Abstract

The human visual system can accurately judge the mean of a distribution of different orientation samples. We ask whether the site of this integration is before or after the sites of binocular combination and disparity processing. Furthermore, we are interested in whether the efficiency with which local orientation information is integrated depends on the eye of origin. Our results suggest that orientation integration occurs after binocular integration but before disparity coding. We show that the effectiveness of added orientation noise is not only less than expected on signal or noise grounds but also that it depends on the dominance of the eye to which it is presented, suggesting an interocular opponent interaction in which the dominant eye input has higher gain.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Robson, “Receptive fields: neural representation of the spatial and intensive attributes of the visual image,” in Handbook of Perception, E. C. Carterette, M. P. Friedman, eds. (Academic, New York, 1975), pp. 81–112.
  2. R. DeValois, K. DeValois, Spatial Vision, Vol. 14 of Oxford Psychology Series (Oxford U. Press, New York, 1988).
  3. F. Wilkinson, H. R. Wilson, C. Habak, “Detection and recognition of radial frequency patterns,” Vision Res. 38, 3555–3568 (1998).
    [CrossRef]
  4. H. R. Wilson, F. Wilkinson, “Detection of global structure in Glass patterns: implications for form vision,” Vision Res. 38, 2933–2947 (1998).
    [CrossRef] [PubMed]
  5. O. J. Braddick, J. M. O’Brien, J. Wattam-Bell, J. Atkinson, R. Turner, “Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain,” Curr. Biol. 10, 731–734 (2000).
    [CrossRef] [PubMed]
  6. R. F. Hess, Y. Z. Wang, S. C. Dakin, “Are judgements of circularity local or global?” Vision Res. 39, 4354–4360 (1999).
    [CrossRef]
  7. R. L. Achtman, R. F. Hess, Y. Z. Wang, “Sensitivity for global shape detection,” J. Vision 3, 616–624 (2003).
    [CrossRef]
  8. S. C. Dakin, “Information limit on the spatial integration of local orientation signals,” J. Opt. Soc. Am. A 18, 1016–1026 (2001).
    [CrossRef]
  9. H. A. Allen, R. F. Hess, B. Mansouri, S. C. Dakin, “Integration of first- and second-order orientation,” J. Opt. Soc. Am. A 20, 974–986 (2003).
    [CrossRef]
  10. C. D. Salzman, C. M. Murasugi, K. H. Britten, W. T. Newsome, “Microstimulation in visual area MT: effects on direction discrimination performance,” J. Neurosci. 12, 2331–2355 (1992).
    [PubMed]
  11. W. T. Newsome, E. B. Pare, “A selective impairment of motion perception following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988).
    [PubMed]
  12. J. A. Movshon, E. H. Adelson, M. S. Gizzi, W. T. Newsome, “The analysis of moving visual patterns,” in Pattern Recognition Mechanisms, C. Chagas, R. Gattass, C. Gross, eds. (Pontifical Academy of Sciences, Vatican City, 1985), pp. 117–151.
  13. D. J. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local ‘association field’,” Vision Res. 33, 173–193 (1993).
    [CrossRef] [PubMed]
  14. P. C. Huang, R. F. Hess, S. C. Dakin, “Different sites for lateral facilitation and contour integration,” Program Abstracts VSS, 210 (2004).
  15. R. F. Hess, D. J. Field, “Contour integration across depth,” Vision Res. 35, 1699–1711 (1995).
    [CrossRef] [PubMed]
  16. F. Wilkinson, T. W. James, H. R. Wilson, J. S. Gati, R. S. Menon, M. A. Goodale, “An fMRI study of the selective activation of human extrastriate form vision areas by radial and concentric gratings,” Curr. Biol. 10, 1455–1458 (2000).
    [CrossRef] [PubMed]
  17. J. A. Solomon, M. J. Morgan, “Dichoptically cancelled motion,” Vision Res. 39, 2293–2297 (1999).
    [CrossRef] [PubMed]
  18. O. Rosenbach, “Ueber monokulare Vorherrschaft beim binikularen Sehen,” Munch Med. Wochenschr 30, 1290–1292 (1903).
  19. D. H. Brainard, “The Psychophysics Toolbox,” Spatial Vis. 10, 433–436 (1997).
    [CrossRef]
  20. D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vis. 10, 437–442 (1997).
    [CrossRef]
  21. D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
    [CrossRef] [PubMed]
  22. R. J. Watt, D. Andrews, “APE. Adaptive probit estimation of psychometric function,” Curr. Psychol. Rev. 1, 205–214 (1981).
    [CrossRef]
  23. P. E. King-Smith, D. Rose, “Principles of an adaptive method for measuring the slope of the psychometric function,” Vision Res. 37, 1595–1604 (1997).
    [CrossRef] [PubMed]
  24. D. H. Foster, W. F. Bischop, “Bootstrap estimates of the statistical accuracy of thresholds obtained from psychometric functions,” Spatial Vis. 11, 135–139 (1997).
  25. J. M. Wolf, “Briefly presented stimuli can disrupt constant suppression and binocular rivalry suppression,” Perception 15, 413–417 (1986).
    [CrossRef]
  26. D. H. Hubel, T. N. Wiesel, “Ferrier lecture. Functional architecture of macaque monkey visual cortex,” Proc. R. Soc. London, Ser. B 198, 1–59 (1977).
    [CrossRef]
  27. B. G. Cumming, A. J. Parker, “Local disparity not perceived depth is signaled by binocular neurons in cortical area V1 of the macaque,” J. Neurosci. 20, 4758–4767 (2000).
    [PubMed]
  28. O. M. Thomas, B. G. Cumming, A. J. Parker, “A specialization for relative disparity in V2,” Nat. Neurosci. 5, 472–478 (2002).
    [CrossRef] [PubMed]
  29. J. J. Knierim, D. C. van Essen, “Neuronal responses to static texture patterns in area V1 of the alert macaque monkey,” J. Neurophysiol. 67, 961–980 (1992).
    [PubMed]

2003

R. L. Achtman, R. F. Hess, Y. Z. Wang, “Sensitivity for global shape detection,” J. Vision 3, 616–624 (2003).
[CrossRef]

H. A. Allen, R. F. Hess, B. Mansouri, S. C. Dakin, “Integration of first- and second-order orientation,” J. Opt. Soc. Am. A 20, 974–986 (2003).
[CrossRef]

2002

O. M. Thomas, B. G. Cumming, A. J. Parker, “A specialization for relative disparity in V2,” Nat. Neurosci. 5, 472–478 (2002).
[CrossRef] [PubMed]

2001

2000

O. J. Braddick, J. M. O’Brien, J. Wattam-Bell, J. Atkinson, R. Turner, “Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain,” Curr. Biol. 10, 731–734 (2000).
[CrossRef] [PubMed]

F. Wilkinson, T. W. James, H. R. Wilson, J. S. Gati, R. S. Menon, M. A. Goodale, “An fMRI study of the selective activation of human extrastriate form vision areas by radial and concentric gratings,” Curr. Biol. 10, 1455–1458 (2000).
[CrossRef] [PubMed]

B. G. Cumming, A. J. Parker, “Local disparity not perceived depth is signaled by binocular neurons in cortical area V1 of the macaque,” J. Neurosci. 20, 4758–4767 (2000).
[PubMed]

1999

J. A. Solomon, M. J. Morgan, “Dichoptically cancelled motion,” Vision Res. 39, 2293–2297 (1999).
[CrossRef] [PubMed]

R. F. Hess, Y. Z. Wang, S. C. Dakin, “Are judgements of circularity local or global?” Vision Res. 39, 4354–4360 (1999).
[CrossRef]

1998

F. Wilkinson, H. R. Wilson, C. Habak, “Detection and recognition of radial frequency patterns,” Vision Res. 38, 3555–3568 (1998).
[CrossRef]

H. R. Wilson, F. Wilkinson, “Detection of global structure in Glass patterns: implications for form vision,” Vision Res. 38, 2933–2947 (1998).
[CrossRef] [PubMed]

1997

D. H. Brainard, “The Psychophysics Toolbox,” Spatial Vis. 10, 433–436 (1997).
[CrossRef]

D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vis. 10, 437–442 (1997).
[CrossRef]

P. E. King-Smith, D. Rose, “Principles of an adaptive method for measuring the slope of the psychometric function,” Vision Res. 37, 1595–1604 (1997).
[CrossRef] [PubMed]

D. H. Foster, W. F. Bischop, “Bootstrap estimates of the statistical accuracy of thresholds obtained from psychometric functions,” Spatial Vis. 11, 135–139 (1997).

1995

R. F. Hess, D. J. Field, “Contour integration across depth,” Vision Res. 35, 1699–1711 (1995).
[CrossRef] [PubMed]

1993

D. J. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local ‘association field’,” Vision Res. 33, 173–193 (1993).
[CrossRef] [PubMed]

1992

C. D. Salzman, C. M. Murasugi, K. H. Britten, W. T. Newsome, “Microstimulation in visual area MT: effects on direction discrimination performance,” J. Neurosci. 12, 2331–2355 (1992).
[PubMed]

J. J. Knierim, D. C. van Essen, “Neuronal responses to static texture patterns in area V1 of the alert macaque monkey,” J. Neurophysiol. 67, 961–980 (1992).
[PubMed]

1991

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

1988

W. T. Newsome, E. B. Pare, “A selective impairment of motion perception following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988).
[PubMed]

1986

J. M. Wolf, “Briefly presented stimuli can disrupt constant suppression and binocular rivalry suppression,” Perception 15, 413–417 (1986).
[CrossRef]

1981

R. J. Watt, D. Andrews, “APE. Adaptive probit estimation of psychometric function,” Curr. Psychol. Rev. 1, 205–214 (1981).
[CrossRef]

1977

D. H. Hubel, T. N. Wiesel, “Ferrier lecture. Functional architecture of macaque monkey visual cortex,” Proc. R. Soc. London, Ser. B 198, 1–59 (1977).
[CrossRef]

1903

O. Rosenbach, “Ueber monokulare Vorherrschaft beim binikularen Sehen,” Munch Med. Wochenschr 30, 1290–1292 (1903).

Achtman, R. L.

R. L. Achtman, R. F. Hess, Y. Z. Wang, “Sensitivity for global shape detection,” J. Vision 3, 616–624 (2003).
[CrossRef]

Adelson, E. H.

J. A. Movshon, E. H. Adelson, M. S. Gizzi, W. T. Newsome, “The analysis of moving visual patterns,” in Pattern Recognition Mechanisms, C. Chagas, R. Gattass, C. Gross, eds. (Pontifical Academy of Sciences, Vatican City, 1985), pp. 117–151.

Allen, H. A.

Andrews, D.

R. J. Watt, D. Andrews, “APE. Adaptive probit estimation of psychometric function,” Curr. Psychol. Rev. 1, 205–214 (1981).
[CrossRef]

Atkinson, J.

O. J. Braddick, J. M. O’Brien, J. Wattam-Bell, J. Atkinson, R. Turner, “Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain,” Curr. Biol. 10, 731–734 (2000).
[CrossRef] [PubMed]

Bischop, W. F.

D. H. Foster, W. F. Bischop, “Bootstrap estimates of the statistical accuracy of thresholds obtained from psychometric functions,” Spatial Vis. 11, 135–139 (1997).

Braddick, O. J.

O. J. Braddick, J. M. O’Brien, J. Wattam-Bell, J. Atkinson, R. Turner, “Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain,” Curr. Biol. 10, 731–734 (2000).
[CrossRef] [PubMed]

Brainard, D. H.

D. H. Brainard, “The Psychophysics Toolbox,” Spatial Vis. 10, 433–436 (1997).
[CrossRef]

Britten, K. H.

C. D. Salzman, C. M. Murasugi, K. H. Britten, W. T. Newsome, “Microstimulation in visual area MT: effects on direction discrimination performance,” J. Neurosci. 12, 2331–2355 (1992).
[PubMed]

Cumming, B. G.

O. M. Thomas, B. G. Cumming, A. J. Parker, “A specialization for relative disparity in V2,” Nat. Neurosci. 5, 472–478 (2002).
[CrossRef] [PubMed]

B. G. Cumming, A. J. Parker, “Local disparity not perceived depth is signaled by binocular neurons in cortical area V1 of the macaque,” J. Neurosci. 20, 4758–4767 (2000).
[PubMed]

Dakin, S. C.

H. A. Allen, R. F. Hess, B. Mansouri, S. C. Dakin, “Integration of first- and second-order orientation,” J. Opt. Soc. Am. A 20, 974–986 (2003).
[CrossRef]

S. C. Dakin, “Information limit on the spatial integration of local orientation signals,” J. Opt. Soc. Am. A 18, 1016–1026 (2001).
[CrossRef]

R. F. Hess, Y. Z. Wang, S. C. Dakin, “Are judgements of circularity local or global?” Vision Res. 39, 4354–4360 (1999).
[CrossRef]

P. C. Huang, R. F. Hess, S. C. Dakin, “Different sites for lateral facilitation and contour integration,” Program Abstracts VSS, 210 (2004).

DeValois, K.

R. DeValois, K. DeValois, Spatial Vision, Vol. 14 of Oxford Psychology Series (Oxford U. Press, New York, 1988).

DeValois, R.

R. DeValois, K. DeValois, Spatial Vision, Vol. 14 of Oxford Psychology Series (Oxford U. Press, New York, 1988).

Field, D. J.

R. F. Hess, D. J. Field, “Contour integration across depth,” Vision Res. 35, 1699–1711 (1995).
[CrossRef] [PubMed]

D. J. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local ‘association field’,” Vision Res. 33, 173–193 (1993).
[CrossRef] [PubMed]

Foster, D. H.

D. H. Foster, W. F. Bischop, “Bootstrap estimates of the statistical accuracy of thresholds obtained from psychometric functions,” Spatial Vis. 11, 135–139 (1997).

Gati, J. S.

F. Wilkinson, T. W. James, H. R. Wilson, J. S. Gati, R. S. Menon, M. A. Goodale, “An fMRI study of the selective activation of human extrastriate form vision areas by radial and concentric gratings,” Curr. Biol. 10, 1455–1458 (2000).
[CrossRef] [PubMed]

Gizzi, M. S.

J. A. Movshon, E. H. Adelson, M. S. Gizzi, W. T. Newsome, “The analysis of moving visual patterns,” in Pattern Recognition Mechanisms, C. Chagas, R. Gattass, C. Gross, eds. (Pontifical Academy of Sciences, Vatican City, 1985), pp. 117–151.

Goodale, M. A.

F. Wilkinson, T. W. James, H. R. Wilson, J. S. Gati, R. S. Menon, M. A. Goodale, “An fMRI study of the selective activation of human extrastriate form vision areas by radial and concentric gratings,” Curr. Biol. 10, 1455–1458 (2000).
[CrossRef] [PubMed]

Habak, C.

F. Wilkinson, H. R. Wilson, C. Habak, “Detection and recognition of radial frequency patterns,” Vision Res. 38, 3555–3568 (1998).
[CrossRef]

Hayes, A.

D. J. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local ‘association field’,” Vision Res. 33, 173–193 (1993).
[CrossRef] [PubMed]

Hess, R. F.

H. A. Allen, R. F. Hess, B. Mansouri, S. C. Dakin, “Integration of first- and second-order orientation,” J. Opt. Soc. Am. A 20, 974–986 (2003).
[CrossRef]

R. L. Achtman, R. F. Hess, Y. Z. Wang, “Sensitivity for global shape detection,” J. Vision 3, 616–624 (2003).
[CrossRef]

R. F. Hess, Y. Z. Wang, S. C. Dakin, “Are judgements of circularity local or global?” Vision Res. 39, 4354–4360 (1999).
[CrossRef]

R. F. Hess, D. J. Field, “Contour integration across depth,” Vision Res. 35, 1699–1711 (1995).
[CrossRef] [PubMed]

D. J. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local ‘association field’,” Vision Res. 33, 173–193 (1993).
[CrossRef] [PubMed]

P. C. Huang, R. F. Hess, S. C. Dakin, “Different sites for lateral facilitation and contour integration,” Program Abstracts VSS, 210 (2004).

Huang, P. C.

P. C. Huang, R. F. Hess, S. C. Dakin, “Different sites for lateral facilitation and contour integration,” Program Abstracts VSS, 210 (2004).

Hubel, D. H.

D. H. Hubel, T. N. Wiesel, “Ferrier lecture. Functional architecture of macaque monkey visual cortex,” Proc. R. Soc. London, Ser. B 198, 1–59 (1977).
[CrossRef]

James, T. W.

F. Wilkinson, T. W. James, H. R. Wilson, J. S. Gati, R. S. Menon, M. A. Goodale, “An fMRI study of the selective activation of human extrastriate form vision areas by radial and concentric gratings,” Curr. Biol. 10, 1455–1458 (2000).
[CrossRef] [PubMed]

King-Smith, P. E.

P. E. King-Smith, D. Rose, “Principles of an adaptive method for measuring the slope of the psychometric function,” Vision Res. 37, 1595–1604 (1997).
[CrossRef] [PubMed]

Knierim, J. J.

J. J. Knierim, D. C. van Essen, “Neuronal responses to static texture patterns in area V1 of the alert macaque monkey,” J. Neurophysiol. 67, 961–980 (1992).
[PubMed]

Mansouri, B.

Menon, R. S.

F. Wilkinson, T. W. James, H. R. Wilson, J. S. Gati, R. S. Menon, M. A. Goodale, “An fMRI study of the selective activation of human extrastriate form vision areas by radial and concentric gratings,” Curr. Biol. 10, 1455–1458 (2000).
[CrossRef] [PubMed]

Morgan, M. J.

J. A. Solomon, M. J. Morgan, “Dichoptically cancelled motion,” Vision Res. 39, 2293–2297 (1999).
[CrossRef] [PubMed]

Movshon, J. A.

J. A. Movshon, E. H. Adelson, M. S. Gizzi, W. T. Newsome, “The analysis of moving visual patterns,” in Pattern Recognition Mechanisms, C. Chagas, R. Gattass, C. Gross, eds. (Pontifical Academy of Sciences, Vatican City, 1985), pp. 117–151.

Murasugi, C. M.

C. D. Salzman, C. M. Murasugi, K. H. Britten, W. T. Newsome, “Microstimulation in visual area MT: effects on direction discrimination performance,” J. Neurosci. 12, 2331–2355 (1992).
[PubMed]

Newsome, W. T.

C. D. Salzman, C. M. Murasugi, K. H. Britten, W. T. Newsome, “Microstimulation in visual area MT: effects on direction discrimination performance,” J. Neurosci. 12, 2331–2355 (1992).
[PubMed]

W. T. Newsome, E. B. Pare, “A selective impairment of motion perception following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988).
[PubMed]

J. A. Movshon, E. H. Adelson, M. S. Gizzi, W. T. Newsome, “The analysis of moving visual patterns,” in Pattern Recognition Mechanisms, C. Chagas, R. Gattass, C. Gross, eds. (Pontifical Academy of Sciences, Vatican City, 1985), pp. 117–151.

O’Brien, J. M.

O. J. Braddick, J. M. O’Brien, J. Wattam-Bell, J. Atkinson, R. Turner, “Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain,” Curr. Biol. 10, 731–734 (2000).
[CrossRef] [PubMed]

Pare, E. B.

W. T. Newsome, E. B. Pare, “A selective impairment of motion perception following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988).
[PubMed]

Parker, A. J.

O. M. Thomas, B. G. Cumming, A. J. Parker, “A specialization for relative disparity in V2,” Nat. Neurosci. 5, 472–478 (2002).
[CrossRef] [PubMed]

B. G. Cumming, A. J. Parker, “Local disparity not perceived depth is signaled by binocular neurons in cortical area V1 of the macaque,” J. Neurosci. 20, 4758–4767 (2000).
[PubMed]

Pelli, D. G.

D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vis. 10, 437–442 (1997).
[CrossRef]

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

Robson, J. G.

J. G. Robson, “Receptive fields: neural representation of the spatial and intensive attributes of the visual image,” in Handbook of Perception, E. C. Carterette, M. P. Friedman, eds. (Academic, New York, 1975), pp. 81–112.

Rose, D.

P. E. King-Smith, D. Rose, “Principles of an adaptive method for measuring the slope of the psychometric function,” Vision Res. 37, 1595–1604 (1997).
[CrossRef] [PubMed]

Rosenbach, O.

O. Rosenbach, “Ueber monokulare Vorherrschaft beim binikularen Sehen,” Munch Med. Wochenschr 30, 1290–1292 (1903).

Salzman, C. D.

C. D. Salzman, C. M. Murasugi, K. H. Britten, W. T. Newsome, “Microstimulation in visual area MT: effects on direction discrimination performance,” J. Neurosci. 12, 2331–2355 (1992).
[PubMed]

Solomon, J. A.

J. A. Solomon, M. J. Morgan, “Dichoptically cancelled motion,” Vision Res. 39, 2293–2297 (1999).
[CrossRef] [PubMed]

Thomas, O. M.

O. M. Thomas, B. G. Cumming, A. J. Parker, “A specialization for relative disparity in V2,” Nat. Neurosci. 5, 472–478 (2002).
[CrossRef] [PubMed]

Turner, R.

O. J. Braddick, J. M. O’Brien, J. Wattam-Bell, J. Atkinson, R. Turner, “Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain,” Curr. Biol. 10, 731–734 (2000).
[CrossRef] [PubMed]

van Essen, D. C.

J. J. Knierim, D. C. van Essen, “Neuronal responses to static texture patterns in area V1 of the alert macaque monkey,” J. Neurophysiol. 67, 961–980 (1992).
[PubMed]

Wang, Y. Z.

R. L. Achtman, R. F. Hess, Y. Z. Wang, “Sensitivity for global shape detection,” J. Vision 3, 616–624 (2003).
[CrossRef]

R. F. Hess, Y. Z. Wang, S. C. Dakin, “Are judgements of circularity local or global?” Vision Res. 39, 4354–4360 (1999).
[CrossRef]

Watt, R. J.

R. J. Watt, D. Andrews, “APE. Adaptive probit estimation of psychometric function,” Curr. Psychol. Rev. 1, 205–214 (1981).
[CrossRef]

Wattam-Bell, J.

O. J. Braddick, J. M. O’Brien, J. Wattam-Bell, J. Atkinson, R. Turner, “Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain,” Curr. Biol. 10, 731–734 (2000).
[CrossRef] [PubMed]

Wiesel, T. N.

D. H. Hubel, T. N. Wiesel, “Ferrier lecture. Functional architecture of macaque monkey visual cortex,” Proc. R. Soc. London, Ser. B 198, 1–59 (1977).
[CrossRef]

Wilkinson, F.

F. Wilkinson, T. W. James, H. R. Wilson, J. S. Gati, R. S. Menon, M. A. Goodale, “An fMRI study of the selective activation of human extrastriate form vision areas by radial and concentric gratings,” Curr. Biol. 10, 1455–1458 (2000).
[CrossRef] [PubMed]

F. Wilkinson, H. R. Wilson, C. Habak, “Detection and recognition of radial frequency patterns,” Vision Res. 38, 3555–3568 (1998).
[CrossRef]

H. R. Wilson, F. Wilkinson, “Detection of global structure in Glass patterns: implications for form vision,” Vision Res. 38, 2933–2947 (1998).
[CrossRef] [PubMed]

Wilson, H. R.

F. Wilkinson, T. W. James, H. R. Wilson, J. S. Gati, R. S. Menon, M. A. Goodale, “An fMRI study of the selective activation of human extrastriate form vision areas by radial and concentric gratings,” Curr. Biol. 10, 1455–1458 (2000).
[CrossRef] [PubMed]

F. Wilkinson, H. R. Wilson, C. Habak, “Detection and recognition of radial frequency patterns,” Vision Res. 38, 3555–3568 (1998).
[CrossRef]

H. R. Wilson, F. Wilkinson, “Detection of global structure in Glass patterns: implications for form vision,” Vision Res. 38, 2933–2947 (1998).
[CrossRef] [PubMed]

Wolf, J. M.

J. M. Wolf, “Briefly presented stimuli can disrupt constant suppression and binocular rivalry suppression,” Perception 15, 413–417 (1986).
[CrossRef]

Zhang, L.

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

Curr. Biol.

O. J. Braddick, J. M. O’Brien, J. Wattam-Bell, J. Atkinson, R. Turner, “Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain,” Curr. Biol. 10, 731–734 (2000).
[CrossRef] [PubMed]

F. Wilkinson, T. W. James, H. R. Wilson, J. S. Gati, R. S. Menon, M. A. Goodale, “An fMRI study of the selective activation of human extrastriate form vision areas by radial and concentric gratings,” Curr. Biol. 10, 1455–1458 (2000).
[CrossRef] [PubMed]

Curr. Psychol. Rev.

R. J. Watt, D. Andrews, “APE. Adaptive probit estimation of psychometric function,” Curr. Psychol. Rev. 1, 205–214 (1981).
[CrossRef]

J. Neurophysiol.

J. J. Knierim, D. C. van Essen, “Neuronal responses to static texture patterns in area V1 of the alert macaque monkey,” J. Neurophysiol. 67, 961–980 (1992).
[PubMed]

J. Neurosci.

B. G. Cumming, A. J. Parker, “Local disparity not perceived depth is signaled by binocular neurons in cortical area V1 of the macaque,” J. Neurosci. 20, 4758–4767 (2000).
[PubMed]

C. D. Salzman, C. M. Murasugi, K. H. Britten, W. T. Newsome, “Microstimulation in visual area MT: effects on direction discrimination performance,” J. Neurosci. 12, 2331–2355 (1992).
[PubMed]

W. T. Newsome, E. B. Pare, “A selective impairment of motion perception following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988).
[PubMed]

J. Opt. Soc. Am. A

J. Vision

R. L. Achtman, R. F. Hess, Y. Z. Wang, “Sensitivity for global shape detection,” J. Vision 3, 616–624 (2003).
[CrossRef]

Munch Med. Wochenschr

O. Rosenbach, “Ueber monokulare Vorherrschaft beim binikularen Sehen,” Munch Med. Wochenschr 30, 1290–1292 (1903).

Nat. Neurosci.

O. M. Thomas, B. G. Cumming, A. J. Parker, “A specialization for relative disparity in V2,” Nat. Neurosci. 5, 472–478 (2002).
[CrossRef] [PubMed]

Perception

J. M. Wolf, “Briefly presented stimuli can disrupt constant suppression and binocular rivalry suppression,” Perception 15, 413–417 (1986).
[CrossRef]

Proc. R. Soc. London, Ser. B

D. H. Hubel, T. N. Wiesel, “Ferrier lecture. Functional architecture of macaque monkey visual cortex,” Proc. R. Soc. London, Ser. B 198, 1–59 (1977).
[CrossRef]

Spatial Vis.

D. H. Brainard, “The Psychophysics Toolbox,” Spatial Vis. 10, 433–436 (1997).
[CrossRef]

D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vis. 10, 437–442 (1997).
[CrossRef]

D. H. Foster, W. F. Bischop, “Bootstrap estimates of the statistical accuracy of thresholds obtained from psychometric functions,” Spatial Vis. 11, 135–139 (1997).

Vision Res.

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

P. E. King-Smith, D. Rose, “Principles of an adaptive method for measuring the slope of the psychometric function,” Vision Res. 37, 1595–1604 (1997).
[CrossRef] [PubMed]

R. F. Hess, D. J. Field, “Contour integration across depth,” Vision Res. 35, 1699–1711 (1995).
[CrossRef] [PubMed]

J. A. Solomon, M. J. Morgan, “Dichoptically cancelled motion,” Vision Res. 39, 2293–2297 (1999).
[CrossRef] [PubMed]

D. J. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local ‘association field’,” Vision Res. 33, 173–193 (1993).
[CrossRef] [PubMed]

R. F. Hess, Y. Z. Wang, S. C. Dakin, “Are judgements of circularity local or global?” Vision Res. 39, 4354–4360 (1999).
[CrossRef]

F. Wilkinson, H. R. Wilson, C. Habak, “Detection and recognition of radial frequency patterns,” Vision Res. 38, 3555–3568 (1998).
[CrossRef]

H. R. Wilson, F. Wilkinson, “Detection of global structure in Glass patterns: implications for form vision,” Vision Res. 38, 2933–2947 (1998).
[CrossRef] [PubMed]

Other

J. G. Robson, “Receptive fields: neural representation of the spatial and intensive attributes of the visual image,” in Handbook of Perception, E. C. Carterette, M. P. Friedman, eds. (Academic, New York, 1975), pp. 81–112.

R. DeValois, K. DeValois, Spatial Vision, Vol. 14 of Oxford Psychology Series (Oxford U. Press, New York, 1988).

P. C. Huang, R. F. Hess, S. C. Dakin, “Different sites for lateral facilitation and contour integration,” Program Abstracts VSS, 210 (2004).

J. A. Movshon, E. H. Adelson, M. S. Gizzi, W. T. Newsome, “The analysis of moving visual patterns,” in Pattern Recognition Mechanisms, C. Chagas, R. Gattass, C. Gross, eds. (Pontifical Academy of Sciences, Vatican City, 1985), pp. 117–151.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Two adjacent boxes (1, 2), each holding either stimuli or a fixation point, were located at the center of the screen. Looking through a stereoscope, observers could see one box (3), which contained a fused image. However, the left eye could see only the left box, and the right eye could see the right box. The stimuli could be the signal or noise or both (see Section 2). (A) Eight signal Gabors are presented to one eye, and the fixation point is presented to the other eye. (B) Eight signal Gabors are presented to each eye. (C) Sixteen signal Gabors are presented to one eye, and the fixation point is presented to the other eye. (D) Eight signal Gabors are presented to one eye, and eight noise Gabors are presented to the other eye. (E) Eight signal Gabors and eight noise Gabors are presented to one eye, and one fixation point is presented to the other eye.

Fig. 2
Fig. 2

Data from observers (BM, SS, PC, and HA) are presented in four columns (1, 2, 3, and 4), respectively. Five conditions (A), (B), (C), (D), and (E) are tested as described in Section 2. The orientation threshold offset is plotted for each standard deviation of the signal population (external noise). Circles represent the data from presenting the signal to the dominant eye (StoD), and the stars show the data from presenting the signal to the nondominant eye (StoND). In condition B, both eyes are presented with the signal (StoB). The best fits for StoD and StoND data are shown, respectively, as dotted and solid curves. The parameters of internal noise (σint) and number of samples (n) from the fitting model (see Section 2) are shown for each observer and for each condition (StoD and StoND). Error bars represent 95% CIs.

Fig. 3
Fig. 3

(A) Internal noise and (B) number of sample parameters are shown from the different conditions (see Section 2). Open and black bars represent StoD and StoND, respectively. In condition B, both eyes are presented with the signal (StoB). Gray bars (F) represent the condition in which the signal and noise are presented in different disparity planes. Error bars represent ±0.5 standard deviations.

Fig. 4
Fig. 4

Orientation-discrimination thresholds and the parameters from the equivalent noise model are presented for conditions F(StoD) and F(StoND). The disparities are 33.92 arc min and zero. The orientation-discrimination thresholds, internal noise, and number of samples in condition F(StoD) are not significantly different (the CI is 95%, p>0.05) from those of the control condition F(StoND). Error bars represent 95% CIs. T.O.O., threshold orientation offset.

Fig. 5
Fig. 5

Data from a control experiment that reduced presentation duration for conditions D(StoD) and D(StoND). Presentation time was 100 ms for two observers. The differences in thresholds, internal noise, and number of samples are significant (the CI is 95%, p<0.05). Error bars represent 95% CIs. T.O.O., threshold orientation offset.

Fig. 6
Fig. 6

Beside the eight Gabors in the main experiment, two numbers of Gabors (2, 32) were tested with one observer (SS). Five conditions are presented in the same configuration as used in Fig. 1. Internal noise is generally decreased and the number of samples is increased when the number of Gabors is increased. The significant differences in condition D is replicated within the cases of 2 and 32 Gabors. Error bars represent 95% CIs.

Fig. 7
Fig. 7

Internal noise and number of sample parameters are shown for three numbers of Gabors (2, 8, and 32) and all conditions displayed in Fig. 6 (see Section 2). Dotted and solid curves represent StoD and StoND, respectively. In condition B, both eyes are presented with the signal (StoB). Error bars represent 95% CIs.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σobs2=(σint2+σext2)/n,

Metrics