for hue signals from individual classes of cones,” Color Res. Appl. 14, 293–308 (1989).
[CrossRef]

B. Drum, “Hue signals from short-and middle-wavelength-sensitive cones,” J. Opt. Soc. Am. A 6, 153–157 (1989).
[CrossRef] [PubMed]

1987 (1)

B. B. Lee, A. Valberg, D. A. Tigwell, J. Tryti, “An account of responses of spectrally opponent neurons in macaque lateral geniculate nucleus to successive contrast,” Proc. R. Soc. London, Ser. B 230, 293–314 (1987).
[CrossRef]

1985 (1)

C. R. Ingling, E. Martinez–Uriegas, “The spatiotemporal properties of the r-g X-channel,” Vision Res. 25, 33–38 (1985).
[CrossRef]

1983 (3)

M. Alpern, K. Kitahara, D. H. Krantz, “Perception of colour in unilateral tritanopia,” J. Physiol. (London) 335, 683–697 (1983).

B. B. Lee, V. Virsu, A. Elepfandt, “Cell responses in dorsal layers of macaque lateral geniculate nucleus as a function of intensity and wavelength,” J. Neurophysiol. 50, 849–863 (1983).
[PubMed]

C. R. Ingling, E. Martinez-Uriegas, “The relationship between spectral sensitivity and spatial sensitivity for the primate r-g X-channel,” Vision Res. 23, 1495–1500 (1983).
[CrossRef] [PubMed]

1982 (3)

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

P. Gouras, H. Eggers, “Ganglion cells mediating the signals of blue sensitive cones in primate retina detect white-yellow borders independently of brightness,” Vision Res. 22, 675–679 (1982).
[CrossRef] [PubMed]

A. L. Lewis, M. Katz, C. Oehrlein, “A modified achromatizing lens,” Am. J. Optom. Physiol. Opt. 59, 909–911 (1982).
[CrossRef] [PubMed]

1980 (2)

Wyszecki and Stiles [G. Wyszecki, W. S. Stiles, “High-level trichromatic color matching and the pigment-bleaching hypothesis,” Vision Res. 20, 23–37 (1980)] found that S-cone spectral sensitivity as assessed by color matching was virtually unchanged from 1000 to 100,000 Td and concluded that S cones either did not bleach over this illuminance range or that S-cone photopigment was already dilute at the lower illuminance, making bleaching undetectable by their method. Here we make the conservative assumption that the S-cone half-bleach constant is the same as that of L and M cones. Assuming that S cones are immune from bleaching would predict even steeper 430 nm (and perhaps 490 nm) slopes than those shown in Figs. 2, 3.
[CrossRef] [PubMed]

L. Guth, R. W. Massof, T. Benzschawel, “Vector model for normal and dichromatic color vision,” J. Opt. Soc. Am. 70, 197–212 (1980).
[CrossRef] [PubMed]

1979 (2)

E. N. Pugh, J. D. Mollon, “A theory of the Π1 and Π3 color mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
[CrossRef]

C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, “Response saturation of short-wavelength cone pathways controlled by color-opponent mechanisms,” Vision Res. 19, 1025–1040 (1979).
[CrossRef] [PubMed]

1977 (4)

J. D. Mollon, P. G. Polden, “Saturation of a retinal cone mechanism,” Nature (London) 265, 243–246 (1977).
[CrossRef]

J. Gordon, I. Abramov, “Color vision in the peripheral retina. I. Hue and saturation,” J. Opt. Soc. Am. 67, 202–207 (1977).
[CrossRef] [PubMed]

C. R. Ingling, B. Tsou, “Orthogonal combination of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
[CrossRef] [PubMed]

C. R. Ingling, “The spectral sensitivity of the opponent-color channels,” Vision Res. 17, 1083–1089 (1977).
[CrossRef] [PubMed]

1976 (2)

P. E. King-Smith, D. Carden, “Luminance and opponent-color contributions to visual detection and adaptation and to temporal and spatial integration,” J. Opt. Soc. Am. 66, 709–717 (1976).
[CrossRef] [PubMed]

B. Drum, “Chromatic saturation derived from increment thresholds for white and colored targets,” Mod. Probl. Ophthalmol. 17, 79–85 (1976).

1975 (1)

F. M. de Monasterio, P. Gouras, D. J. Tolhurst, “Concealed colour opponency in ganglion cells of macaque retina,” J. Physiol. (London) 251, 217–229 (1975).

1973 (2)

C. R. Ingling, B. Drum, “Retinal receptive fields: correlations between psychophysics and electrophysiology,” Vision Res. 13, 1151–1163 (1973).
[CrossRef] [PubMed]

L. Guth, H. R. Lodge, “Heterochromatic additivity, foveal spectral sensitivity, and a new color model,” J. Opt. Soc. Am. 63, 450–462 (1973).
[CrossRef] [PubMed]

1970 (2)

C. R. Ingling, H. M. O. Schiebner, R. M. Boynton, “Color naming of small foveal fields,” Vision Res. 10, 501–511 (1970).
[CrossRef] [PubMed]

G. H. Jacobs, R. H. Yolton, “Center-surround balance in receptive fields of cells in the lateral geniculate nucleus,” Vision Res. 10, 1127–1144 (1970).
[CrossRef] [PubMed]

1969 (1)

L. Guth, N. J. Donley, R. T. Marrocco, “On luminance additivity and related topics,” Vision Res. 9, 537–575 (1969).
[CrossRef] [PubMed]

1968 (1)

P. Gouras, “Identification of cone mechanisms in monkey ganglion cells,” J. Physiol. (London) 199, 533–547 (1968).

1966 (2)

R. L. De Valois, I. Abramov, G. H. Jacobs, “Analysis of response patterns of LGN cells,” J. Opt. Soc. Am. 56, 966–977 (1966).
[CrossRef] [PubMed]

T. N. Wiesel, D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
[PubMed]

1961 (1)

W. S. Stiles, “Adaptation, chromatic adaptation, colour transformation,” An. R. Soc. Esp. Fis. Quim. 57, 149–175 (1961).

1957 (1)

L. M. Hurvich, D. Jameson, “An opponent process theory of color vision,” Psychol. Rev. 64, 384–404 (1957).
[CrossRef]

1955 (2)

1954 (1)

M. Aguilar, W. S. Stiles, “Saturation of the rod mechanism of the retina at high levels of stimulation,” Opt. Acta 1, 59–65 (1954).
[CrossRef]

1952 (1)

Abramov, I.

Aguilar, M.

M. Aguilar, W. S. Stiles, “Saturation of the rod mechanism of the retina at high levels of stimulation,” Opt. Acta 1, 59–65 (1954).
[CrossRef]

Alpern, M.

M. Alpern, K. Kitahara, D. H. Krantz, “Perception of colour in unilateral tritanopia,” J. Physiol. (London) 335, 683–697 (1983).

Benzschawel, T.

Billock, V.

V. Billock, “Cortical simple cells can extract achromatic information from the multiplexed chromatic and achromatic signals in the parvocellular pathway,” Vision Res. 35, 2359–2369 (1995).
[CrossRef] [PubMed]

V. Billock, “The relationship between simple and double opponent cells,” Vision Res. 31, 33–42 (1991).
[CrossRef] [PubMed]

Blakemore, C. B.

C. B. Blakemore, W. A. H. Rushton, “The rod increment threshold during dark adaptation in normal and rod monochromat,” J. Physiol. (London) 181, 629–640 (1965b).

C. B. Blakemore, W. A. H. Rushton, “Dark adaptation and increment threshold in a rod monochromat,” J. Physiol. (London) 181, 612–628 (1965a).

Boynton, R. M.

C. R. Ingling, H. M. O. Schiebner, R. M. Boynton, “Color naming of small foveal fields,” Vision Res. 10, 501–511 (1970).
[CrossRef] [PubMed]

R. M. Boynton, Human Color Vision (Holt, Rinehart & Winston, 1979).

R. M. Boynton, Human Color Vision (Optical Society of America, 1992), p. 173.

Carden, D.

Cottaris, N. P.

R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. U.S.A. 97, 4997–5002 (2000).
[CrossRef] [PubMed]

de Monasterio, F. M.

F. M. de Monasterio, P. Gouras, D. J. Tolhurst, “Concealed colour opponency in ganglion cells of macaque retina,” J. Physiol. (London) 251, 217–229 (1975).

F. M. de Monasterio, “Electrophysiology of color vision. I. Cellular level,” in Colour Vision Deficiencies VII, G. Verriest, ed., Doc. Ophthalmol. Proc. Ser.39, 9–28 (1984).

De Valois, K. K.

R. L. De Valois, K. K. De Valois, L. E. Mahon, “Contribution of S opponent cells to color appearance,” Proc. Natl. Acad. Sci. U.S.A. 97, 512–517 (2000).
[CrossRef] [PubMed]

R. L. De Valois, K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053–1065 (1993).
[CrossRef] [PubMed]

De Valois, R. L.

R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. U.S.A. 97, 4997–5002 (2000).
[CrossRef] [PubMed]

R. L. De Valois, K. K. De Valois, L. E. Mahon, “Contribution of S opponent cells to color appearance,” Proc. Natl. Acad. Sci. U.S.A. 97, 512–517 (2000).
[CrossRef] [PubMed]

R. L. De Valois, K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053–1065 (1993).
[CrossRef] [PubMed]

R. L. De Valois, I. Abramov, G. H. Jacobs, “Analysis of response patterns of LGN cells,” J. Opt. Soc. Am. 56, 966–977 (1966).
[CrossRef] [PubMed]

Donley, N. J.

L. Guth, N. J. Donley, R. T. Marrocco, “On luminance additivity and related topics,” Vision Res. 9, 537–575 (1969).
[CrossRef] [PubMed]

Drum, B.

C. E. Sternheim, B. Drum, “Achromatic and chromatic sensation as a function of color temperature and retinal illuminance,” J. Opt. Soc. Am. A 10, 838–843 (1993).
[CrossRef] [PubMed]

B. Drum, “Hue signals from short-and middle-wavelength-sensitive cones,” J. Opt. Soc. Am. A 6, 153–157 (1989).
[CrossRef] [PubMed]

B. Drum, “Saturation and purity of near-threshold increments on achromatic backgrounds,” Optom. Vision Sci. 67, 595–599 (1989).
[CrossRef]

B. Drum, “Color scaling of chromatic increments on achromatic backgrounds: implications for hue signals from individual classes of cones,” Color Res. Appl. 14, 293–308 (1989).
[CrossRef]

B. Drum, “Chromatic saturation derived from increment thresholds for white and colored targets,” Mod. Probl. Ophthalmol. 17, 79–85 (1976).

C. R. Ingling, B. Drum, “Retinal receptive fields: correlations between psychophysics and electrophysiology,” Vision Res. 13, 1151–1163 (1973).
[CrossRef] [PubMed]

B. Drum, “Forced-choice colour discrimination in the dark-adapted parafovea,” in Colour Vision Deficiencies, V. G. Verriest, ed. (Hilger, 1980), pp. 365–370.

B. Drum, C. E. Sternheim, “Loss of chromatic response to monochromatic increments on intense achromatic pedestal backgrounds,” in Colour Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, 1993).
[CrossRef]

B. Drum, C. E. Sternheim, “Saturation of chromatic increments on intense achromatic backgrounds,” in Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, 1990), p. 184.

Eggers, H.

P. Gouras, H. Eggers, “Ganglion cells mediating the signals of blue sensitive cones in primate retina detect white-yellow borders independently of brightness,” Vision Res. 22, 675–679 (1982).
[CrossRef] [PubMed]

Elepfandt, A.

B. B. Lee, V. Virsu, A. Elepfandt, “Cell responses in dorsal layers of macaque lateral geniculate nucleus as a function of intensity and wavelength,” J. Neurophysiol. 50, 849–863 (1983).
[PubMed]

Elfar, S. D.

R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. U.S.A. 97, 4997–5002 (2000).
[CrossRef] [PubMed]

Gordon, J.

Gouras, P.

P. Gouras, H. Eggers, “Ganglion cells mediating the signals of blue sensitive cones in primate retina detect white-yellow borders independently of brightness,” Vision Res. 22, 675–679 (1982).
[CrossRef] [PubMed]

F. M. de Monasterio, P. Gouras, D. J. Tolhurst, “Concealed colour opponency in ganglion cells of macaque retina,” J. Physiol. (London) 251, 217–229 (1975).

P. Gouras, “Identification of cone mechanisms in monkey ganglion cells,” J. Physiol. (London) 199, 533–547 (1968).

Guth, L.

Guth, S. L.

S. L. Guth, “The constancy myth, the vocabulary of color perception and the ATD04 model,” Proc. SPIE 5292, 1–14 (2004).
[CrossRef]

S. L. Guth, “Model for color vision and light adaptation,” J. Opt. Soc. Am. A 8, 976–993 (1991).
[CrossRef] [PubMed]

Harwerth, R. S.

Heeley, D. W.

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

Hering, E.

E. Hering, Outlines of a Theory of the Light Sense (Julius Springer, 1920), translated by L. M. Hurvich and D. Jameson (Harvard U. Press, 1964).

Hubel, D. H.

T. N. Wiesel, D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
[PubMed]

Hurvich, L. M.

Ingling, C. R.

C. R. Ingling, E. Martinez–Uriegas, “The spatiotemporal properties of the r-g X-channel,” Vision Res. 25, 33–38 (1985).
[CrossRef]

C. R. Ingling, E. Martinez-Uriegas, “The relationship between spectral sensitivity and spatial sensitivity for the primate r-g X-channel,” Vision Res. 23, 1495–1500 (1983).
[CrossRef] [PubMed]

C. R. Ingling, “The spectral sensitivity of the opponent-color channels,” Vision Res. 17, 1083–1089 (1977).
[CrossRef] [PubMed]

C. R. Ingling, B. Tsou, “Orthogonal combination of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
[CrossRef] [PubMed]

C. R. Ingling, B. Drum, “Retinal receptive fields: correlations between psychophysics and electrophysiology,” Vision Res. 13, 1151–1163 (1973).
[CrossRef] [PubMed]

C. R. Ingling, H. M. O. Schiebner, R. M. Boynton, “Color naming of small foveal fields,” Vision Res. 10, 501–511 (1970).
[CrossRef] [PubMed]

Jacobs, G. H.

G. H. Jacobs, R. H. Yolton, “Center-surround balance in receptive fields of cells in the lateral geniculate nucleus,” Vision Res. 10, 1127–1144 (1970).
[CrossRef] [PubMed]

R. L. De Valois, I. Abramov, G. H. Jacobs, “Analysis of response patterns of LGN cells,” J. Opt. Soc. Am. 56, 966–977 (1966).
[CrossRef] [PubMed]

Jameson, D.

Kalloniatis, M.

Katz, M.

A. L. Lewis, M. Katz, C. Oehrlein, “A modified achromatizing lens,” Am. J. Optom. Physiol. Opt. 59, 909–911 (1982).
[CrossRef] [PubMed]

King-Smith, P. E.

Kitahara, K.

M. Alpern, K. Kitahara, D. H. Krantz, “Perception of colour in unilateral tritanopia,” J. Physiol. (London) 335, 683–697 (1983).

Krantz, D. H.

M. Alpern, K. Kitahara, D. H. Krantz, “Perception of colour in unilateral tritanopia,” J. Physiol. (London) 335, 683–697 (1983).

Krauskopf, J.

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

Kronauer, R. E.

C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, “Response saturation of short-wavelength cone pathways controlled by color-opponent mechanisms,” Vision Res. 19, 1025–1040 (1979).
[CrossRef] [PubMed]

Lee, B. B.

B. B. Lee, A. Valberg, D. A. Tigwell, J. Tryti, “An account of responses of spectrally opponent neurons in macaque lateral geniculate nucleus to successive contrast,” Proc. R. Soc. London, Ser. B 230, 293–314 (1987).
[CrossRef]

B. B. Lee, V. Virsu, A. Elepfandt, “Cell responses in dorsal layers of macaque lateral geniculate nucleus as a function of intensity and wavelength,” J. Neurophysiol. 50, 849–863 (1983).
[PubMed]

Lewis, A. L.

A. L. Lewis, M. Katz, C. Oehrlein, “A modified achromatizing lens,” Am. J. Optom. Physiol. Opt. 59, 909–911 (1982).
[CrossRef] [PubMed]

Lodge, H. R.

Madsen, J. C.

C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, “Response saturation of short-wavelength cone pathways controlled by color-opponent mechanisms,” Vision Res. 19, 1025–1040 (1979).
[CrossRef] [PubMed]

Mahon, L. E.

R. L. De Valois, K. K. De Valois, L. E. Mahon, “Contribution of S opponent cells to color appearance,” Proc. Natl. Acad. Sci. U.S.A. 97, 512–517 (2000).
[CrossRef] [PubMed]

R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. U.S.A. 97, 4997–5002 (2000).
[CrossRef] [PubMed]

Marrocco, R. T.

L. Guth, N. J. Donley, R. T. Marrocco, “On luminance additivity and related topics,” Vision Res. 9, 537–575 (1969).
[CrossRef] [PubMed]

Martinez-Uriegas, E.

C. R. Ingling, E. Martinez-Uriegas, “The relationship between spectral sensitivity and spatial sensitivity for the primate r-g X-channel,” Vision Res. 23, 1495–1500 (1983).
[CrossRef] [PubMed]

Martinez–Uriegas, E.

C. R. Ingling, E. Martinez–Uriegas, “The spatiotemporal properties of the r-g X-channel,” Vision Res. 25, 33–38 (1985).
[CrossRef]

Massof, R. W.

Mayo, E. G.

Middleton, W. E. K.

Mollon, J. D.

E. N. Pugh, J. D. Mollon, “A theory of the Π1 and Π3 color mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
[CrossRef]

J. D. Mollon, P. G. Polden, “Saturation of a retinal cone mechanism,” Nature (London) 265, 243–246 (1977).
[CrossRef]

Neitz, J.

J. Neitz, M. Neitz, “A neural mechanism that is plastic in adults and its implications for coding of color,” J. Vision 4, 33a (2004), http://journalofvision.org/4/11/33/, doi: 10.1167/4.11.33. (Abstract of talk, 2004 Fall Vision Meeting, Rochester, New York).
[CrossRef]

Neitz, M.

J. Neitz, M. Neitz, “A neural mechanism that is plastic in adults and its implications for coding of color,” J. Vision 4, 33a (2004), http://journalofvision.org/4/11/33/, doi: 10.1167/4.11.33. (Abstract of talk, 2004 Fall Vision Meeting, Rochester, New York).
[CrossRef]

Oehrlein, C.

A. L. Lewis, M. Katz, C. Oehrlein, “A modified achromatizing lens,” Am. J. Optom. Physiol. Opt. 59, 909–911 (1982).
[CrossRef] [PubMed]

Polden, P. G.

J. D. Mollon, P. G. Polden, “Saturation of a retinal cone mechanism,” Nature (London) 265, 243–246 (1977).
[CrossRef]

Pugh, E. N.

E. N. Pugh, J. D. Mollon, “A theory of the Π1 and Π3 color mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
[CrossRef]

Reeves, A.

J. A. Schirillo, A. Reeves, “Color-naming of M-cone incremental flashes,” Color Res. Appl. 26, 132–140 (2001).
[CrossRef]

Rushton, W. A. H.

C. B. Blakemore, W. A. H. Rushton, “The rod increment threshold during dark adaptation in normal and rod monochromat,” J. Physiol. (London) 181, 629–640 (1965b).

C. B. Blakemore, W. A. H. Rushton, “Dark adaptation and increment threshold in a rod monochromat,” J. Physiol. (London) 181, 612–628 (1965a).

Schiebner, H. M. O.

C. R. Ingling, H. M. O. Schiebner, R. M. Boynton, “Color naming of small foveal fields,” Vision Res. 10, 501–511 (1970).
[CrossRef] [PubMed]

Schirillo, J. A.

J. A. Schirillo, A. Reeves, “Color-naming of M-cone incremental flashes,” Color Res. Appl. 26, 132–140 (2001).
[CrossRef]

Sternheim, C. E.

C. E. Sternheim, B. Drum, “Achromatic and chromatic sensation as a function of color temperature and retinal illuminance,” J. Opt. Soc. Am. A 10, 838–843 (1993).
[CrossRef] [PubMed]

B. Drum, C. E. Sternheim, “Saturation of chromatic increments on intense achromatic backgrounds,” in Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, 1990), p. 184.

B. Drum, C. E. Sternheim, “Loss of chromatic response to monochromatic increments on intense achromatic pedestal backgrounds,” in Colour Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, 1993).
[CrossRef]

Stiles, W. S.

Wyszecki and Stiles [G. Wyszecki, W. S. Stiles, “High-level trichromatic color matching and the pigment-bleaching hypothesis,” Vision Res. 20, 23–37 (1980)] found that S-cone spectral sensitivity as assessed by color matching was virtually unchanged from 1000 to 100,000 Td and concluded that S cones either did not bleach over this illuminance range or that S-cone photopigment was already dilute at the lower illuminance, making bleaching undetectable by their method. Here we make the conservative assumption that the S-cone half-bleach constant is the same as that of L and M cones. Assuming that S cones are immune from bleaching would predict even steeper 430 nm (and perhaps 490 nm) slopes than those shown in Figs. 2, 3.
[CrossRef] [PubMed]

W. S. Stiles, “Adaptation, chromatic adaptation, colour transformation,” An. R. Soc. Esp. Fis. Quim. 57, 149–175 (1961).

M. Aguilar, W. S. Stiles, “Saturation of the rod mechanism of the retina at high levels of stimulation,” Opt. Acta 1, 59–65 (1954).
[CrossRef]

Stromeyer, C. F.

C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, “Response saturation of short-wavelength cone pathways controlled by color-opponent mechanisms,” Vision Res. 19, 1025–1040 (1979).
[CrossRef] [PubMed]

Tigwell, D. A.

B. B. Lee, A. Valberg, D. A. Tigwell, J. Tryti, “An account of responses of spectrally opponent neurons in macaque lateral geniculate nucleus to successive contrast,” Proc. R. Soc. London, Ser. B 230, 293–314 (1987).
[CrossRef]

Tolhurst, D. J.

F. M. de Monasterio, P. Gouras, D. J. Tolhurst, “Concealed colour opponency in ganglion cells of macaque retina,” J. Physiol. (London) 251, 217–229 (1975).

Tryti, J.

B. B. Lee, A. Valberg, D. A. Tigwell, J. Tryti, “An account of responses of spectrally opponent neurons in macaque lateral geniculate nucleus to successive contrast,” Proc. R. Soc. London, Ser. B 230, 293–314 (1987).
[CrossRef]

Tsou, B.

C. R. Ingling, B. Tsou, “Orthogonal combination of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
[CrossRef] [PubMed]

Valberg, A.

B. B. Lee, A. Valberg, D. A. Tigwell, J. Tryti, “An account of responses of spectrally opponent neurons in macaque lateral geniculate nucleus to successive contrast,” Proc. R. Soc. London, Ser. B 230, 293–314 (1987).
[CrossRef]

Virsu, V.

B. B. Lee, V. Virsu, A. Elepfandt, “Cell responses in dorsal layers of macaque lateral geniculate nucleus as a function of intensity and wavelength,” J. Neurophysiol. 50, 849–863 (1983).
[PubMed]

Wiesel, T. N.

T. N. Wiesel, D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
[PubMed]

Williams, D. R.

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

Wilson, J. A.

R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. U.S.A. 97, 4997–5002 (2000).
[CrossRef] [PubMed]

Wyszecki, G.

Wyszecki and Stiles [G. Wyszecki, W. S. Stiles, “High-level trichromatic color matching and the pigment-bleaching hypothesis,” Vision Res. 20, 23–37 (1980)] found that S-cone spectral sensitivity as assessed by color matching was virtually unchanged from 1000 to 100,000 Td and concluded that S cones either did not bleach over this illuminance range or that S-cone photopigment was already dilute at the lower illuminance, making bleaching undetectable by their method. Here we make the conservative assumption that the S-cone half-bleach constant is the same as that of L and M cones. Assuming that S cones are immune from bleaching would predict even steeper 430 nm (and perhaps 490 nm) slopes than those shown in Figs. 2, 3.
[CrossRef] [PubMed]

Yolton, R. H.

G. H. Jacobs, R. H. Yolton, “Center-surround balance in receptive fields of cells in the lateral geniculate nucleus,” Vision Res. 10, 1127–1144 (1970).
[CrossRef] [PubMed]

Am. J. Optom. Physiol. Opt. (1)

A. L. Lewis, M. Katz, C. Oehrlein, “A modified achromatizing lens,” Am. J. Optom. Physiol. Opt. 59, 909–911 (1982).
[CrossRef] [PubMed]

An. R. Soc. Esp. Fis. Quim. (1)

W. S. Stiles, “Adaptation, chromatic adaptation, colour transformation,” An. R. Soc. Esp. Fis. Quim. 57, 149–175 (1961).

Color Res. Appl. (2)

B. Drum, “Color scaling of chromatic increments on achromatic backgrounds: implications for hue signals from individual classes of cones,” Color Res. Appl. 14, 293–308 (1989).
[CrossRef]

J. A. Schirillo, A. Reeves, “Color-naming of M-cone incremental flashes,” Color Res. Appl. 26, 132–140 (2001).
[CrossRef]

J. Neurophysiol. (2)

B. B. Lee, V. Virsu, A. Elepfandt, “Cell responses in dorsal layers of macaque lateral geniculate nucleus as a function of intensity and wavelength,” J. Neurophysiol. 50, 849–863 (1983).
[PubMed]

T. N. Wiesel, D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
[PubMed]

J. Opt. Soc. Am. (8)

J. Opt. Soc. Am. A (4)

J. Physiol. (London) (5)

P. Gouras, “Identification of cone mechanisms in monkey ganglion cells,” J. Physiol. (London) 199, 533–547 (1968).

F. M. de Monasterio, P. Gouras, D. J. Tolhurst, “Concealed colour opponency in ganglion cells of macaque retina,” J. Physiol. (London) 251, 217–229 (1975).

M. Alpern, K. Kitahara, D. H. Krantz, “Perception of colour in unilateral tritanopia,” J. Physiol. (London) 335, 683–697 (1983).

C. B. Blakemore, W. A. H. Rushton, “Dark adaptation and increment threshold in a rod monochromat,” J. Physiol. (London) 181, 612–628 (1965a).

C. B. Blakemore, W. A. H. Rushton, “The rod increment threshold during dark adaptation in normal and rod monochromat,” J. Physiol. (London) 181, 629–640 (1965b).

J. Vision (1)

J. Neitz, M. Neitz, “A neural mechanism that is plastic in adults and its implications for coding of color,” J. Vision 4, 33a (2004), http://journalofvision.org/4/11/33/, doi: 10.1167/4.11.33. (Abstract of talk, 2004 Fall Vision Meeting, Rochester, New York).
[CrossRef]

Mod. Probl. Ophthalmol. (1)

B. Drum, “Chromatic saturation derived from increment thresholds for white and colored targets,” Mod. Probl. Ophthalmol. 17, 79–85 (1976).

Nature (London) (1)

J. D. Mollon, P. G. Polden, “Saturation of a retinal cone mechanism,” Nature (London) 265, 243–246 (1977).
[CrossRef]

Opt. Acta (1)

M. Aguilar, W. S. Stiles, “Saturation of the rod mechanism of the retina at high levels of stimulation,” Opt. Acta 1, 59–65 (1954).
[CrossRef]

Optom. Vision Sci. (1)

B. Drum, “Saturation and purity of near-threshold increments on achromatic backgrounds,” Optom. Vision Sci. 67, 595–599 (1989).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (2)

R. L. De Valois, K. K. De Valois, L. E. Mahon, “Contribution of S opponent cells to color appearance,” Proc. Natl. Acad. Sci. U.S.A. 97, 512–517 (2000).
[CrossRef] [PubMed]

R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. U.S.A. 97, 4997–5002 (2000).
[CrossRef] [PubMed]

Proc. R. Soc. London, Ser. B (1)

B. B. Lee, A. Valberg, D. A. Tigwell, J. Tryti, “An account of responses of spectrally opponent neurons in macaque lateral geniculate nucleus to successive contrast,” Proc. R. Soc. London, Ser. B 230, 293–314 (1987).
[CrossRef]

Proc. SPIE (1)

S. L. Guth, “The constancy myth, the vocabulary of color perception and the ATD04 model,” Proc. SPIE 5292, 1–14 (2004).
[CrossRef]

Psychol. Rev. (1)

L. M. Hurvich, D. Jameson, “An opponent process theory of color vision,” Psychol. Rev. 64, 384–404 (1957).
[CrossRef]

Vision Res. (16)

L. Guth, N. J. Donley, R. T. Marrocco, “On luminance additivity and related topics,” Vision Res. 9, 537–575 (1969).
[CrossRef] [PubMed]

C. R. Ingling, B. Tsou, “Orthogonal combination of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
[CrossRef] [PubMed]

V. Billock, “The relationship between simple and double opponent cells,” Vision Res. 31, 33–42 (1991).
[CrossRef] [PubMed]

V. Billock, “Cortical simple cells can extract achromatic information from the multiplexed chromatic and achromatic signals in the parvocellular pathway,” Vision Res. 35, 2359–2369 (1995).
[CrossRef] [PubMed]

P. Gouras, H. Eggers, “Ganglion cells mediating the signals of blue sensitive cones in primate retina detect white-yellow borders independently of brightness,” Vision Res. 22, 675–679 (1982).
[CrossRef] [PubMed]

R. L. De Valois, K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053–1065 (1993).
[CrossRef] [PubMed]

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

C. R. Ingling, “The spectral sensitivity of the opponent-color channels,” Vision Res. 17, 1083–1089 (1977).
[CrossRef] [PubMed]

C. R. Ingling, E. Martinez-Uriegas, “The relationship between spectral sensitivity and spatial sensitivity for the primate r-g X-channel,” Vision Res. 23, 1495–1500 (1983).
[CrossRef] [PubMed]

Wyszecki and Stiles [G. Wyszecki, W. S. Stiles, “High-level trichromatic color matching and the pigment-bleaching hypothesis,” Vision Res. 20, 23–37 (1980)] found that S-cone spectral sensitivity as assessed by color matching was virtually unchanged from 1000 to 100,000 Td and concluded that S cones either did not bleach over this illuminance range or that S-cone photopigment was already dilute at the lower illuminance, making bleaching undetectable by their method. Here we make the conservative assumption that the S-cone half-bleach constant is the same as that of L and M cones. Assuming that S cones are immune from bleaching would predict even steeper 430 nm (and perhaps 490 nm) slopes than those shown in Figs. 2, 3.
[CrossRef] [PubMed]

G. H. Jacobs, R. H. Yolton, “Center-surround balance in receptive fields of cells in the lateral geniculate nucleus,” Vision Res. 10, 1127–1144 (1970).
[CrossRef] [PubMed]

C. R. Ingling, B. Drum, “Retinal receptive fields: correlations between psychophysics and electrophysiology,” Vision Res. 13, 1151–1163 (1973).
[CrossRef] [PubMed]

C. R. Ingling, E. Martinez–Uriegas, “The spatiotemporal properties of the r-g X-channel,” Vision Res. 25, 33–38 (1985).
[CrossRef]

C. R. Ingling, H. M. O. Schiebner, R. M. Boynton, “Color naming of small foveal fields,” Vision Res. 10, 501–511 (1970).
[CrossRef] [PubMed]

E. N. Pugh, J. D. Mollon, “A theory of the Π1 and Π3 color mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
[CrossRef]

C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, “Response saturation of short-wavelength cone pathways controlled by color-opponent mechanisms,” Vision Res. 19, 1025–1040 (1979).
[CrossRef] [PubMed]

Other (9)

The term “saturation” in the color vision literature may refer either to response saturation, the loss of responsiveness at high stimulus levels, or to chromatic saturation, the relative amount of hue perceived in a colored stimulus. In order to minimize confusion, “saturation” consistently means response saturation in this paper. We refer to chromatic saturation by alternate descriptive terms, e.g., chromatic/achromatic ratio or chromatic “response,” “component,” “strength,” or “content.”

We chose large, long-duration test stimuli in order to maximize chromatic sensitivity relative to both parvo- cellular and magnocellular achromatic sensitivity.[21, 22, 23]

R. M. Boynton, Human Color Vision (Optical Society of America, 1992), p. 173.

F. M. de Monasterio, “Electrophysiology of color vision. I. Cellular level,” in Colour Vision Deficiencies VII, G. Verriest, ed., Doc. Ophthalmol. Proc. Ser.39, 9–28 (1984).

B. Drum, “Forced-choice colour discrimination in the dark-adapted parafovea,” in Colour Vision Deficiencies, V. G. Verriest, ed. (Hilger, 1980), pp. 365–370.

B. Drum, C. E. Sternheim, “Loss of chromatic response to monochromatic increments on intense achromatic pedestal backgrounds,” in Colour Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, 1993).
[CrossRef]

B. Drum, C. E. Sternheim, “Saturation of chromatic increments on intense achromatic backgrounds,” in Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, 1990), p. 184.

R. M. Boynton, Human Color Vision (Holt, Rinehart & Winston, 1979).

E. Hering, Outlines of a Theory of the Light Sense (Julius Springer, 1920), translated by L. M. Hurvich and D. Jameson (Harvard U. Press, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Mean tvi curves for subjects CS (open symbols) and BD (solid symbols), three sessions per subject, for monochromatic stimuli at 430, 490, 575, and 660 nm . Error bars indicate standard deviations.

Fig. 2
Fig. 2

Least-squares regressions of photopic tvi data from Fig. 1. Upper and lower panels show data from subjects CS and BD, respectively. Solid symbols indicate the original data, and open symbols indicate data adjusted for the effects of photopigment bleaching, assuming a half-bleach constant of 4.3 log Td . Dashed diagonal lines are lines of unit slope. Regression slopes are shown for both the bleach-adjusted and unadjusted curves in each panel. Points that deviate from the straight line trend at the lower background illuminances (enlarged symbols) are excluded from the regression fits. Single-session data from a white test stimulus are included with the 575 nm data. The white threshold data are shifted upward one log unit for clarity.

Fig. 3
Fig. 3

Bleach-adjusted regression slopes for subjects CS (diamonds) and BD (squares) as functions of wavelength. Slopes for white stimuli are indicated by gray symbols at 575 nm . The horizontal dashed line indicates unit slope.

Fig. 4
Fig. 4

Mean hue estimation data for subjects BD (left graphs) and CS (right graphs), three sessions per subject, for monochromatic test stimuli appearing in the dark or as increments on achromatic backgrounds. Relative percentages of red, yellow, green, and blue are shown as functions of background illuminance. Error bars indicate standard deviations.

Fig. 5
Fig. 5

Mean hue estimation data from Fig. 4 rescaled in proportion to the total chromatic estimate (100%—achromatic estimate) and displayed in color-opponent form. See text for an explanation of the method used to rescale the hue responses.

Fig. 6
Fig. 6

Mean estimates of relative percent white for monochromatic stimuli at 430 nm , 490 nm , 575 nm , and 660 nm , for subjects BD (left) and CS (right), three sessions per subject, as functions of background illuminance. Error bars are omitted for clarity, but are comparable in magnitude with the error bars in Fig. 5.

Fig. 7
Fig. 7

Mean chromatic estimates (open circles, left ordinates) for subjects BD (left graphs) and CS (right graphs), three sessions per subject, compared with the excitation purities (solid circles, right ordinates) of the monochromatic increments. The chromatic estimate is the ratio of the total chromatic response (sum of the absolute values of the rescaled hue estimates in Fig. 5) to the sum of the chromatic and achromatic responses (100%, by definition). Analogously, the excitation purity is the ratio of the retinal illuminance of the monochromatic increment to the sum of the retinal illuminances of the increment and background. The ordinate scale is logarithmic to accommodate the large differences between the two measures. Error bars indicate standard deviations.

Fig. 8
Fig. 8

Hypothetical tvi relationships between chromatic and achromatic pathways. Solid curves illustrate thresholds for opponent-color (parvocellular and koniocellular) pathways, dotted curves illustrate thresholds for saturating achromatic (parvocellular) pathways, and dashed curves illustrate thresholds for nonsaturating achromatic (magnocellular) pathways. The psychophysical threshold is assumed to approximate the lower envelope of the three component tvi curves. Representative tvi component relationships are shown for short wavelengths (left), middle wavelengths (center), and white increments (right).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1 p = I ( I + I 0 ) ,

Metrics