Abstract

High-resolution imaging with a camera system built on the Scheimpflug principle has been used to characterize the geometry of the anterior segment of the adult human eye as a function of aging and accommodative state but is critically dependent on algorithms for correction of distortion. High-resolution magnetic resonance imaging (MRI), in contrast, provides lower-resolution information about the adult eye but is undistorted. To test the accuracy of the Scheimpflug correction methods used by Cook and Koretz [J. Opt. Soc. Am. A 15, 1473 (1998)]; [Appl. Opt. 30, 2088 (1991)], data on anterior chamber and segment lengths, as well as lens thickness and anterior and posterior curvatures, were compared with corresponding MRI data for adults aged 18–50 at 0 diopter accommodation. Excellent statistical agreement was found between the MRI and the Scheimpflug data sets with the exception of the posterior lens radius of curvature, which is less well defined than the other measurements in the Scheimpflug images. The considerable agreement between data obtained with MR and Scheimpflug imaging, two different yet complementary in vivo imaging techniques, validates the Scheimpflug correction algorithms of Cook and Koretz and suggests the capability of directly integrating information from both. A third, equivalent, data set obtained with a Scheimpflug-style camera system differs considerably from both Scheimpflug and MRI results in magnitude and age dependence, with negative implications for this alternative method and its correction procedures.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Garner, G. Smith, “Changes in equivalent and gradient refractive index of the crystalline lens with accommodation,” Optom. Vision Sci. 74, 114–119 (1997).
    [CrossRef]
  2. A. P. Beers, G. L. van der Heijde, “Age-related changes in the accommodation mechanism,” Optom. Vision Sci. 73, 235–242 (1996).
    [CrossRef]
  3. J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye—aging of the anterior segment,” Vision Res. 29, 1685–1692 (1989).
    [CrossRef]
  4. N. A. Brown, A. J. Bron, W. Ayliffe, J. Sparrow, A. R. Hill, “The objective assessment of cataract,” Eye 1, 234–246 (1987).
    [CrossRef] [PubMed]
  5. M. L. Harris, K. J. Hanna, G. A. Shun-Shin, R. Holden, N. A. Brown, “Analysis of retro-illumination photographs for use in longitudinal studies of cataract,” Eye 7, 572–577 (1993).
    [CrossRef] [PubMed]
  6. R. Holden, J. Hesler, J. Forbes, N. A. Brown, “Visual performance and objectively measured grades of cataract. A correlation of methods designed for use in longitudinal trials,” Optom. Vision Sci. 70, 982–985 (1993).
    [CrossRef]
  7. J. M. Sparrow, N. A. Brown, G. A. Shun-Shin, A. J. Bron, “The Oxford modular cataract image analysis system,” Eye 4, 638–648 (1990).
    [CrossRef] [PubMed]
  8. U. Muller-Breitenkamp, H. Laser, O. Hockwin, “Objectified measurement of eye lens transparency in elderly probands. Results of a Scheimpflug photography study over the course of three and a half years,” Klin. Monatsbl. Augenheilkd. 201, 97–101 (1992). (Original language, German. Abstract in English.)
  9. N. Brown, “An advanced slit-image camera,” Br. J. Ophthamol. 56, 624–631 (1972).
    [CrossRef]
  10. N. Brown, “The change in lens curvature with age,” Exp. Eye Res. 19, 175–183 (1974).
    [CrossRef] [PubMed]
  11. J. F. Koretz, G. H. Handelman, “The ‘lens paradox’ and image formation in accommodating human eyes,” in The Lens: Transparency and Cataract, G. Duncan, ed., Topics in Aging Research in Europe, Rijswijk, The Netherlands, 1986, pp. 57–64.
  12. N. Brown, “The change in shape and internal form of the lens of the eye on accommodation,” Exp. Eye Res. 15, 441–459 (1973).
    [CrossRef] [PubMed]
  13. J. F. Koretz, G. H. Handelman, N. P. Brown, “Analysis of human crystalline lens curvature as a function of accommodative state and age,” Vision Res. 24, 1141–1151 (1984).
    [CrossRef] [PubMed]
  14. J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye. 1: Evaluation of in vivo measurement techniques,” Appl. Opt. 28, 1097–1102 (1989).
    [CrossRef] [PubMed]
  15. C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, P. L. Kaufman, “Aging of the human crystalline lens and anterior segment,” Vision Res. 34, 2945–2954 (1994).
    [CrossRef] [PubMed]
  16. J. F. Koretz, C. A. Cook, P. L. Kaufman, “Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus,” Invest. Ophthalmol. Visual Sci. 38, 569–578 (1997).
  17. J. F. Koretz, C. A. Cook, P. L. Kaufman, “Aging of the human lens: changes in lens shape at zero-diopter accommodation,” J. Opt. Soc. Am. A 18, 265–272 (2001).
    [CrossRef]
  18. J. F. Koretz, C. A. Cook, P. L. Kaufman, “Aging of the human lens: changes in lens shape upon accommodation and with accommodative loss,” J. Opt. Soc. Am. A 19, 144–151 (2002).
    [CrossRef]
  19. J. F. Koretz, A. Rogot, P. L. Kaufman, “Physiological strategies for emmetropia,” Trans. Am. Ophthalmol. Soc. 93, 105–118; discussion 118–122 (1995).
    [PubMed]
  20. J. F. Koretz, “Development and aging of human visual focusing mechanisms,” in Trends in Optonics and Photonics: Vision Science and Its Applications, V. Lakshminarayanan, ed. (Optical Society of America, Washington, D.C., 2000), pp. 246–258.
  21. J. F. Koretz, C. A. Cook, “Aging of the optics of the human eye: lens refraction models and principal plane locations,” Optom. Vision Sci. 78, 396–404 (2001).
    [CrossRef]
  22. J. F. Koretz, C. A. Cook, J. R. Kuszak, “The zones of discontinuity in the human lens: development and distribution with age,” Vision Res. 34, 2955–2962 (1994).
    [CrossRef] [PubMed]
  23. T. Newton, I. Bilaniuk, Radiology of the Eye and Orbit (Raven, New York, 1990).
  24. J. M. Miller, “Functional anatomy of normal human rectus muscles,” Vision Res. 29, 223–240 (1989).
    [CrossRef] [PubMed]
  25. R. A. Clark, J. M. Miller, J. L. Demer, “Location and stability of rectus muscle pulleys. Muscle paths as a function of gaze,” Invest. Ophthalmol. Visual Sci. 38, 227–240 (1997).
  26. R. A. Clark, J. M. Miller, J. L. Demer, “Three-dimensional location of human rectus pulleys by path inflections in secondary gaze positions,” Invest. Ophthalmol. Visual Sci. 41, 3787–3797 (2000).
  27. B. A. Moffat, K. A. Landman, R. J. Truscott, M. H. Sweeney, J. M. Pope, “Age-related changes in the kinetics of water transport in normal human lenses,” Exp. Eye Res. 69, 663–669 (1999).
    [CrossRef]
  28. B. A. Moffat, D. A. Atchison, J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42, 1683–1693 (2002).
    [CrossRef] [PubMed]
  29. B. A. Moffat, J. M. Pope, “Anisotropic water transport in the human eye lens studied by diffusion tensor NMR micro-imaging,” Exp. Eye Res. 74, 677–687 (2002).
    [CrossRef] [PubMed]
  30. B. A. Moffat, J. M. Pope, “The interpretation of multi-exponential water proton transverse relaxation in the human and porcine eye lens,” Magn. Reson. Imaging 20, 83–93 (2002).
    [CrossRef] [PubMed]
  31. F. A. Bettelheim, “Syneretic response to pressure in ocular lens,” J. Theor. Biol. 197, 277–280 (1999).
    [CrossRef] [PubMed]
  32. F. A. Bettelheim, M. J. Lizak, J. S. Zigler, “Relaxographic studies of aging normal human lenses,” Exp. Eye Res. 75, 695–702 (2002).
    [CrossRef] [PubMed]
  33. F. A. Bettelheim, M. J. Lizak, J. S. Zigler, “Syneretic response of aging normal human lens to pressure,” Invest. Ophthalmol. Visual Sci. 44, 258–263 (2003).
    [CrossRef]
  34. S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Visual Sci. 40, 1162–1169 (1999).
  35. L. Strenk, S. Strenk, J. Semmlow, “Measurement of the aging ciliary muscle and processes,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 41, S564 (2000).
  36. S. Strenk, J. Semmlow, L. Strenk, “In-vivo lens biometry using high resolution MRI,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 41, S4 (2000).
  37. L. Strenk, S. Strenk, J. L. Semmlow, A. Krudy, “High resolution in vivo MR imaging of the human zonules,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 42, S283 (2001).
  38. S. A. Strenk, L. M. Strenk, J. L. Semmlow, J. K. DeMarco, “Magnetic resonance imaging study of the effect of age and accommodation on the human lens cross sectional area,” Invest. Ophthalmol. Visual Sci. (to be published).
  39. C. A. Cook, J. F. Koretz, “Acquisition of the curves of the human crystalline lens from slit lamp images: an application of the Hough transform,” Appl. Opt. 30, 2088–2099 (1991).
    [CrossRef] [PubMed]
  40. M. Dubbelman, G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41, 1867–1877 (2001).
    [CrossRef] [PubMed]
  41. C. A. Cook, J. F. Koretz, “Methods to obtain quantitative parametric descriptions of the optical surfaces of the human crystalline lens from Scheimpflug slit-lamp images. I. Image processing methods,” J. Opt. Soc. Am. A 15, 1473–1485 (1998).
    [CrossRef]
  42. N. Brown, “Quantitative slit-image photography of the lens,” Trans. Ophthalmol. Soc. U. K. 92, 303–307 (1972).
    [PubMed]
  43. N. Brown, “The shape of the lens equator,” Exp. Eye Res. 19, 571–576 (1974).
    [CrossRef] [PubMed]
  44. S. J. Judge, H. J. Burd, “Modelling the mechanics of accommodation and presbyopia,” Ophthalmic Physiol. Opt. 22, 397–400 (2002).
    [CrossRef] [PubMed]
  45. H. J. Burd, S. J. Judge, J. A. Cross, “Numerical modelling of the accommodating lens,” Vision Res. 42, 2235–2251 (2002).
    [CrossRef] [PubMed]
  46. J. F. Koretz, G. H. Handelman, “Model of the accommodative mechanism in the human eye,” Vision Res. 22, 917–927 (1982).
    [CrossRef] [PubMed]
  47. J. F. Koretz, G. H. Handelman, “A model for accommodation in the young human eye: the effects of lens elastic anisotropy on the mechanism,” Vision Res. 23, 1679–1686 (1983).
    [CrossRef] [PubMed]
  48. J. F. Koretz, G. H. Handelman, “Modeling age-related accommodation loss in the human eye,” Int. J. Math. Modeling 7, 1003–1014 (1986).
    [CrossRef]
  49. C. A. Cook, J. F. Koretz, “Modeling the optical properties of the aging human crystalline lens from computer processed Scheimpflug images in relation to the lens paradox,” in Vision Science and Its Applications, Vol. 1 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 138–141.
  50. J. F. Koretz, “Models of the Lens and Aging,” in Models of the Visual System, K. J. Ciuffreda, ed. (Kluwer Academic/Plenum, New York, 2001).
  51. M. Dubbelman, G. L. van der Heijde, H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vision Sci. 78, 411–416 (2001).
    [CrossRef]
  52. A. P. Beers, G. L. van der Heijde, “Analysis of accommodation function with ultrasonography,” Doc. Ophthalmol. 92, 1–10 (1996).
    [CrossRef] [PubMed]
  53. A. Glasser, M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38, 209–229 (1998).
    [CrossRef] [PubMed]
  54. A. Glasser, M. C. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39, 1991–2015 (1999).
    [CrossRef] [PubMed]
  55. R. A. Weale, “On potential causes of presbyopia,” Vision Res. 39, 1263–1272 (1999).
    [PubMed]

2003

F. A. Bettelheim, M. J. Lizak, J. S. Zigler, “Syneretic response of aging normal human lens to pressure,” Invest. Ophthalmol. Visual Sci. 44, 258–263 (2003).
[CrossRef]

2002

B. A. Moffat, D. A. Atchison, J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42, 1683–1693 (2002).
[CrossRef] [PubMed]

B. A. Moffat, J. M. Pope, “Anisotropic water transport in the human eye lens studied by diffusion tensor NMR micro-imaging,” Exp. Eye Res. 74, 677–687 (2002).
[CrossRef] [PubMed]

B. A. Moffat, J. M. Pope, “The interpretation of multi-exponential water proton transverse relaxation in the human and porcine eye lens,” Magn. Reson. Imaging 20, 83–93 (2002).
[CrossRef] [PubMed]

J. F. Koretz, C. A. Cook, P. L. Kaufman, “Aging of the human lens: changes in lens shape upon accommodation and with accommodative loss,” J. Opt. Soc. Am. A 19, 144–151 (2002).
[CrossRef]

F. A. Bettelheim, M. J. Lizak, J. S. Zigler, “Relaxographic studies of aging normal human lenses,” Exp. Eye Res. 75, 695–702 (2002).
[CrossRef] [PubMed]

S. J. Judge, H. J. Burd, “Modelling the mechanics of accommodation and presbyopia,” Ophthalmic Physiol. Opt. 22, 397–400 (2002).
[CrossRef] [PubMed]

H. J. Burd, S. J. Judge, J. A. Cross, “Numerical modelling of the accommodating lens,” Vision Res. 42, 2235–2251 (2002).
[CrossRef] [PubMed]

2001

M. Dubbelman, G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41, 1867–1877 (2001).
[CrossRef] [PubMed]

M. Dubbelman, G. L. van der Heijde, H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vision Sci. 78, 411–416 (2001).
[CrossRef]

J. F. Koretz, C. A. Cook, “Aging of the optics of the human eye: lens refraction models and principal plane locations,” Optom. Vision Sci. 78, 396–404 (2001).
[CrossRef]

J. F. Koretz, C. A. Cook, P. L. Kaufman, “Aging of the human lens: changes in lens shape at zero-diopter accommodation,” J. Opt. Soc. Am. A 18, 265–272 (2001).
[CrossRef]

L. Strenk, S. Strenk, J. L. Semmlow, A. Krudy, “High resolution in vivo MR imaging of the human zonules,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 42, S283 (2001).

2000

L. Strenk, S. Strenk, J. Semmlow, “Measurement of the aging ciliary muscle and processes,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 41, S564 (2000).

S. Strenk, J. Semmlow, L. Strenk, “In-vivo lens biometry using high resolution MRI,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 41, S4 (2000).

R. A. Clark, J. M. Miller, J. L. Demer, “Three-dimensional location of human rectus pulleys by path inflections in secondary gaze positions,” Invest. Ophthalmol. Visual Sci. 41, 3787–3797 (2000).

1999

B. A. Moffat, K. A. Landman, R. J. Truscott, M. H. Sweeney, J. M. Pope, “Age-related changes in the kinetics of water transport in normal human lenses,” Exp. Eye Res. 69, 663–669 (1999).
[CrossRef]

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Visual Sci. 40, 1162–1169 (1999).

F. A. Bettelheim, “Syneretic response to pressure in ocular lens,” J. Theor. Biol. 197, 277–280 (1999).
[CrossRef] [PubMed]

A. Glasser, M. C. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39, 1991–2015 (1999).
[CrossRef] [PubMed]

R. A. Weale, “On potential causes of presbyopia,” Vision Res. 39, 1263–1272 (1999).
[PubMed]

1998

1997

R. A. Clark, J. M. Miller, J. L. Demer, “Location and stability of rectus muscle pulleys. Muscle paths as a function of gaze,” Invest. Ophthalmol. Visual Sci. 38, 227–240 (1997).

J. F. Koretz, C. A. Cook, P. L. Kaufman, “Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus,” Invest. Ophthalmol. Visual Sci. 38, 569–578 (1997).

L. F. Garner, G. Smith, “Changes in equivalent and gradient refractive index of the crystalline lens with accommodation,” Optom. Vision Sci. 74, 114–119 (1997).
[CrossRef]

1996

A. P. Beers, G. L. van der Heijde, “Age-related changes in the accommodation mechanism,” Optom. Vision Sci. 73, 235–242 (1996).
[CrossRef]

A. P. Beers, G. L. van der Heijde, “Analysis of accommodation function with ultrasonography,” Doc. Ophthalmol. 92, 1–10 (1996).
[CrossRef] [PubMed]

1995

J. F. Koretz, A. Rogot, P. L. Kaufman, “Physiological strategies for emmetropia,” Trans. Am. Ophthalmol. Soc. 93, 105–118; discussion 118–122 (1995).
[PubMed]

1994

C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, P. L. Kaufman, “Aging of the human crystalline lens and anterior segment,” Vision Res. 34, 2945–2954 (1994).
[CrossRef] [PubMed]

J. F. Koretz, C. A. Cook, J. R. Kuszak, “The zones of discontinuity in the human lens: development and distribution with age,” Vision Res. 34, 2955–2962 (1994).
[CrossRef] [PubMed]

1993

M. L. Harris, K. J. Hanna, G. A. Shun-Shin, R. Holden, N. A. Brown, “Analysis of retro-illumination photographs for use in longitudinal studies of cataract,” Eye 7, 572–577 (1993).
[CrossRef] [PubMed]

R. Holden, J. Hesler, J. Forbes, N. A. Brown, “Visual performance and objectively measured grades of cataract. A correlation of methods designed for use in longitudinal trials,” Optom. Vision Sci. 70, 982–985 (1993).
[CrossRef]

1992

U. Muller-Breitenkamp, H. Laser, O. Hockwin, “Objectified measurement of eye lens transparency in elderly probands. Results of a Scheimpflug photography study over the course of three and a half years,” Klin. Monatsbl. Augenheilkd. 201, 97–101 (1992). (Original language, German. Abstract in English.)

1991

1990

J. M. Sparrow, N. A. Brown, G. A. Shun-Shin, A. J. Bron, “The Oxford modular cataract image analysis system,” Eye 4, 638–648 (1990).
[CrossRef] [PubMed]

1989

J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye—aging of the anterior segment,” Vision Res. 29, 1685–1692 (1989).
[CrossRef]

J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye. 1: Evaluation of in vivo measurement techniques,” Appl. Opt. 28, 1097–1102 (1989).
[CrossRef] [PubMed]

J. M. Miller, “Functional anatomy of normal human rectus muscles,” Vision Res. 29, 223–240 (1989).
[CrossRef] [PubMed]

1987

N. A. Brown, A. J. Bron, W. Ayliffe, J. Sparrow, A. R. Hill, “The objective assessment of cataract,” Eye 1, 234–246 (1987).
[CrossRef] [PubMed]

1986

J. F. Koretz, G. H. Handelman, “Modeling age-related accommodation loss in the human eye,” Int. J. Math. Modeling 7, 1003–1014 (1986).
[CrossRef]

1984

J. F. Koretz, G. H. Handelman, N. P. Brown, “Analysis of human crystalline lens curvature as a function of accommodative state and age,” Vision Res. 24, 1141–1151 (1984).
[CrossRef] [PubMed]

1983

J. F. Koretz, G. H. Handelman, “A model for accommodation in the young human eye: the effects of lens elastic anisotropy on the mechanism,” Vision Res. 23, 1679–1686 (1983).
[CrossRef] [PubMed]

1982

J. F. Koretz, G. H. Handelman, “Model of the accommodative mechanism in the human eye,” Vision Res. 22, 917–927 (1982).
[CrossRef] [PubMed]

1974

N. Brown, “The shape of the lens equator,” Exp. Eye Res. 19, 571–576 (1974).
[CrossRef] [PubMed]

N. Brown, “The change in lens curvature with age,” Exp. Eye Res. 19, 175–183 (1974).
[CrossRef] [PubMed]

1973

N. Brown, “The change in shape and internal form of the lens of the eye on accommodation,” Exp. Eye Res. 15, 441–459 (1973).
[CrossRef] [PubMed]

1972

N. Brown, “An advanced slit-image camera,” Br. J. Ophthamol. 56, 624–631 (1972).
[CrossRef]

N. Brown, “Quantitative slit-image photography of the lens,” Trans. Ophthalmol. Soc. U. K. 92, 303–307 (1972).
[PubMed]

Atchison, D. A.

B. A. Moffat, D. A. Atchison, J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42, 1683–1693 (2002).
[CrossRef] [PubMed]

Ayliffe, W.

N. A. Brown, A. J. Bron, W. Ayliffe, J. Sparrow, A. R. Hill, “The objective assessment of cataract,” Eye 1, 234–246 (1987).
[CrossRef] [PubMed]

Beers, A. P.

A. P. Beers, G. L. van der Heijde, “Age-related changes in the accommodation mechanism,” Optom. Vision Sci. 73, 235–242 (1996).
[CrossRef]

A. P. Beers, G. L. van der Heijde, “Analysis of accommodation function with ultrasonography,” Doc. Ophthalmol. 92, 1–10 (1996).
[CrossRef] [PubMed]

Bettelheim, F. A.

F. A. Bettelheim, M. J. Lizak, J. S. Zigler, “Syneretic response of aging normal human lens to pressure,” Invest. Ophthalmol. Visual Sci. 44, 258–263 (2003).
[CrossRef]

F. A. Bettelheim, M. J. Lizak, J. S. Zigler, “Relaxographic studies of aging normal human lenses,” Exp. Eye Res. 75, 695–702 (2002).
[CrossRef] [PubMed]

F. A. Bettelheim, “Syneretic response to pressure in ocular lens,” J. Theor. Biol. 197, 277–280 (1999).
[CrossRef] [PubMed]

Bilaniuk, I.

T. Newton, I. Bilaniuk, Radiology of the Eye and Orbit (Raven, New York, 1990).

Bron, A. J.

J. M. Sparrow, N. A. Brown, G. A. Shun-Shin, A. J. Bron, “The Oxford modular cataract image analysis system,” Eye 4, 638–648 (1990).
[CrossRef] [PubMed]

N. A. Brown, A. J. Bron, W. Ayliffe, J. Sparrow, A. R. Hill, “The objective assessment of cataract,” Eye 1, 234–246 (1987).
[CrossRef] [PubMed]

Brown, N.

N. Brown, “The change in lens curvature with age,” Exp. Eye Res. 19, 175–183 (1974).
[CrossRef] [PubMed]

N. Brown, “The shape of the lens equator,” Exp. Eye Res. 19, 571–576 (1974).
[CrossRef] [PubMed]

N. Brown, “The change in shape and internal form of the lens of the eye on accommodation,” Exp. Eye Res. 15, 441–459 (1973).
[CrossRef] [PubMed]

N. Brown, “An advanced slit-image camera,” Br. J. Ophthamol. 56, 624–631 (1972).
[CrossRef]

N. Brown, “Quantitative slit-image photography of the lens,” Trans. Ophthalmol. Soc. U. K. 92, 303–307 (1972).
[PubMed]

Brown, N. A.

M. L. Harris, K. J. Hanna, G. A. Shun-Shin, R. Holden, N. A. Brown, “Analysis of retro-illumination photographs for use in longitudinal studies of cataract,” Eye 7, 572–577 (1993).
[CrossRef] [PubMed]

R. Holden, J. Hesler, J. Forbes, N. A. Brown, “Visual performance and objectively measured grades of cataract. A correlation of methods designed for use in longitudinal trials,” Optom. Vision Sci. 70, 982–985 (1993).
[CrossRef]

J. M. Sparrow, N. A. Brown, G. A. Shun-Shin, A. J. Bron, “The Oxford modular cataract image analysis system,” Eye 4, 638–648 (1990).
[CrossRef] [PubMed]

N. A. Brown, A. J. Bron, W. Ayliffe, J. Sparrow, A. R. Hill, “The objective assessment of cataract,” Eye 1, 234–246 (1987).
[CrossRef] [PubMed]

Brown, N. P.

J. F. Koretz, G. H. Handelman, N. P. Brown, “Analysis of human crystalline lens curvature as a function of accommodative state and age,” Vision Res. 24, 1141–1151 (1984).
[CrossRef] [PubMed]

Burd, H. J.

S. J. Judge, H. J. Burd, “Modelling the mechanics of accommodation and presbyopia,” Ophthalmic Physiol. Opt. 22, 397–400 (2002).
[CrossRef] [PubMed]

H. J. Burd, S. J. Judge, J. A. Cross, “Numerical modelling of the accommodating lens,” Vision Res. 42, 2235–2251 (2002).
[CrossRef] [PubMed]

Campbell, M. C.

A. Glasser, M. C. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39, 1991–2015 (1999).
[CrossRef] [PubMed]

A. Glasser, M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38, 209–229 (1998).
[CrossRef] [PubMed]

Clark, R. A.

R. A. Clark, J. M. Miller, J. L. Demer, “Three-dimensional location of human rectus pulleys by path inflections in secondary gaze positions,” Invest. Ophthalmol. Visual Sci. 41, 3787–3797 (2000).

R. A. Clark, J. M. Miller, J. L. Demer, “Location and stability of rectus muscle pulleys. Muscle paths as a function of gaze,” Invest. Ophthalmol. Visual Sci. 38, 227–240 (1997).

Cook, C. A.

J. F. Koretz, C. A. Cook, P. L. Kaufman, “Aging of the human lens: changes in lens shape upon accommodation and with accommodative loss,” J. Opt. Soc. Am. A 19, 144–151 (2002).
[CrossRef]

J. F. Koretz, C. A. Cook, “Aging of the optics of the human eye: lens refraction models and principal plane locations,” Optom. Vision Sci. 78, 396–404 (2001).
[CrossRef]

J. F. Koretz, C. A. Cook, P. L. Kaufman, “Aging of the human lens: changes in lens shape at zero-diopter accommodation,” J. Opt. Soc. Am. A 18, 265–272 (2001).
[CrossRef]

C. A. Cook, J. F. Koretz, “Methods to obtain quantitative parametric descriptions of the optical surfaces of the human crystalline lens from Scheimpflug slit-lamp images. I. Image processing methods,” J. Opt. Soc. Am. A 15, 1473–1485 (1998).
[CrossRef]

J. F. Koretz, C. A. Cook, P. L. Kaufman, “Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus,” Invest. Ophthalmol. Visual Sci. 38, 569–578 (1997).

C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, P. L. Kaufman, “Aging of the human crystalline lens and anterior segment,” Vision Res. 34, 2945–2954 (1994).
[CrossRef] [PubMed]

J. F. Koretz, C. A. Cook, J. R. Kuszak, “The zones of discontinuity in the human lens: development and distribution with age,” Vision Res. 34, 2955–2962 (1994).
[CrossRef] [PubMed]

C. A. Cook, J. F. Koretz, “Acquisition of the curves of the human crystalline lens from slit lamp images: an application of the Hough transform,” Appl. Opt. 30, 2088–2099 (1991).
[CrossRef] [PubMed]

C. A. Cook, J. F. Koretz, “Modeling the optical properties of the aging human crystalline lens from computer processed Scheimpflug images in relation to the lens paradox,” in Vision Science and Its Applications, Vol. 1 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 138–141.

Cross, J. A.

H. J. Burd, S. J. Judge, J. A. Cross, “Numerical modelling of the accommodating lens,” Vision Res. 42, 2235–2251 (2002).
[CrossRef] [PubMed]

DeMarco, J. K.

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Visual Sci. 40, 1162–1169 (1999).

S. A. Strenk, L. M. Strenk, J. L. Semmlow, J. K. DeMarco, “Magnetic resonance imaging study of the effect of age and accommodation on the human lens cross sectional area,” Invest. Ophthalmol. Visual Sci. (to be published).

Demer, J. L.

R. A. Clark, J. M. Miller, J. L. Demer, “Three-dimensional location of human rectus pulleys by path inflections in secondary gaze positions,” Invest. Ophthalmol. Visual Sci. 41, 3787–3797 (2000).

R. A. Clark, J. M. Miller, J. L. Demer, “Location and stability of rectus muscle pulleys. Muscle paths as a function of gaze,” Invest. Ophthalmol. Visual Sci. 38, 227–240 (1997).

Dubbelman, M.

M. Dubbelman, G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41, 1867–1877 (2001).
[CrossRef] [PubMed]

M. Dubbelman, G. L. van der Heijde, H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vision Sci. 78, 411–416 (2001).
[CrossRef]

Forbes, J.

R. Holden, J. Hesler, J. Forbes, N. A. Brown, “Visual performance and objectively measured grades of cataract. A correlation of methods designed for use in longitudinal trials,” Optom. Vision Sci. 70, 982–985 (1993).
[CrossRef]

Garner, L. F.

L. F. Garner, G. Smith, “Changes in equivalent and gradient refractive index of the crystalline lens with accommodation,” Optom. Vision Sci. 74, 114–119 (1997).
[CrossRef]

Glasser, A.

A. Glasser, M. C. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39, 1991–2015 (1999).
[CrossRef] [PubMed]

A. Glasser, M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38, 209–229 (1998).
[CrossRef] [PubMed]

Goeckner, P. A.

J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye—aging of the anterior segment,” Vision Res. 29, 1685–1692 (1989).
[CrossRef]

J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye. 1: Evaluation of in vivo measurement techniques,” Appl. Opt. 28, 1097–1102 (1989).
[CrossRef] [PubMed]

Gronlund-Jacob, J.

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Visual Sci. 40, 1162–1169 (1999).

Handelman, G. H.

J. F. Koretz, G. H. Handelman, “Modeling age-related accommodation loss in the human eye,” Int. J. Math. Modeling 7, 1003–1014 (1986).
[CrossRef]

J. F. Koretz, G. H. Handelman, N. P. Brown, “Analysis of human crystalline lens curvature as a function of accommodative state and age,” Vision Res. 24, 1141–1151 (1984).
[CrossRef] [PubMed]

J. F. Koretz, G. H. Handelman, “A model for accommodation in the young human eye: the effects of lens elastic anisotropy on the mechanism,” Vision Res. 23, 1679–1686 (1983).
[CrossRef] [PubMed]

J. F. Koretz, G. H. Handelman, “Model of the accommodative mechanism in the human eye,” Vision Res. 22, 917–927 (1982).
[CrossRef] [PubMed]

J. F. Koretz, G. H. Handelman, “The ‘lens paradox’ and image formation in accommodating human eyes,” in The Lens: Transparency and Cataract, G. Duncan, ed., Topics in Aging Research in Europe, Rijswijk, The Netherlands, 1986, pp. 57–64.

Hanna, K. J.

M. L. Harris, K. J. Hanna, G. A. Shun-Shin, R. Holden, N. A. Brown, “Analysis of retro-illumination photographs for use in longitudinal studies of cataract,” Eye 7, 572–577 (1993).
[CrossRef] [PubMed]

Harris, M. L.

M. L. Harris, K. J. Hanna, G. A. Shun-Shin, R. Holden, N. A. Brown, “Analysis of retro-illumination photographs for use in longitudinal studies of cataract,” Eye 7, 572–577 (1993).
[CrossRef] [PubMed]

Hesler, J.

R. Holden, J. Hesler, J. Forbes, N. A. Brown, “Visual performance and objectively measured grades of cataract. A correlation of methods designed for use in longitudinal trials,” Optom. Vision Sci. 70, 982–985 (1993).
[CrossRef]

Hill, A. R.

N. A. Brown, A. J. Bron, W. Ayliffe, J. Sparrow, A. R. Hill, “The objective assessment of cataract,” Eye 1, 234–246 (1987).
[CrossRef] [PubMed]

Hockwin, O.

U. Muller-Breitenkamp, H. Laser, O. Hockwin, “Objectified measurement of eye lens transparency in elderly probands. Results of a Scheimpflug photography study over the course of three and a half years,” Klin. Monatsbl. Augenheilkd. 201, 97–101 (1992). (Original language, German. Abstract in English.)

Holden, R.

M. L. Harris, K. J. Hanna, G. A. Shun-Shin, R. Holden, N. A. Brown, “Analysis of retro-illumination photographs for use in longitudinal studies of cataract,” Eye 7, 572–577 (1993).
[CrossRef] [PubMed]

R. Holden, J. Hesler, J. Forbes, N. A. Brown, “Visual performance and objectively measured grades of cataract. A correlation of methods designed for use in longitudinal trials,” Optom. Vision Sci. 70, 982–985 (1993).
[CrossRef]

Hyun, J.

C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, P. L. Kaufman, “Aging of the human crystalline lens and anterior segment,” Vision Res. 34, 2945–2954 (1994).
[CrossRef] [PubMed]

Judge, S. J.

H. J. Burd, S. J. Judge, J. A. Cross, “Numerical modelling of the accommodating lens,” Vision Res. 42, 2235–2251 (2002).
[CrossRef] [PubMed]

S. J. Judge, H. J. Burd, “Modelling the mechanics of accommodation and presbyopia,” Ophthalmic Physiol. Opt. 22, 397–400 (2002).
[CrossRef] [PubMed]

Kaufman, P. L.

J. F. Koretz, C. A. Cook, P. L. Kaufman, “Aging of the human lens: changes in lens shape upon accommodation and with accommodative loss,” J. Opt. Soc. Am. A 19, 144–151 (2002).
[CrossRef]

J. F. Koretz, C. A. Cook, P. L. Kaufman, “Aging of the human lens: changes in lens shape at zero-diopter accommodation,” J. Opt. Soc. Am. A 18, 265–272 (2001).
[CrossRef]

J. F. Koretz, C. A. Cook, P. L. Kaufman, “Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus,” Invest. Ophthalmol. Visual Sci. 38, 569–578 (1997).

J. F. Koretz, A. Rogot, P. L. Kaufman, “Physiological strategies for emmetropia,” Trans. Am. Ophthalmol. Soc. 93, 105–118; discussion 118–122 (1995).
[PubMed]

C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, P. L. Kaufman, “Aging of the human crystalline lens and anterior segment,” Vision Res. 34, 2945–2954 (1994).
[CrossRef] [PubMed]

J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye. 1: Evaluation of in vivo measurement techniques,” Appl. Opt. 28, 1097–1102 (1989).
[CrossRef] [PubMed]

J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye—aging of the anterior segment,” Vision Res. 29, 1685–1692 (1989).
[CrossRef]

Koretz, J. F.

J. F. Koretz, C. A. Cook, P. L. Kaufman, “Aging of the human lens: changes in lens shape upon accommodation and with accommodative loss,” J. Opt. Soc. Am. A 19, 144–151 (2002).
[CrossRef]

J. F. Koretz, C. A. Cook, P. L. Kaufman, “Aging of the human lens: changes in lens shape at zero-diopter accommodation,” J. Opt. Soc. Am. A 18, 265–272 (2001).
[CrossRef]

J. F. Koretz, C. A. Cook, “Aging of the optics of the human eye: lens refraction models and principal plane locations,” Optom. Vision Sci. 78, 396–404 (2001).
[CrossRef]

C. A. Cook, J. F. Koretz, “Methods to obtain quantitative parametric descriptions of the optical surfaces of the human crystalline lens from Scheimpflug slit-lamp images. I. Image processing methods,” J. Opt. Soc. Am. A 15, 1473–1485 (1998).
[CrossRef]

J. F. Koretz, C. A. Cook, P. L. Kaufman, “Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus,” Invest. Ophthalmol. Visual Sci. 38, 569–578 (1997).

J. F. Koretz, A. Rogot, P. L. Kaufman, “Physiological strategies for emmetropia,” Trans. Am. Ophthalmol. Soc. 93, 105–118; discussion 118–122 (1995).
[PubMed]

J. F. Koretz, C. A. Cook, J. R. Kuszak, “The zones of discontinuity in the human lens: development and distribution with age,” Vision Res. 34, 2955–2962 (1994).
[CrossRef] [PubMed]

C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, P. L. Kaufman, “Aging of the human crystalline lens and anterior segment,” Vision Res. 34, 2945–2954 (1994).
[CrossRef] [PubMed]

C. A. Cook, J. F. Koretz, “Acquisition of the curves of the human crystalline lens from slit lamp images: an application of the Hough transform,” Appl. Opt. 30, 2088–2099 (1991).
[CrossRef] [PubMed]

J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye. 1: Evaluation of in vivo measurement techniques,” Appl. Opt. 28, 1097–1102 (1989).
[CrossRef] [PubMed]

J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye—aging of the anterior segment,” Vision Res. 29, 1685–1692 (1989).
[CrossRef]

J. F. Koretz, G. H. Handelman, “Modeling age-related accommodation loss in the human eye,” Int. J. Math. Modeling 7, 1003–1014 (1986).
[CrossRef]

J. F. Koretz, G. H. Handelman, N. P. Brown, “Analysis of human crystalline lens curvature as a function of accommodative state and age,” Vision Res. 24, 1141–1151 (1984).
[CrossRef] [PubMed]

J. F. Koretz, G. H. Handelman, “A model for accommodation in the young human eye: the effects of lens elastic anisotropy on the mechanism,” Vision Res. 23, 1679–1686 (1983).
[CrossRef] [PubMed]

J. F. Koretz, G. H. Handelman, “Model of the accommodative mechanism in the human eye,” Vision Res. 22, 917–927 (1982).
[CrossRef] [PubMed]

C. A. Cook, J. F. Koretz, “Modeling the optical properties of the aging human crystalline lens from computer processed Scheimpflug images in relation to the lens paradox,” in Vision Science and Its Applications, Vol. 1 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 138–141.

J. F. Koretz, “Models of the Lens and Aging,” in Models of the Visual System, K. J. Ciuffreda, ed. (Kluwer Academic/Plenum, New York, 2001).

J. F. Koretz, “Development and aging of human visual focusing mechanisms,” in Trends in Optonics and Photonics: Vision Science and Its Applications, V. Lakshminarayanan, ed. (Optical Society of America, Washington, D.C., 2000), pp. 246–258.

J. F. Koretz, G. H. Handelman, “The ‘lens paradox’ and image formation in accommodating human eyes,” in The Lens: Transparency and Cataract, G. Duncan, ed., Topics in Aging Research in Europe, Rijswijk, The Netherlands, 1986, pp. 57–64.

Krudy, A.

L. Strenk, S. Strenk, J. L. Semmlow, A. Krudy, “High resolution in vivo MR imaging of the human zonules,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 42, S283 (2001).

Kuszak, J. R.

J. F. Koretz, C. A. Cook, J. R. Kuszak, “The zones of discontinuity in the human lens: development and distribution with age,” Vision Res. 34, 2955–2962 (1994).
[CrossRef] [PubMed]

Landman, K. A.

B. A. Moffat, K. A. Landman, R. J. Truscott, M. H. Sweeney, J. M. Pope, “Age-related changes in the kinetics of water transport in normal human lenses,” Exp. Eye Res. 69, 663–669 (1999).
[CrossRef]

Laser, H.

U. Muller-Breitenkamp, H. Laser, O. Hockwin, “Objectified measurement of eye lens transparency in elderly probands. Results of a Scheimpflug photography study over the course of three and a half years,” Klin. Monatsbl. Augenheilkd. 201, 97–101 (1992). (Original language, German. Abstract in English.)

Lizak, M. J.

F. A. Bettelheim, M. J. Lizak, J. S. Zigler, “Syneretic response of aging normal human lens to pressure,” Invest. Ophthalmol. Visual Sci. 44, 258–263 (2003).
[CrossRef]

F. A. Bettelheim, M. J. Lizak, J. S. Zigler, “Relaxographic studies of aging normal human lenses,” Exp. Eye Res. 75, 695–702 (2002).
[CrossRef] [PubMed]

Miller, J. M.

R. A. Clark, J. M. Miller, J. L. Demer, “Three-dimensional location of human rectus pulleys by path inflections in secondary gaze positions,” Invest. Ophthalmol. Visual Sci. 41, 3787–3797 (2000).

R. A. Clark, J. M. Miller, J. L. Demer, “Location and stability of rectus muscle pulleys. Muscle paths as a function of gaze,” Invest. Ophthalmol. Visual Sci. 38, 227–240 (1997).

J. M. Miller, “Functional anatomy of normal human rectus muscles,” Vision Res. 29, 223–240 (1989).
[CrossRef] [PubMed]

Moffat, B. A.

B. A. Moffat, D. A. Atchison, J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42, 1683–1693 (2002).
[CrossRef] [PubMed]

B. A. Moffat, J. M. Pope, “Anisotropic water transport in the human eye lens studied by diffusion tensor NMR micro-imaging,” Exp. Eye Res. 74, 677–687 (2002).
[CrossRef] [PubMed]

B. A. Moffat, J. M. Pope, “The interpretation of multi-exponential water proton transverse relaxation in the human and porcine eye lens,” Magn. Reson. Imaging 20, 83–93 (2002).
[CrossRef] [PubMed]

B. A. Moffat, K. A. Landman, R. J. Truscott, M. H. Sweeney, J. M. Pope, “Age-related changes in the kinetics of water transport in normal human lenses,” Exp. Eye Res. 69, 663–669 (1999).
[CrossRef]

Muller-Breitenkamp, U.

U. Muller-Breitenkamp, H. Laser, O. Hockwin, “Objectified measurement of eye lens transparency in elderly probands. Results of a Scheimpflug photography study over the course of three and a half years,” Klin. Monatsbl. Augenheilkd. 201, 97–101 (1992). (Original language, German. Abstract in English.)

Munoz, P.

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Visual Sci. 40, 1162–1169 (1999).

Neider, M. W.

J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye—aging of the anterior segment,” Vision Res. 29, 1685–1692 (1989).
[CrossRef]

J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye. 1: Evaluation of in vivo measurement techniques,” Appl. Opt. 28, 1097–1102 (1989).
[CrossRef] [PubMed]

Newton, T.

T. Newton, I. Bilaniuk, Radiology of the Eye and Orbit (Raven, New York, 1990).

Pfahnl, A.

C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, P. L. Kaufman, “Aging of the human crystalline lens and anterior segment,” Vision Res. 34, 2945–2954 (1994).
[CrossRef] [PubMed]

Pope, J. M.

B. A. Moffat, J. M. Pope, “The interpretation of multi-exponential water proton transverse relaxation in the human and porcine eye lens,” Magn. Reson. Imaging 20, 83–93 (2002).
[CrossRef] [PubMed]

B. A. Moffat, J. M. Pope, “Anisotropic water transport in the human eye lens studied by diffusion tensor NMR micro-imaging,” Exp. Eye Res. 74, 677–687 (2002).
[CrossRef] [PubMed]

B. A. Moffat, D. A. Atchison, J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42, 1683–1693 (2002).
[CrossRef] [PubMed]

B. A. Moffat, K. A. Landman, R. J. Truscott, M. H. Sweeney, J. M. Pope, “Age-related changes in the kinetics of water transport in normal human lenses,” Exp. Eye Res. 69, 663–669 (1999).
[CrossRef]

Rogot, A.

J. F. Koretz, A. Rogot, P. L. Kaufman, “Physiological strategies for emmetropia,” Trans. Am. Ophthalmol. Soc. 93, 105–118; discussion 118–122 (1995).
[PubMed]

Semmlow, J.

L. Strenk, S. Strenk, J. Semmlow, “Measurement of the aging ciliary muscle and processes,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 41, S564 (2000).

S. Strenk, J. Semmlow, L. Strenk, “In-vivo lens biometry using high resolution MRI,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 41, S4 (2000).

Semmlow, J. L.

L. Strenk, S. Strenk, J. L. Semmlow, A. Krudy, “High resolution in vivo MR imaging of the human zonules,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 42, S283 (2001).

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Visual Sci. 40, 1162–1169 (1999).

S. A. Strenk, L. M. Strenk, J. L. Semmlow, J. K. DeMarco, “Magnetic resonance imaging study of the effect of age and accommodation on the human lens cross sectional area,” Invest. Ophthalmol. Visual Sci. (to be published).

Shun-Shin, G. A.

M. L. Harris, K. J. Hanna, G. A. Shun-Shin, R. Holden, N. A. Brown, “Analysis of retro-illumination photographs for use in longitudinal studies of cataract,” Eye 7, 572–577 (1993).
[CrossRef] [PubMed]

J. M. Sparrow, N. A. Brown, G. A. Shun-Shin, A. J. Bron, “The Oxford modular cataract image analysis system,” Eye 4, 638–648 (1990).
[CrossRef] [PubMed]

Smith, G.

L. F. Garner, G. Smith, “Changes in equivalent and gradient refractive index of the crystalline lens with accommodation,” Optom. Vision Sci. 74, 114–119 (1997).
[CrossRef]

Sparrow, J.

N. A. Brown, A. J. Bron, W. Ayliffe, J. Sparrow, A. R. Hill, “The objective assessment of cataract,” Eye 1, 234–246 (1987).
[CrossRef] [PubMed]

Sparrow, J. M.

J. M. Sparrow, N. A. Brown, G. A. Shun-Shin, A. J. Bron, “The Oxford modular cataract image analysis system,” Eye 4, 638–648 (1990).
[CrossRef] [PubMed]

Strenk, L.

L. Strenk, S. Strenk, J. L. Semmlow, A. Krudy, “High resolution in vivo MR imaging of the human zonules,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 42, S283 (2001).

S. Strenk, J. Semmlow, L. Strenk, “In-vivo lens biometry using high resolution MRI,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 41, S4 (2000).

L. Strenk, S. Strenk, J. Semmlow, “Measurement of the aging ciliary muscle and processes,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 41, S564 (2000).

Strenk, L. M.

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Visual Sci. 40, 1162–1169 (1999).

S. A. Strenk, L. M. Strenk, J. L. Semmlow, J. K. DeMarco, “Magnetic resonance imaging study of the effect of age and accommodation on the human lens cross sectional area,” Invest. Ophthalmol. Visual Sci. (to be published).

Strenk, S.

L. Strenk, S. Strenk, J. L. Semmlow, A. Krudy, “High resolution in vivo MR imaging of the human zonules,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 42, S283 (2001).

L. Strenk, S. Strenk, J. Semmlow, “Measurement of the aging ciliary muscle and processes,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 41, S564 (2000).

S. Strenk, J. Semmlow, L. Strenk, “In-vivo lens biometry using high resolution MRI,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 41, S4 (2000).

Strenk, S. A.

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Visual Sci. 40, 1162–1169 (1999).

S. A. Strenk, L. M. Strenk, J. L. Semmlow, J. K. DeMarco, “Magnetic resonance imaging study of the effect of age and accommodation on the human lens cross sectional area,” Invest. Ophthalmol. Visual Sci. (to be published).

Sweeney, M. H.

B. A. Moffat, K. A. Landman, R. J. Truscott, M. H. Sweeney, J. M. Pope, “Age-related changes in the kinetics of water transport in normal human lenses,” Exp. Eye Res. 69, 663–669 (1999).
[CrossRef]

Truscott, R. J.

B. A. Moffat, K. A. Landman, R. J. Truscott, M. H. Sweeney, J. M. Pope, “Age-related changes in the kinetics of water transport in normal human lenses,” Exp. Eye Res. 69, 663–669 (1999).
[CrossRef]

Van der Heijde, G. L.

M. Dubbelman, G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41, 1867–1877 (2001).
[CrossRef] [PubMed]

M. Dubbelman, G. L. van der Heijde, H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vision Sci. 78, 411–416 (2001).
[CrossRef]

A. P. Beers, G. L. van der Heijde, “Analysis of accommodation function with ultrasonography,” Doc. Ophthalmol. 92, 1–10 (1996).
[CrossRef] [PubMed]

A. P. Beers, G. L. van der Heijde, “Age-related changes in the accommodation mechanism,” Optom. Vision Sci. 73, 235–242 (1996).
[CrossRef]

Weale, R. A.

R. A. Weale, “On potential causes of presbyopia,” Vision Res. 39, 1263–1272 (1999).
[PubMed]

Weeber, H. A.

M. Dubbelman, G. L. van der Heijde, H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vision Sci. 78, 411–416 (2001).
[CrossRef]

Zigler, J. S.

F. A. Bettelheim, M. J. Lizak, J. S. Zigler, “Syneretic response of aging normal human lens to pressure,” Invest. Ophthalmol. Visual Sci. 44, 258–263 (2003).
[CrossRef]

F. A. Bettelheim, M. J. Lizak, J. S. Zigler, “Relaxographic studies of aging normal human lenses,” Exp. Eye Res. 75, 695–702 (2002).
[CrossRef] [PubMed]

Appl. Opt.

Br. J. Ophthamol.

N. Brown, “An advanced slit-image camera,” Br. J. Ophthamol. 56, 624–631 (1972).
[CrossRef]

Doc. Ophthalmol.

A. P. Beers, G. L. van der Heijde, “Analysis of accommodation function with ultrasonography,” Doc. Ophthalmol. 92, 1–10 (1996).
[CrossRef] [PubMed]

Exp. Eye Res.

N. Brown, “The shape of the lens equator,” Exp. Eye Res. 19, 571–576 (1974).
[CrossRef] [PubMed]

N. Brown, “The change in lens curvature with age,” Exp. Eye Res. 19, 175–183 (1974).
[CrossRef] [PubMed]

N. Brown, “The change in shape and internal form of the lens of the eye on accommodation,” Exp. Eye Res. 15, 441–459 (1973).
[CrossRef] [PubMed]

F. A. Bettelheim, M. J. Lizak, J. S. Zigler, “Relaxographic studies of aging normal human lenses,” Exp. Eye Res. 75, 695–702 (2002).
[CrossRef] [PubMed]

B. A. Moffat, K. A. Landman, R. J. Truscott, M. H. Sweeney, J. M. Pope, “Age-related changes in the kinetics of water transport in normal human lenses,” Exp. Eye Res. 69, 663–669 (1999).
[CrossRef]

B. A. Moffat, J. M. Pope, “Anisotropic water transport in the human eye lens studied by diffusion tensor NMR micro-imaging,” Exp. Eye Res. 74, 677–687 (2002).
[CrossRef] [PubMed]

Eye

J. M. Sparrow, N. A. Brown, G. A. Shun-Shin, A. J. Bron, “The Oxford modular cataract image analysis system,” Eye 4, 638–648 (1990).
[CrossRef] [PubMed]

N. A. Brown, A. J. Bron, W. Ayliffe, J. Sparrow, A. R. Hill, “The objective assessment of cataract,” Eye 1, 234–246 (1987).
[CrossRef] [PubMed]

M. L. Harris, K. J. Hanna, G. A. Shun-Shin, R. Holden, N. A. Brown, “Analysis of retro-illumination photographs for use in longitudinal studies of cataract,” Eye 7, 572–577 (1993).
[CrossRef] [PubMed]

Int. J. Math. Modeling

J. F. Koretz, G. H. Handelman, “Modeling age-related accommodation loss in the human eye,” Int. J. Math. Modeling 7, 1003–1014 (1986).
[CrossRef]

Invest. Ophthalmol. Visual Sci.

J. F. Koretz, C. A. Cook, P. L. Kaufman, “Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus,” Invest. Ophthalmol. Visual Sci. 38, 569–578 (1997).

R. A. Clark, J. M. Miller, J. L. Demer, “Location and stability of rectus muscle pulleys. Muscle paths as a function of gaze,” Invest. Ophthalmol. Visual Sci. 38, 227–240 (1997).

R. A. Clark, J. M. Miller, J. L. Demer, “Three-dimensional location of human rectus pulleys by path inflections in secondary gaze positions,” Invest. Ophthalmol. Visual Sci. 41, 3787–3797 (2000).

F. A. Bettelheim, M. J. Lizak, J. S. Zigler, “Syneretic response of aging normal human lens to pressure,” Invest. Ophthalmol. Visual Sci. 44, 258–263 (2003).
[CrossRef]

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Visual Sci. 40, 1162–1169 (1999).

Invest. Ophthalmol. Visual Sci. ARVO Suppl.

L. Strenk, S. Strenk, J. Semmlow, “Measurement of the aging ciliary muscle and processes,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 41, S564 (2000).

S. Strenk, J. Semmlow, L. Strenk, “In-vivo lens biometry using high resolution MRI,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 41, S4 (2000).

L. Strenk, S. Strenk, J. L. Semmlow, A. Krudy, “High resolution in vivo MR imaging of the human zonules,” Invest. Ophthalmol. Visual Sci. ARVO Suppl. 42, S283 (2001).

J. Opt. Soc. Am. A

J. Theor. Biol.

F. A. Bettelheim, “Syneretic response to pressure in ocular lens,” J. Theor. Biol. 197, 277–280 (1999).
[CrossRef] [PubMed]

Klin. Monatsbl. Augenheilkd.

U. Muller-Breitenkamp, H. Laser, O. Hockwin, “Objectified measurement of eye lens transparency in elderly probands. Results of a Scheimpflug photography study over the course of three and a half years,” Klin. Monatsbl. Augenheilkd. 201, 97–101 (1992). (Original language, German. Abstract in English.)

Magn. Reson. Imaging

B. A. Moffat, J. M. Pope, “The interpretation of multi-exponential water proton transverse relaxation in the human and porcine eye lens,” Magn. Reson. Imaging 20, 83–93 (2002).
[CrossRef] [PubMed]

Ophthalmic Physiol. Opt.

S. J. Judge, H. J. Burd, “Modelling the mechanics of accommodation and presbyopia,” Ophthalmic Physiol. Opt. 22, 397–400 (2002).
[CrossRef] [PubMed]

Optom. Vision Sci.

M. Dubbelman, G. L. van der Heijde, H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vision Sci. 78, 411–416 (2001).
[CrossRef]

J. F. Koretz, C. A. Cook, “Aging of the optics of the human eye: lens refraction models and principal plane locations,” Optom. Vision Sci. 78, 396–404 (2001).
[CrossRef]

R. Holden, J. Hesler, J. Forbes, N. A. Brown, “Visual performance and objectively measured grades of cataract. A correlation of methods designed for use in longitudinal trials,” Optom. Vision Sci. 70, 982–985 (1993).
[CrossRef]

L. F. Garner, G. Smith, “Changes in equivalent and gradient refractive index of the crystalline lens with accommodation,” Optom. Vision Sci. 74, 114–119 (1997).
[CrossRef]

A. P. Beers, G. L. van der Heijde, “Age-related changes in the accommodation mechanism,” Optom. Vision Sci. 73, 235–242 (1996).
[CrossRef]

Trans. Am. Ophthalmol. Soc.

J. F. Koretz, A. Rogot, P. L. Kaufman, “Physiological strategies for emmetropia,” Trans. Am. Ophthalmol. Soc. 93, 105–118; discussion 118–122 (1995).
[PubMed]

Trans. Ophthalmol. Soc. U. K.

N. Brown, “Quantitative slit-image photography of the lens,” Trans. Ophthalmol. Soc. U. K. 92, 303–307 (1972).
[PubMed]

Vision Res.

H. J. Burd, S. J. Judge, J. A. Cross, “Numerical modelling of the accommodating lens,” Vision Res. 42, 2235–2251 (2002).
[CrossRef] [PubMed]

J. F. Koretz, G. H. Handelman, “Model of the accommodative mechanism in the human eye,” Vision Res. 22, 917–927 (1982).
[CrossRef] [PubMed]

J. F. Koretz, G. H. Handelman, “A model for accommodation in the young human eye: the effects of lens elastic anisotropy on the mechanism,” Vision Res. 23, 1679–1686 (1983).
[CrossRef] [PubMed]

A. Glasser, M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38, 209–229 (1998).
[CrossRef] [PubMed]

A. Glasser, M. C. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39, 1991–2015 (1999).
[CrossRef] [PubMed]

R. A. Weale, “On potential causes of presbyopia,” Vision Res. 39, 1263–1272 (1999).
[PubMed]

J. F. Koretz, G. H. Handelman, N. P. Brown, “Analysis of human crystalline lens curvature as a function of accommodative state and age,” Vision Res. 24, 1141–1151 (1984).
[CrossRef] [PubMed]

C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, P. L. Kaufman, “Aging of the human crystalline lens and anterior segment,” Vision Res. 34, 2945–2954 (1994).
[CrossRef] [PubMed]

J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye—aging of the anterior segment,” Vision Res. 29, 1685–1692 (1989).
[CrossRef]

J. F. Koretz, C. A. Cook, J. R. Kuszak, “The zones of discontinuity in the human lens: development and distribution with age,” Vision Res. 34, 2955–2962 (1994).
[CrossRef] [PubMed]

B. A. Moffat, D. A. Atchison, J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res. 42, 1683–1693 (2002).
[CrossRef] [PubMed]

J. M. Miller, “Functional anatomy of normal human rectus muscles,” Vision Res. 29, 223–240 (1989).
[CrossRef] [PubMed]

M. Dubbelman, G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41, 1867–1877 (2001).
[CrossRef] [PubMed]

Other

S. A. Strenk, L. M. Strenk, J. L. Semmlow, J. K. DeMarco, “Magnetic resonance imaging study of the effect of age and accommodation on the human lens cross sectional area,” Invest. Ophthalmol. Visual Sci. (to be published).

T. Newton, I. Bilaniuk, Radiology of the Eye and Orbit (Raven, New York, 1990).

J. F. Koretz, G. H. Handelman, “The ‘lens paradox’ and image formation in accommodating human eyes,” in The Lens: Transparency and Cataract, G. Duncan, ed., Topics in Aging Research in Europe, Rijswijk, The Netherlands, 1986, pp. 57–64.

J. F. Koretz, “Development and aging of human visual focusing mechanisms,” in Trends in Optonics and Photonics: Vision Science and Its Applications, V. Lakshminarayanan, ed. (Optical Society of America, Washington, D.C., 2000), pp. 246–258.

C. A. Cook, J. F. Koretz, “Modeling the optical properties of the aging human crystalline lens from computer processed Scheimpflug images in relation to the lens paradox,” in Vision Science and Its Applications, Vol. 1 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 138–141.

J. F. Koretz, “Models of the Lens and Aging,” in Models of the Visual System, K. J. Ciuffreda, ed. (Kluwer Academic/Plenum, New York, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Representative Scheimpflug image of a 40-year-old subject at 0 diopter accommodation.

Fig. 2
Fig. 2

Representative MR image of a 42-year-old subject at minimum accommodation.

Fig. 3
Fig. 3

Comparison of the anterior segment length imaged by Scheimpflug (solid line and diamonds) and by MRI (dashed line and squares).

Fig. 4
Fig. 4

Comparison of the anterior chamber depth imaged by Scheimpflug (solid line and diamonds) and by MRI (dashed line and squares).

Fig. 5
Fig. 5

Comparison of the lens thickness as a function of age imaged by Scheimpflug (solid line and diamonds) and by MRI (dashed line and squares).

Fig. 6
Fig. 6

Comparison of the anterior radius of curvature imaged by Scheimpflug (solid line and diamonds) and by MRI (dashed line and squares).

Fig. 7
Fig. 7

Comparison of the posterior radius of curvature imaged by Scheimpflug (solid line and diamonds) and by MRI (dashed line and squares).

Metrics