Table 1
Simulation Parameters
Parameter  NearField Visualization  FarField Visualization 

$D(\mathrm{m})$
 1  10 
${z}_{g}(\mathrm{m})$
 1  10 
Rendering depth ${z}_{p}(\mathrm{m})$

$0.73\sim 1.32$

$5.08\sim 329.0$

Vertical FOV ${\varphi}_{g},$
${\varphi}_{B}(\xb0)$
 ±15 
Horizontal FOV ${\theta}_{g}^{L},$
${\theta}_{B}^{L}(\xb0)$
 ±20 
${r}_{p}(\mathrm{mm})$
 9.25 
Table 2
Angular Errors as ${\theta}_{g}^{L}$
and ${\varphi}_{g}$
Vary for Case 1, Far Field, for $D=10,$
${z}_{g}=10,$
$\alpha =0$
${\theta}_{g}^{L}(\xb0)$

${\varphi}_{g}(\xb0)$
 Maximum Magnitude of Angular Error (arc min)
 Condition When Angular Error Reaches Minimum


${\mathbf{C}}_{L}$
and ${\mathbf{C}}_{R}$
as Eye Points 
${\mathbf{P}}_{L}$
and ${\mathbf{P}}_{R}$
as Eye Points 
${\mathbf{C}}_{L}$
and ${\mathbf{C}}_{R}$
as Eye Points 
${\mathbf{P}}_{L}$
and ${\mathbf{P}}_{R}$
as Eye Points 

0  0  1  0.01 
${\theta}_{B}^{L}=0$
or ${z}_{p}=10$

${z}_{p}=10$

0  15  0.8  0.7   
10  0  1.4  0.5 
${\theta}_{B}^{L}=10$
or ${z}_{p}=10$
 
10  15  1.4  0.9   
10  0  1.4  0.5 
${\theta}_{B}^{L}=10$
or ${z}_{p}=10$
 
10  15  1.4  0.9   
20  0  2.0  1.1 
${\theta}_{B}^{L}=20$
or ${z}_{p}=10$
 
20  15  2.0  1.3   
20  0  2.0  1.1 
${\theta}_{B}^{L}=20$
or ${z}_{p}=10$
 
20  15  2.0  1.3   
Table 3
Angular and Depth Errors as ${\theta}_{g}^{L}$
and ${\varphi}_{g}$
Vary for Case 1, Near Field, for $D=1,$
${z}_{g}=1,$
$\alpha =0$
${\theta}_{g}^{L}(\xb0)$

${\varphi}_{g}(\xb0)$
 Maximum Magnitude of Angular Error (arc min)
 Maximum Magnitude of Depth Error (mm)


${\mathbf{C}}_{L}$
and ${\mathbf{C}}_{R}$
as Eye Points 
${\mathbf{P}}_{L}$
and ${\mathbf{P}}_{R}$
as Eye Points 
${\mathbf{C}}_{L}$
and ${\mathbf{C}}_{R}$
as Eye Points 
${\mathbf{P}}_{L}$
and ${\mathbf{P}}_{R}$
as Eye Points 

0  0  4  0.4  1  4.2 
0  15  4  3  0.8  4.2 
10  0  5.4  1.7  1.1  4.2 
10  15  5.4  3.4  1.0  4.2 
10  0  5.4  3.0  1.1  4.2 
10  15  5.4  4.0  1.0  4.2 
20  0  7.2  4.0  1.0  4.2 
20  15  7.2  5.0  1.0  4.2 
20  0  7.2  4.4  1.2  4.2 
20  15  7.2  5.0  1.0  4.2 
Table 4
Angular Errors as ${\varphi}_{g}$
and α Vary for Case 2, Far Field, for $D=10,$
${z}_{g}=10,$
${\theta}_{g}^{L}={\theta}_{g}^{R}$
${\varphi}_{g}(\xb0)$
 α (°)  Maximum Magnitude of Angular Error (arc min)
 Condition When Angular Error Reaches Minimum


${\mathbf{C}}_{L}$
and ${\mathbf{C}}_{R}$
as Eye Points 
${\mathbf{P}}_{L}$
and ${\mathbf{P}}_{R}$
as Eye Points 
${\mathbf{C}}_{L}$
and ${\mathbf{C}}_{R}$
as Eye Points 
${\mathbf{P}}_{L}$
and ${\mathbf{P}}_{R}$
as Eye Points 

0  15  1.2  0.024 
${z}_{p}=10$

${z}_{p}=10$

0  10  1.2  0.016 
0  5  1.2  0.008 
0  0  1.2  0 
10  25  1.5  0.5 
10  10  1.1  0.54 
10  0  1  0.53 
10  5  1  0.52 
15  30  1.6  0.75 
15  20  1.4  0.8 
15  10  1.2  0.8 
15  0  1.0  0.78 
Table 5
Angular and Depth Errors as ${\varphi}_{g}$
and α Vary for Case 2, Near Field, for $D=1,$
${z}_{g}=1,$
${\theta}_{g}^{L}={\theta}_{g}^{R}$
${\varphi}_{g}(\xb0)$
 α (°)  Maximum Magnitude of Angular Error (arc min)
 Maximum Magnitude of Depth Error (mm)


${\mathbf{C}}_{L}$
and ${\mathbf{C}}_{R}$
as Eye Points 
${\mathbf{P}}_{L}$
and ${\mathbf{P}}_{R}$
as Eye Points 
${\mathbf{C}}_{L}$
and ${\mathbf{C}}_{R}$
as Eye Points 
${\mathbf{P}}_{L}$
and ${\mathbf{P}}_{R}$
as Eye Points 

0  15  4.8  0.05  1.0  4.2 
0  10  4.4  0.04  1.0  4.2 
0  5  4.2  0.037  1.0  4.2 
0  0  4.2  0.07  1.0  4.2 
10  25  5.6  2.0  1.0  4.2 
10  10  4.6  2.2  1.0  4.2 
10  0  4.2  2.1  1.0  4.2 
10  5  4.2  2.0  1.0  4.2 
15  30  6.4  2.8  1.0  4.2 
15  20  5.4  3.0  1.0  4.2 
15  10  4.6  3.0  1.0  4.2 
15  0  4.0  2.9  1.0  4.2 