Abstract

Polarization microspectrophotometry recordings were made to investigate possible differences in the way different spectral classes of photoreceptors from coho salmon (Oncorhynchus kisutch) absorb linearly polarized light. The results strongly suggest that rods and cones absorb transversely illuminating polarized light differently. Cones were found to exhibit a tilted optical geometry in which the maximum absorbance occurred when the E-vector was at a small angle to the transverse axis of the outer segment. Solutions to Maxwell’s equations were deduced to investigate the effect of this tilt under conditions of axial illumination. Calculations show an approximate 10% difference in the absorbance of orthogonal polarizations, suggesting the possibility of axial dichroism in the cones of this species.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Freake, “Evidence for orientation using the e-vector direction of polarised light in the sleepy lizard Tiliqua rugosa,” J. Exp. Biol. 202, 1159–1166 (1999).
    [PubMed]
  2. K. Adler, J. B. Phillips, “Orientation in a desertlizard (Uma notata): time-compensated compass movement and polarotaxis,” J. Comp. Physiol. A 156, 547–552 (1985).
    [CrossRef]
  3. D. H. Taylor, K. Alder, “Spatial orientation by salamanders using plane polarised light,” Science 181, 285–287 (1973).
    [CrossRef] [PubMed]
  4. K. P. Able, “Skylight polarization patterns at dusk influence migratory orientations in birds,” Nature 299, 550–551 (1982).
    [CrossRef]
  5. J. B. Phillips, F. R. Moore, “Calibration of the sun compass by sunset polarized patterns in a migratory bird,” Behav. Ecol. Sociobiol. 31, 189–193 (1992).
    [CrossRef]
  6. C. W. Hawryshyn, W. N. McFarland, “Cone photoreceptor mechanisms and the detection of polarized light in fish,” J. Comp. Physiol. 160, 459–465 (1987).
    [CrossRef]
  7. B. A. Fineran, J. A. C. Nicol, “Studies on the photoreceptors of Anchoa mitichilli and A. hepsetus (Engranlidae) with particular reference to the cones,” Philos. Trans. R. Soc. London Ser. B 283, 25–60 (1978).
    [CrossRef]
  8. T. H. Waterman, “Natural polarised light and e-vector discrimination by vertebrates,” in Light as an Ecological Factor II (Blackwell, Oxford, UK, 1975), pp. 305–335.
  9. D. C. Parkyn, C. W. Hawryshyn, “Spectral and ultraviolet-polarization sensitivity in juvenile salmonids: a comparative analysis using electrophysiology,” J. Exp. Biol. 203, 1173–1191 (2000).
    [PubMed]
  10. D. J. Coughlin, C. W. Hawryshyn, “A cellular basis for polarized-light vision in rainbow trout,” J. Comp. Physiol. A 176, 261–272 (1995).
    [CrossRef]
  11. C. W. Hawryshyn, M. G. Arnold, E. Bowering, R. L. Cole, “Spatial orientation of rainbow trout to plane-polarised light: the ontogeny of e-vector discrimination and spectral sensitivity characteristics,” J. Comp. Physiol. A 166, 566–574 (1990).
    [CrossRef]
  12. I. N. Flamarique, H. I. Browman, “Foraging and prey-search behaviour of small juvenile rainbow trout (Oncorhynchus mykiss) under polarized light,” J. Exp. Biol. 204, 2415–2422 (2001).
    [PubMed]
  13. I. N. Flamarique, C. W. Hawryshyn, F. I. Harosi, “Double cone internal reflection as a basis for polarization detection in fish,” J. Opt. Soc. Am. A 15, 349–358 (1998).
    [CrossRef]
  14. A. W. Snyder, “Physics of vision in compound eyes,” in Handbook of Sensory Physiology VII/6A, H. Autrum, ed. (Springer-Verlag, Berlin, 1979), pp. 284–285.
  15. M. F. Land, D. E. Nilsson, “Light and Vision,” in Animal Eyes (Oxford U. Press, Oxford, UK, 2002), pp. 29–31.
  16. P. K. Brown, “Rhodopsin rotates in the visual receptor membrane,” Nature New Biol. 236, 35–38 (1972).
    [CrossRef] [PubMed]
  17. R. A. Cone, “Rotational diffusion of rhodopsin on thevisual receptor membrane,” Nature New Biol. 236, 39–43 (1972).
    [CrossRef]
  18. P. A. Liebman, “In situ microspectrophotometric studies on the pigments of single retinal rods,” Biophys. J. 2, 161–178 (1962).
    [CrossRef] [PubMed]
  19. F. I. Harosi, E. F. MacNichol, “Dichroic microspectrophotometer: a computer assisted, rapid, wavelength scanning photometer for measuring the linear dichroism of single cells,” J. Opt. Soc. Am. 64, 903–918 (1974).
    [CrossRef]
  20. E. R. Loew, H. J. A. Dartnall, “Vitamin A1/A2-based visual pigment mixtures in cones of the rudd,” Vision Res. 16, 891–896 (1976).
    [CrossRef]
  21. J. M. Bowmaker, “Microspectrophotometry of vertebrate photoreceptors,” Vision Res. 24, 1641–1650 (1984).
    [CrossRef]
  22. V. I. Govardovskii, F. Fyhrquist, T. Reuter, D. G. Kuzmin, K. Donner, “In search of the visual pigment template,” Visual Neurosci. 17, 509–528 (2000).
    [CrossRef]
  23. C. W. Hawryshyn, T. J. Haimberger, M. E. Deutschlander, “Microspectrophotometric measurements of vertebrate photoreceptors using CCD-based detection technology,” J. Exp. Biol. 204, 2431–2438 (2001).
    [PubMed]
  24. F. I. Harosi, “Microspectrophotometry and optical phenomena: birefringence, dichroism, and anomalous dispersion,” in Vertebrate photoreceptor optics, J. M. Enoch, F. L. Tobey, eds. (Springer-Verlag, Berlin, 1981), pp. 337–397.
  25. P. A. Liebman, “Birefringence, dichroism and rod outer segment structure,” in Photoreceptor Optics, A. W. Snyder, R. Menzel, eds. (Springer-Verlag, Berlin, 1975), pp. 119–214.
  26. A. G. Palacios, R. Strivastava, T. H. Goldsmith, “Spectral and polarization sensitivity of photocurrents of amphibian rods in the visible and ultraviolet,” Visual Neurosci. 15, 319–331 (1998).
    [CrossRef]
  27. R. A. Weale, “On the linear dichroism of frog rods,” Vision Res. 11, 1373–1385 (1971).
    [CrossRef] [PubMed]
  28. F. I. Harosi, F. E. Malerba, “Plane polarized light in microspectrophotometry,” Vision Res. 15, 379–388 (1975).
    [CrossRef]
  29. F. I. Harosi, “Linear dichroism of rods and cones,” in NATO Advanced Study Institute Series, Series A: Life Sciences (Plenum, New York, 1975), pp. 55–65.
  30. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw Hill, New York, 1994), pp. 242–246.
  31. A. I. Cohen, “Rods and cones,” in Handbook of Sensory Physiology VII/2, M. G. F. Fuortes, ed. (Springer-Verlag, Berlin, 1972), pp. 63–110.
  32. M. Born, E. Wolf, Principles of Optics, 7th expanded ed. (Cambridge U. Press, Cambridge, UK, 1999), pp. 218–219.
  33. G. Gröbner, C. G. Burnett, A. Choi, J. Mason, A. Watts, “Observations of light-induced structural changes of retinal within rhodopsin,” Nature 405, 810–813 (2000).
    [CrossRef] [PubMed]
  34. P. Collings, M. Hird, Introduction to Liquid Crystals (Taylor & Frances, London, 1997), pp. 1–5.
  35. K. Boesze-Battaglia, R. J. Schimmel, “Cell membrane lipid composition and distribution: Implications for cell function and lessons learned from photoreceptors and platelets,” J. Exp. Biol. 200, 2927–2936 (1997).
  36. R. Murari, M. P. Murari, W. J. Baumann, “Sterol orientations in phosphatidycholine liposomes as determined by deuterium NMR,” Biochemistry 25, 1062–1067 (1986).
    [CrossRef] [PubMed]
  37. T. J. McIntosh, “The effect of cholesterol on the structure of phosphatidycholine bilayers,” Biochim. Biophys. Acta 513, 43–58 (1973).
    [CrossRef]
  38. M. R. Brzustowicz, W. Stillwell, S. R. Wassall, “Molecular organization in polyunsaturated phospholipid membranes: a solid state  2H NMR investigation,” FEBS Lett. 451, 197–202 (1999).
    [CrossRef] [PubMed]
  39. D. Berreman, “Optics in stratified and anisotropic media: 4×4-matrix formulation,” J. Opt. Soc. Am. 62, 502–510 (1972).
    [CrossRef]
  40. N. W. Roberts, H. F. Gleeson, Department of Physics, University of Manchester, Manchester, M13 9PL, UK, are preparing a manuscript to be called “The absorbance of polarized light by vertebrate photoreceptors.”
  41. P. A. Liebman, W. S. Jagger, M. W. Kaplan, F. G. Bargoot, “Membrane structure changes in rod outer segments associated with rhodopsin bleaching,” Nature 251, 31–36 (1974).
    [CrossRef] [PubMed]
  42. J. N. Israelchvili, R. A. Sammut, A. W. Snyder, “Birefringence and dichroism of photoreceptors,” Vision Res. 16, 47–52 (1976).
    [CrossRef]
  43. D. G. Stavenga, H. H. van Barneveld, “On dispersionin visual photoreceptors,” Vision Res. 15, 1091–1095 (1974).
    [CrossRef]
  44. B. Chance, R. Perry, L. Akerman, B. Thorell, “Highly sensitive recording microspectrophotometer,” Rev. Sci. Instrum. 30, 735–741 (1959).
    [CrossRef]
  45. R. Wehner, “The hymenopteran skylight compass: matched filtering and parallel coding,” J. Exp. Biol. 146, 63–85 (1989).
  46. D. J. Coughlin, C. W. Hawryshyn, “A cellular basis for polarized-light vision in rainbow trout,” J. Comp. Physiol. A 176, 261–272 (1995).
    [CrossRef]
  47. R. Mathies, L. Stryer, “Retinal has a dipolar vertically excited singlet state: implications for vision,” Proc. Natl. Acad. Sci. U.S.A. 73, 2169–2173 (1976).
    [CrossRef]
  48. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarised Light (Elsevier, Amsterdam, 1987), pp. 340–352.

2001

I. N. Flamarique, H. I. Browman, “Foraging and prey-search behaviour of small juvenile rainbow trout (Oncorhynchus mykiss) under polarized light,” J. Exp. Biol. 204, 2415–2422 (2001).
[PubMed]

C. W. Hawryshyn, T. J. Haimberger, M. E. Deutschlander, “Microspectrophotometric measurements of vertebrate photoreceptors using CCD-based detection technology,” J. Exp. Biol. 204, 2431–2438 (2001).
[PubMed]

2000

G. Gröbner, C. G. Burnett, A. Choi, J. Mason, A. Watts, “Observations of light-induced structural changes of retinal within rhodopsin,” Nature 405, 810–813 (2000).
[CrossRef] [PubMed]

D. C. Parkyn, C. W. Hawryshyn, “Spectral and ultraviolet-polarization sensitivity in juvenile salmonids: a comparative analysis using electrophysiology,” J. Exp. Biol. 203, 1173–1191 (2000).
[PubMed]

V. I. Govardovskii, F. Fyhrquist, T. Reuter, D. G. Kuzmin, K. Donner, “In search of the visual pigment template,” Visual Neurosci. 17, 509–528 (2000).
[CrossRef]

1999

M. R. Brzustowicz, W. Stillwell, S. R. Wassall, “Molecular organization in polyunsaturated phospholipid membranes: a solid state  2H NMR investigation,” FEBS Lett. 451, 197–202 (1999).
[CrossRef] [PubMed]

M. J. Freake, “Evidence for orientation using the e-vector direction of polarised light in the sleepy lizard Tiliqua rugosa,” J. Exp. Biol. 202, 1159–1166 (1999).
[PubMed]

1998

A. G. Palacios, R. Strivastava, T. H. Goldsmith, “Spectral and polarization sensitivity of photocurrents of amphibian rods in the visible and ultraviolet,” Visual Neurosci. 15, 319–331 (1998).
[CrossRef]

I. N. Flamarique, C. W. Hawryshyn, F. I. Harosi, “Double cone internal reflection as a basis for polarization detection in fish,” J. Opt. Soc. Am. A 15, 349–358 (1998).
[CrossRef]

1997

K. Boesze-Battaglia, R. J. Schimmel, “Cell membrane lipid composition and distribution: Implications for cell function and lessons learned from photoreceptors and platelets,” J. Exp. Biol. 200, 2927–2936 (1997).

1995

D. J. Coughlin, C. W. Hawryshyn, “A cellular basis for polarized-light vision in rainbow trout,” J. Comp. Physiol. A 176, 261–272 (1995).
[CrossRef]

D. J. Coughlin, C. W. Hawryshyn, “A cellular basis for polarized-light vision in rainbow trout,” J. Comp. Physiol. A 176, 261–272 (1995).
[CrossRef]

1992

J. B. Phillips, F. R. Moore, “Calibration of the sun compass by sunset polarized patterns in a migratory bird,” Behav. Ecol. Sociobiol. 31, 189–193 (1992).
[CrossRef]

1990

C. W. Hawryshyn, M. G. Arnold, E. Bowering, R. L. Cole, “Spatial orientation of rainbow trout to plane-polarised light: the ontogeny of e-vector discrimination and spectral sensitivity characteristics,” J. Comp. Physiol. A 166, 566–574 (1990).
[CrossRef]

1989

R. Wehner, “The hymenopteran skylight compass: matched filtering and parallel coding,” J. Exp. Biol. 146, 63–85 (1989).

1987

C. W. Hawryshyn, W. N. McFarland, “Cone photoreceptor mechanisms and the detection of polarized light in fish,” J. Comp. Physiol. 160, 459–465 (1987).
[CrossRef]

1986

R. Murari, M. P. Murari, W. J. Baumann, “Sterol orientations in phosphatidycholine liposomes as determined by deuterium NMR,” Biochemistry 25, 1062–1067 (1986).
[CrossRef] [PubMed]

1985

K. Adler, J. B. Phillips, “Orientation in a desertlizard (Uma notata): time-compensated compass movement and polarotaxis,” J. Comp. Physiol. A 156, 547–552 (1985).
[CrossRef]

1984

J. M. Bowmaker, “Microspectrophotometry of vertebrate photoreceptors,” Vision Res. 24, 1641–1650 (1984).
[CrossRef]

1982

K. P. Able, “Skylight polarization patterns at dusk influence migratory orientations in birds,” Nature 299, 550–551 (1982).
[CrossRef]

1978

B. A. Fineran, J. A. C. Nicol, “Studies on the photoreceptors of Anchoa mitichilli and A. hepsetus (Engranlidae) with particular reference to the cones,” Philos. Trans. R. Soc. London Ser. B 283, 25–60 (1978).
[CrossRef]

1976

E. R. Loew, H. J. A. Dartnall, “Vitamin A1/A2-based visual pigment mixtures in cones of the rudd,” Vision Res. 16, 891–896 (1976).
[CrossRef]

R. Mathies, L. Stryer, “Retinal has a dipolar vertically excited singlet state: implications for vision,” Proc. Natl. Acad. Sci. U.S.A. 73, 2169–2173 (1976).
[CrossRef]

J. N. Israelchvili, R. A. Sammut, A. W. Snyder, “Birefringence and dichroism of photoreceptors,” Vision Res. 16, 47–52 (1976).
[CrossRef]

1975

F. I. Harosi, F. E. Malerba, “Plane polarized light in microspectrophotometry,” Vision Res. 15, 379–388 (1975).
[CrossRef]

1974

D. G. Stavenga, H. H. van Barneveld, “On dispersionin visual photoreceptors,” Vision Res. 15, 1091–1095 (1974).
[CrossRef]

P. A. Liebman, W. S. Jagger, M. W. Kaplan, F. G. Bargoot, “Membrane structure changes in rod outer segments associated with rhodopsin bleaching,” Nature 251, 31–36 (1974).
[CrossRef] [PubMed]

F. I. Harosi, E. F. MacNichol, “Dichroic microspectrophotometer: a computer assisted, rapid, wavelength scanning photometer for measuring the linear dichroism of single cells,” J. Opt. Soc. Am. 64, 903–918 (1974).
[CrossRef]

1973

D. H. Taylor, K. Alder, “Spatial orientation by salamanders using plane polarised light,” Science 181, 285–287 (1973).
[CrossRef] [PubMed]

T. J. McIntosh, “The effect of cholesterol on the structure of phosphatidycholine bilayers,” Biochim. Biophys. Acta 513, 43–58 (1973).
[CrossRef]

1972

D. Berreman, “Optics in stratified and anisotropic media: 4×4-matrix formulation,” J. Opt. Soc. Am. 62, 502–510 (1972).
[CrossRef]

P. K. Brown, “Rhodopsin rotates in the visual receptor membrane,” Nature New Biol. 236, 35–38 (1972).
[CrossRef] [PubMed]

R. A. Cone, “Rotational diffusion of rhodopsin on thevisual receptor membrane,” Nature New Biol. 236, 39–43 (1972).
[CrossRef]

1971

R. A. Weale, “On the linear dichroism of frog rods,” Vision Res. 11, 1373–1385 (1971).
[CrossRef] [PubMed]

1962

P. A. Liebman, “In situ microspectrophotometric studies on the pigments of single retinal rods,” Biophys. J. 2, 161–178 (1962).
[CrossRef] [PubMed]

1959

B. Chance, R. Perry, L. Akerman, B. Thorell, “Highly sensitive recording microspectrophotometer,” Rev. Sci. Instrum. 30, 735–741 (1959).
[CrossRef]

Able, K. P.

K. P. Able, “Skylight polarization patterns at dusk influence migratory orientations in birds,” Nature 299, 550–551 (1982).
[CrossRef]

Adler, K.

K. Adler, J. B. Phillips, “Orientation in a desertlizard (Uma notata): time-compensated compass movement and polarotaxis,” J. Comp. Physiol. A 156, 547–552 (1985).
[CrossRef]

Akerman, L.

B. Chance, R. Perry, L. Akerman, B. Thorell, “Highly sensitive recording microspectrophotometer,” Rev. Sci. Instrum. 30, 735–741 (1959).
[CrossRef]

Alder, K.

D. H. Taylor, K. Alder, “Spatial orientation by salamanders using plane polarised light,” Science 181, 285–287 (1973).
[CrossRef] [PubMed]

Arnold, M. G.

C. W. Hawryshyn, M. G. Arnold, E. Bowering, R. L. Cole, “Spatial orientation of rainbow trout to plane-polarised light: the ontogeny of e-vector discrimination and spectral sensitivity characteristics,” J. Comp. Physiol. A 166, 566–574 (1990).
[CrossRef]

Azzam, R. M. A.

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarised Light (Elsevier, Amsterdam, 1987), pp. 340–352.

Bargoot, F. G.

P. A. Liebman, W. S. Jagger, M. W. Kaplan, F. G. Bargoot, “Membrane structure changes in rod outer segments associated with rhodopsin bleaching,” Nature 251, 31–36 (1974).
[CrossRef] [PubMed]

Bashara, N. M.

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarised Light (Elsevier, Amsterdam, 1987), pp. 340–352.

Baumann, W. J.

R. Murari, M. P. Murari, W. J. Baumann, “Sterol orientations in phosphatidycholine liposomes as determined by deuterium NMR,” Biochemistry 25, 1062–1067 (1986).
[CrossRef] [PubMed]

Berreman, D.

Bevington, P. R.

P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw Hill, New York, 1994), pp. 242–246.

Boesze-Battaglia, K.

K. Boesze-Battaglia, R. J. Schimmel, “Cell membrane lipid composition and distribution: Implications for cell function and lessons learned from photoreceptors and platelets,” J. Exp. Biol. 200, 2927–2936 (1997).

Born, M.

M. Born, E. Wolf, Principles of Optics, 7th expanded ed. (Cambridge U. Press, Cambridge, UK, 1999), pp. 218–219.

Bowering, E.

C. W. Hawryshyn, M. G. Arnold, E. Bowering, R. L. Cole, “Spatial orientation of rainbow trout to plane-polarised light: the ontogeny of e-vector discrimination and spectral sensitivity characteristics,” J. Comp. Physiol. A 166, 566–574 (1990).
[CrossRef]

Bowmaker, J. M.

J. M. Bowmaker, “Microspectrophotometry of vertebrate photoreceptors,” Vision Res. 24, 1641–1650 (1984).
[CrossRef]

Browman, H. I.

I. N. Flamarique, H. I. Browman, “Foraging and prey-search behaviour of small juvenile rainbow trout (Oncorhynchus mykiss) under polarized light,” J. Exp. Biol. 204, 2415–2422 (2001).
[PubMed]

Brown, P. K.

P. K. Brown, “Rhodopsin rotates in the visual receptor membrane,” Nature New Biol. 236, 35–38 (1972).
[CrossRef] [PubMed]

Brzustowicz, M. R.

M. R. Brzustowicz, W. Stillwell, S. R. Wassall, “Molecular organization in polyunsaturated phospholipid membranes: a solid state  2H NMR investigation,” FEBS Lett. 451, 197–202 (1999).
[CrossRef] [PubMed]

Burnett, C. G.

G. Gröbner, C. G. Burnett, A. Choi, J. Mason, A. Watts, “Observations of light-induced structural changes of retinal within rhodopsin,” Nature 405, 810–813 (2000).
[CrossRef] [PubMed]

Chance, B.

B. Chance, R. Perry, L. Akerman, B. Thorell, “Highly sensitive recording microspectrophotometer,” Rev. Sci. Instrum. 30, 735–741 (1959).
[CrossRef]

Choi, A.

G. Gröbner, C. G. Burnett, A. Choi, J. Mason, A. Watts, “Observations of light-induced structural changes of retinal within rhodopsin,” Nature 405, 810–813 (2000).
[CrossRef] [PubMed]

Cohen, A. I.

A. I. Cohen, “Rods and cones,” in Handbook of Sensory Physiology VII/2, M. G. F. Fuortes, ed. (Springer-Verlag, Berlin, 1972), pp. 63–110.

Cole, R. L.

C. W. Hawryshyn, M. G. Arnold, E. Bowering, R. L. Cole, “Spatial orientation of rainbow trout to plane-polarised light: the ontogeny of e-vector discrimination and spectral sensitivity characteristics,” J. Comp. Physiol. A 166, 566–574 (1990).
[CrossRef]

Collings, P.

P. Collings, M. Hird, Introduction to Liquid Crystals (Taylor & Frances, London, 1997), pp. 1–5.

Cone, R. A.

R. A. Cone, “Rotational diffusion of rhodopsin on thevisual receptor membrane,” Nature New Biol. 236, 39–43 (1972).
[CrossRef]

Coughlin, D. J.

D. J. Coughlin, C. W. Hawryshyn, “A cellular basis for polarized-light vision in rainbow trout,” J. Comp. Physiol. A 176, 261–272 (1995).
[CrossRef]

D. J. Coughlin, C. W. Hawryshyn, “A cellular basis for polarized-light vision in rainbow trout,” J. Comp. Physiol. A 176, 261–272 (1995).
[CrossRef]

Dartnall, H. J. A.

E. R. Loew, H. J. A. Dartnall, “Vitamin A1/A2-based visual pigment mixtures in cones of the rudd,” Vision Res. 16, 891–896 (1976).
[CrossRef]

Deutschlander, M. E.

C. W. Hawryshyn, T. J. Haimberger, M. E. Deutschlander, “Microspectrophotometric measurements of vertebrate photoreceptors using CCD-based detection technology,” J. Exp. Biol. 204, 2431–2438 (2001).
[PubMed]

Donner, K.

V. I. Govardovskii, F. Fyhrquist, T. Reuter, D. G. Kuzmin, K. Donner, “In search of the visual pigment template,” Visual Neurosci. 17, 509–528 (2000).
[CrossRef]

Fineran, B. A.

B. A. Fineran, J. A. C. Nicol, “Studies on the photoreceptors of Anchoa mitichilli and A. hepsetus (Engranlidae) with particular reference to the cones,” Philos. Trans. R. Soc. London Ser. B 283, 25–60 (1978).
[CrossRef]

Flamarique, I. N.

I. N. Flamarique, H. I. Browman, “Foraging and prey-search behaviour of small juvenile rainbow trout (Oncorhynchus mykiss) under polarized light,” J. Exp. Biol. 204, 2415–2422 (2001).
[PubMed]

I. N. Flamarique, C. W. Hawryshyn, F. I. Harosi, “Double cone internal reflection as a basis for polarization detection in fish,” J. Opt. Soc. Am. A 15, 349–358 (1998).
[CrossRef]

Freake, M. J.

M. J. Freake, “Evidence for orientation using the e-vector direction of polarised light in the sleepy lizard Tiliqua rugosa,” J. Exp. Biol. 202, 1159–1166 (1999).
[PubMed]

Fyhrquist, F.

V. I. Govardovskii, F. Fyhrquist, T. Reuter, D. G. Kuzmin, K. Donner, “In search of the visual pigment template,” Visual Neurosci. 17, 509–528 (2000).
[CrossRef]

Gleeson, H. F.

N. W. Roberts, H. F. Gleeson, Department of Physics, University of Manchester, Manchester, M13 9PL, UK, are preparing a manuscript to be called “The absorbance of polarized light by vertebrate photoreceptors.”

Goldsmith, T. H.

A. G. Palacios, R. Strivastava, T. H. Goldsmith, “Spectral and polarization sensitivity of photocurrents of amphibian rods in the visible and ultraviolet,” Visual Neurosci. 15, 319–331 (1998).
[CrossRef]

Govardovskii, V. I.

V. I. Govardovskii, F. Fyhrquist, T. Reuter, D. G. Kuzmin, K. Donner, “In search of the visual pigment template,” Visual Neurosci. 17, 509–528 (2000).
[CrossRef]

Gröbner, G.

G. Gröbner, C. G. Burnett, A. Choi, J. Mason, A. Watts, “Observations of light-induced structural changes of retinal within rhodopsin,” Nature 405, 810–813 (2000).
[CrossRef] [PubMed]

Haimberger, T. J.

C. W. Hawryshyn, T. J. Haimberger, M. E. Deutschlander, “Microspectrophotometric measurements of vertebrate photoreceptors using CCD-based detection technology,” J. Exp. Biol. 204, 2431–2438 (2001).
[PubMed]

Harosi, F. I.

I. N. Flamarique, C. W. Hawryshyn, F. I. Harosi, “Double cone internal reflection as a basis for polarization detection in fish,” J. Opt. Soc. Am. A 15, 349–358 (1998).
[CrossRef]

F. I. Harosi, F. E. Malerba, “Plane polarized light in microspectrophotometry,” Vision Res. 15, 379–388 (1975).
[CrossRef]

F. I. Harosi, E. F. MacNichol, “Dichroic microspectrophotometer: a computer assisted, rapid, wavelength scanning photometer for measuring the linear dichroism of single cells,” J. Opt. Soc. Am. 64, 903–918 (1974).
[CrossRef]

F. I. Harosi, “Linear dichroism of rods and cones,” in NATO Advanced Study Institute Series, Series A: Life Sciences (Plenum, New York, 1975), pp. 55–65.

F. I. Harosi, “Microspectrophotometry and optical phenomena: birefringence, dichroism, and anomalous dispersion,” in Vertebrate photoreceptor optics, J. M. Enoch, F. L. Tobey, eds. (Springer-Verlag, Berlin, 1981), pp. 337–397.

Hawryshyn, C. W.

C. W. Hawryshyn, T. J. Haimberger, M. E. Deutschlander, “Microspectrophotometric measurements of vertebrate photoreceptors using CCD-based detection technology,” J. Exp. Biol. 204, 2431–2438 (2001).
[PubMed]

D. C. Parkyn, C. W. Hawryshyn, “Spectral and ultraviolet-polarization sensitivity in juvenile salmonids: a comparative analysis using electrophysiology,” J. Exp. Biol. 203, 1173–1191 (2000).
[PubMed]

I. N. Flamarique, C. W. Hawryshyn, F. I. Harosi, “Double cone internal reflection as a basis for polarization detection in fish,” J. Opt. Soc. Am. A 15, 349–358 (1998).
[CrossRef]

D. J. Coughlin, C. W. Hawryshyn, “A cellular basis for polarized-light vision in rainbow trout,” J. Comp. Physiol. A 176, 261–272 (1995).
[CrossRef]

D. J. Coughlin, C. W. Hawryshyn, “A cellular basis for polarized-light vision in rainbow trout,” J. Comp. Physiol. A 176, 261–272 (1995).
[CrossRef]

C. W. Hawryshyn, M. G. Arnold, E. Bowering, R. L. Cole, “Spatial orientation of rainbow trout to plane-polarised light: the ontogeny of e-vector discrimination and spectral sensitivity characteristics,” J. Comp. Physiol. A 166, 566–574 (1990).
[CrossRef]

C. W. Hawryshyn, W. N. McFarland, “Cone photoreceptor mechanisms and the detection of polarized light in fish,” J. Comp. Physiol. 160, 459–465 (1987).
[CrossRef]

Hird, M.

P. Collings, M. Hird, Introduction to Liquid Crystals (Taylor & Frances, London, 1997), pp. 1–5.

Israelchvili, J. N.

J. N. Israelchvili, R. A. Sammut, A. W. Snyder, “Birefringence and dichroism of photoreceptors,” Vision Res. 16, 47–52 (1976).
[CrossRef]

Jagger, W. S.

P. A. Liebman, W. S. Jagger, M. W. Kaplan, F. G. Bargoot, “Membrane structure changes in rod outer segments associated with rhodopsin bleaching,” Nature 251, 31–36 (1974).
[CrossRef] [PubMed]

Kaplan, M. W.

P. A. Liebman, W. S. Jagger, M. W. Kaplan, F. G. Bargoot, “Membrane structure changes in rod outer segments associated with rhodopsin bleaching,” Nature 251, 31–36 (1974).
[CrossRef] [PubMed]

Kuzmin, D. G.

V. I. Govardovskii, F. Fyhrquist, T. Reuter, D. G. Kuzmin, K. Donner, “In search of the visual pigment template,” Visual Neurosci. 17, 509–528 (2000).
[CrossRef]

Land, M. F.

M. F. Land, D. E. Nilsson, “Light and Vision,” in Animal Eyes (Oxford U. Press, Oxford, UK, 2002), pp. 29–31.

Liebman, P. A.

P. A. Liebman, W. S. Jagger, M. W. Kaplan, F. G. Bargoot, “Membrane structure changes in rod outer segments associated with rhodopsin bleaching,” Nature 251, 31–36 (1974).
[CrossRef] [PubMed]

P. A. Liebman, “In situ microspectrophotometric studies on the pigments of single retinal rods,” Biophys. J. 2, 161–178 (1962).
[CrossRef] [PubMed]

P. A. Liebman, “Birefringence, dichroism and rod outer segment structure,” in Photoreceptor Optics, A. W. Snyder, R. Menzel, eds. (Springer-Verlag, Berlin, 1975), pp. 119–214.

Loew, E. R.

E. R. Loew, H. J. A. Dartnall, “Vitamin A1/A2-based visual pigment mixtures in cones of the rudd,” Vision Res. 16, 891–896 (1976).
[CrossRef]

MacNichol, E. F.

Malerba, F. E.

F. I. Harosi, F. E. Malerba, “Plane polarized light in microspectrophotometry,” Vision Res. 15, 379–388 (1975).
[CrossRef]

Mason, J.

G. Gröbner, C. G. Burnett, A. Choi, J. Mason, A. Watts, “Observations of light-induced structural changes of retinal within rhodopsin,” Nature 405, 810–813 (2000).
[CrossRef] [PubMed]

Mathies, R.

R. Mathies, L. Stryer, “Retinal has a dipolar vertically excited singlet state: implications for vision,” Proc. Natl. Acad. Sci. U.S.A. 73, 2169–2173 (1976).
[CrossRef]

McFarland, W. N.

C. W. Hawryshyn, W. N. McFarland, “Cone photoreceptor mechanisms and the detection of polarized light in fish,” J. Comp. Physiol. 160, 459–465 (1987).
[CrossRef]

McIntosh, T. J.

T. J. McIntosh, “The effect of cholesterol on the structure of phosphatidycholine bilayers,” Biochim. Biophys. Acta 513, 43–58 (1973).
[CrossRef]

Moore, F. R.

J. B. Phillips, F. R. Moore, “Calibration of the sun compass by sunset polarized patterns in a migratory bird,” Behav. Ecol. Sociobiol. 31, 189–193 (1992).
[CrossRef]

Murari, M. P.

R. Murari, M. P. Murari, W. J. Baumann, “Sterol orientations in phosphatidycholine liposomes as determined by deuterium NMR,” Biochemistry 25, 1062–1067 (1986).
[CrossRef] [PubMed]

Murari, R.

R. Murari, M. P. Murari, W. J. Baumann, “Sterol orientations in phosphatidycholine liposomes as determined by deuterium NMR,” Biochemistry 25, 1062–1067 (1986).
[CrossRef] [PubMed]

Nicol, J. A. C.

B. A. Fineran, J. A. C. Nicol, “Studies on the photoreceptors of Anchoa mitichilli and A. hepsetus (Engranlidae) with particular reference to the cones,” Philos. Trans. R. Soc. London Ser. B 283, 25–60 (1978).
[CrossRef]

Nilsson, D. E.

M. F. Land, D. E. Nilsson, “Light and Vision,” in Animal Eyes (Oxford U. Press, Oxford, UK, 2002), pp. 29–31.

Palacios, A. G.

A. G. Palacios, R. Strivastava, T. H. Goldsmith, “Spectral and polarization sensitivity of photocurrents of amphibian rods in the visible and ultraviolet,” Visual Neurosci. 15, 319–331 (1998).
[CrossRef]

Parkyn, D. C.

D. C. Parkyn, C. W. Hawryshyn, “Spectral and ultraviolet-polarization sensitivity in juvenile salmonids: a comparative analysis using electrophysiology,” J. Exp. Biol. 203, 1173–1191 (2000).
[PubMed]

Perry, R.

B. Chance, R. Perry, L. Akerman, B. Thorell, “Highly sensitive recording microspectrophotometer,” Rev. Sci. Instrum. 30, 735–741 (1959).
[CrossRef]

Phillips, J. B.

J. B. Phillips, F. R. Moore, “Calibration of the sun compass by sunset polarized patterns in a migratory bird,” Behav. Ecol. Sociobiol. 31, 189–193 (1992).
[CrossRef]

K. Adler, J. B. Phillips, “Orientation in a desertlizard (Uma notata): time-compensated compass movement and polarotaxis,” J. Comp. Physiol. A 156, 547–552 (1985).
[CrossRef]

Reuter, T.

V. I. Govardovskii, F. Fyhrquist, T. Reuter, D. G. Kuzmin, K. Donner, “In search of the visual pigment template,” Visual Neurosci. 17, 509–528 (2000).
[CrossRef]

Roberts, N. W.

N. W. Roberts, H. F. Gleeson, Department of Physics, University of Manchester, Manchester, M13 9PL, UK, are preparing a manuscript to be called “The absorbance of polarized light by vertebrate photoreceptors.”

Sammut, R. A.

J. N. Israelchvili, R. A. Sammut, A. W. Snyder, “Birefringence and dichroism of photoreceptors,” Vision Res. 16, 47–52 (1976).
[CrossRef]

Schimmel, R. J.

K. Boesze-Battaglia, R. J. Schimmel, “Cell membrane lipid composition and distribution: Implications for cell function and lessons learned from photoreceptors and platelets,” J. Exp. Biol. 200, 2927–2936 (1997).

Snyder, A. W.

J. N. Israelchvili, R. A. Sammut, A. W. Snyder, “Birefringence and dichroism of photoreceptors,” Vision Res. 16, 47–52 (1976).
[CrossRef]

A. W. Snyder, “Physics of vision in compound eyes,” in Handbook of Sensory Physiology VII/6A, H. Autrum, ed. (Springer-Verlag, Berlin, 1979), pp. 284–285.

Stavenga, D. G.

D. G. Stavenga, H. H. van Barneveld, “On dispersionin visual photoreceptors,” Vision Res. 15, 1091–1095 (1974).
[CrossRef]

Stillwell, W.

M. R. Brzustowicz, W. Stillwell, S. R. Wassall, “Molecular organization in polyunsaturated phospholipid membranes: a solid state  2H NMR investigation,” FEBS Lett. 451, 197–202 (1999).
[CrossRef] [PubMed]

Strivastava, R.

A. G. Palacios, R. Strivastava, T. H. Goldsmith, “Spectral and polarization sensitivity of photocurrents of amphibian rods in the visible and ultraviolet,” Visual Neurosci. 15, 319–331 (1998).
[CrossRef]

Stryer, L.

R. Mathies, L. Stryer, “Retinal has a dipolar vertically excited singlet state: implications for vision,” Proc. Natl. Acad. Sci. U.S.A. 73, 2169–2173 (1976).
[CrossRef]

Taylor, D. H.

D. H. Taylor, K. Alder, “Spatial orientation by salamanders using plane polarised light,” Science 181, 285–287 (1973).
[CrossRef] [PubMed]

Thorell, B.

B. Chance, R. Perry, L. Akerman, B. Thorell, “Highly sensitive recording microspectrophotometer,” Rev. Sci. Instrum. 30, 735–741 (1959).
[CrossRef]

van Barneveld, H. H.

D. G. Stavenga, H. H. van Barneveld, “On dispersionin visual photoreceptors,” Vision Res. 15, 1091–1095 (1974).
[CrossRef]

Wassall, S. R.

M. R. Brzustowicz, W. Stillwell, S. R. Wassall, “Molecular organization in polyunsaturated phospholipid membranes: a solid state  2H NMR investigation,” FEBS Lett. 451, 197–202 (1999).
[CrossRef] [PubMed]

Waterman, T. H.

T. H. Waterman, “Natural polarised light and e-vector discrimination by vertebrates,” in Light as an Ecological Factor II (Blackwell, Oxford, UK, 1975), pp. 305–335.

Watts, A.

G. Gröbner, C. G. Burnett, A. Choi, J. Mason, A. Watts, “Observations of light-induced structural changes of retinal within rhodopsin,” Nature 405, 810–813 (2000).
[CrossRef] [PubMed]

Weale, R. A.

R. A. Weale, “On the linear dichroism of frog rods,” Vision Res. 11, 1373–1385 (1971).
[CrossRef] [PubMed]

Wehner, R.

R. Wehner, “The hymenopteran skylight compass: matched filtering and parallel coding,” J. Exp. Biol. 146, 63–85 (1989).

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 7th expanded ed. (Cambridge U. Press, Cambridge, UK, 1999), pp. 218–219.

Behav. Ecol. Sociobiol.

J. B. Phillips, F. R. Moore, “Calibration of the sun compass by sunset polarized patterns in a migratory bird,” Behav. Ecol. Sociobiol. 31, 189–193 (1992).
[CrossRef]

Biochemistry

R. Murari, M. P. Murari, W. J. Baumann, “Sterol orientations in phosphatidycholine liposomes as determined by deuterium NMR,” Biochemistry 25, 1062–1067 (1986).
[CrossRef] [PubMed]

Biochim. Biophys. Acta

T. J. McIntosh, “The effect of cholesterol on the structure of phosphatidycholine bilayers,” Biochim. Biophys. Acta 513, 43–58 (1973).
[CrossRef]

Biophys. J.

P. A. Liebman, “In situ microspectrophotometric studies on the pigments of single retinal rods,” Biophys. J. 2, 161–178 (1962).
[CrossRef] [PubMed]

FEBS Lett.

M. R. Brzustowicz, W. Stillwell, S. R. Wassall, “Molecular organization in polyunsaturated phospholipid membranes: a solid state  2H NMR investigation,” FEBS Lett. 451, 197–202 (1999).
[CrossRef] [PubMed]

J. Comp. Physiol.

C. W. Hawryshyn, W. N. McFarland, “Cone photoreceptor mechanisms and the detection of polarized light in fish,” J. Comp. Physiol. 160, 459–465 (1987).
[CrossRef]

J. Comp. Physiol. A

K. Adler, J. B. Phillips, “Orientation in a desertlizard (Uma notata): time-compensated compass movement and polarotaxis,” J. Comp. Physiol. A 156, 547–552 (1985).
[CrossRef]

D. J. Coughlin, C. W. Hawryshyn, “A cellular basis for polarized-light vision in rainbow trout,” J. Comp. Physiol. A 176, 261–272 (1995).
[CrossRef]

C. W. Hawryshyn, M. G. Arnold, E. Bowering, R. L. Cole, “Spatial orientation of rainbow trout to plane-polarised light: the ontogeny of e-vector discrimination and spectral sensitivity characteristics,” J. Comp. Physiol. A 166, 566–574 (1990).
[CrossRef]

D. J. Coughlin, C. W. Hawryshyn, “A cellular basis for polarized-light vision in rainbow trout,” J. Comp. Physiol. A 176, 261–272 (1995).
[CrossRef]

J. Exp. Biol.

I. N. Flamarique, H. I. Browman, “Foraging and prey-search behaviour of small juvenile rainbow trout (Oncorhynchus mykiss) under polarized light,” J. Exp. Biol. 204, 2415–2422 (2001).
[PubMed]

R. Wehner, “The hymenopteran skylight compass: matched filtering and parallel coding,” J. Exp. Biol. 146, 63–85 (1989).

D. C. Parkyn, C. W. Hawryshyn, “Spectral and ultraviolet-polarization sensitivity in juvenile salmonids: a comparative analysis using electrophysiology,” J. Exp. Biol. 203, 1173–1191 (2000).
[PubMed]

M. J. Freake, “Evidence for orientation using the e-vector direction of polarised light in the sleepy lizard Tiliqua rugosa,” J. Exp. Biol. 202, 1159–1166 (1999).
[PubMed]

K. Boesze-Battaglia, R. J. Schimmel, “Cell membrane lipid composition and distribution: Implications for cell function and lessons learned from photoreceptors and platelets,” J. Exp. Biol. 200, 2927–2936 (1997).

C. W. Hawryshyn, T. J. Haimberger, M. E. Deutschlander, “Microspectrophotometric measurements of vertebrate photoreceptors using CCD-based detection technology,” J. Exp. Biol. 204, 2431–2438 (2001).
[PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Nature

G. Gröbner, C. G. Burnett, A. Choi, J. Mason, A. Watts, “Observations of light-induced structural changes of retinal within rhodopsin,” Nature 405, 810–813 (2000).
[CrossRef] [PubMed]

K. P. Able, “Skylight polarization patterns at dusk influence migratory orientations in birds,” Nature 299, 550–551 (1982).
[CrossRef]

P. A. Liebman, W. S. Jagger, M. W. Kaplan, F. G. Bargoot, “Membrane structure changes in rod outer segments associated with rhodopsin bleaching,” Nature 251, 31–36 (1974).
[CrossRef] [PubMed]

Nature New Biol.

P. K. Brown, “Rhodopsin rotates in the visual receptor membrane,” Nature New Biol. 236, 35–38 (1972).
[CrossRef] [PubMed]

R. A. Cone, “Rotational diffusion of rhodopsin on thevisual receptor membrane,” Nature New Biol. 236, 39–43 (1972).
[CrossRef]

Philos. Trans. R. Soc. London Ser. B

B. A. Fineran, J. A. C. Nicol, “Studies on the photoreceptors of Anchoa mitichilli and A. hepsetus (Engranlidae) with particular reference to the cones,” Philos. Trans. R. Soc. London Ser. B 283, 25–60 (1978).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

R. Mathies, L. Stryer, “Retinal has a dipolar vertically excited singlet state: implications for vision,” Proc. Natl. Acad. Sci. U.S.A. 73, 2169–2173 (1976).
[CrossRef]

Rev. Sci. Instrum.

B. Chance, R. Perry, L. Akerman, B. Thorell, “Highly sensitive recording microspectrophotometer,” Rev. Sci. Instrum. 30, 735–741 (1959).
[CrossRef]

Science

D. H. Taylor, K. Alder, “Spatial orientation by salamanders using plane polarised light,” Science 181, 285–287 (1973).
[CrossRef] [PubMed]

Vision Res.

J. N. Israelchvili, R. A. Sammut, A. W. Snyder, “Birefringence and dichroism of photoreceptors,” Vision Res. 16, 47–52 (1976).
[CrossRef]

D. G. Stavenga, H. H. van Barneveld, “On dispersionin visual photoreceptors,” Vision Res. 15, 1091–1095 (1974).
[CrossRef]

E. R. Loew, H. J. A. Dartnall, “Vitamin A1/A2-based visual pigment mixtures in cones of the rudd,” Vision Res. 16, 891–896 (1976).
[CrossRef]

J. M. Bowmaker, “Microspectrophotometry of vertebrate photoreceptors,” Vision Res. 24, 1641–1650 (1984).
[CrossRef]

R. A. Weale, “On the linear dichroism of frog rods,” Vision Res. 11, 1373–1385 (1971).
[CrossRef] [PubMed]

F. I. Harosi, F. E. Malerba, “Plane polarized light in microspectrophotometry,” Vision Res. 15, 379–388 (1975).
[CrossRef]

Visual Neurosci.

V. I. Govardovskii, F. Fyhrquist, T. Reuter, D. G. Kuzmin, K. Donner, “In search of the visual pigment template,” Visual Neurosci. 17, 509–528 (2000).
[CrossRef]

A. G. Palacios, R. Strivastava, T. H. Goldsmith, “Spectral and polarization sensitivity of photocurrents of amphibian rods in the visible and ultraviolet,” Visual Neurosci. 15, 319–331 (1998).
[CrossRef]

Other

P. Collings, M. Hird, Introduction to Liquid Crystals (Taylor & Frances, London, 1997), pp. 1–5.

F. I. Harosi, “Microspectrophotometry and optical phenomena: birefringence, dichroism, and anomalous dispersion,” in Vertebrate photoreceptor optics, J. M. Enoch, F. L. Tobey, eds. (Springer-Verlag, Berlin, 1981), pp. 337–397.

P. A. Liebman, “Birefringence, dichroism and rod outer segment structure,” in Photoreceptor Optics, A. W. Snyder, R. Menzel, eds. (Springer-Verlag, Berlin, 1975), pp. 119–214.

F. I. Harosi, “Linear dichroism of rods and cones,” in NATO Advanced Study Institute Series, Series A: Life Sciences (Plenum, New York, 1975), pp. 55–65.

P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw Hill, New York, 1994), pp. 242–246.

A. I. Cohen, “Rods and cones,” in Handbook of Sensory Physiology VII/2, M. G. F. Fuortes, ed. (Springer-Verlag, Berlin, 1972), pp. 63–110.

M. Born, E. Wolf, Principles of Optics, 7th expanded ed. (Cambridge U. Press, Cambridge, UK, 1999), pp. 218–219.

N. W. Roberts, H. F. Gleeson, Department of Physics, University of Manchester, Manchester, M13 9PL, UK, are preparing a manuscript to be called “The absorbance of polarized light by vertebrate photoreceptors.”

T. H. Waterman, “Natural polarised light and e-vector discrimination by vertebrates,” in Light as an Ecological Factor II (Blackwell, Oxford, UK, 1975), pp. 305–335.

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarised Light (Elsevier, Amsterdam, 1987), pp. 340–352.

A. W. Snyder, “Physics of vision in compound eyes,” in Handbook of Sensory Physiology VII/6A, H. Autrum, ed. (Springer-Verlag, Berlin, 1979), pp. 284–285.

M. F. Land, D. E. Nilsson, “Light and Vision,” in Animal Eyes (Oxford U. Press, Oxford, UK, 2002), pp. 29–31.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the CCD microspectrophotometer. BI, back illumination; BS, beam splitter; C, 52x reflective objective as the condenser; CCD, charge-coupled device camera; COMP, custom computer software; FO, fiber optic cable; GTP, Glan-Thompson polarizer; IRF, infra-red filter; LS, Xenon lamp light source; OBJ, objective lens; S, sample; SH, shutter; SIR, infra-red filter mounted on a swing arm; SPEC, spectrograph; VA, XY variable aperture; XYS, XY stage.

Fig. 2
Fig. 2

Technique of polarization microspectrophotometry (PMSP). A schematic diagram of the inner and outer segments of a vertebrate ciliary photoreceptor illustrating linearly polarized light incident on the outer segment in the experimental measurement geometry. Different E-vectors are shown corresponding to the different labeled polarization angles ϕ.

Fig. 3
Fig. 3

Example PMSP absorbance spectra. Typical examples of experimental absorbance spectra obtained from (a) a rod, (b) a UVS cone, (c) a SWS cone, (d) a MWS cone, and (e) a LWS cone. In all panels the solid curve represents the experimental data and the dashed curve represents the fitted function of the weighted A1/A2 Govardovskii template.22

Fig. 4
Fig. 4

Example polarization sets of fitted absorbance spectra. All curves represent the fitted functions of the weighted A1/A2 Govardovskii template for (a) a rod and (b) a LWS-cone photoreceptor. In (a) the maximum angle of absorbance Φ=0°, which corresponds to the E-vector parallel to the transverse axis of the outer segment. In (b) Φ lies at a different angle, between -10° and -20°. In both (a) and (b) the legend indicates the polarization angle ϕ.

Fig. 5
Fig. 5

Maximum absorbance values of typical individual photoreceptors as a function of polarization angle ϕ. Points correspond to experimental data and curves correspond to the fits as described by Eq. (1). (a) In the rod, the angle of maximum absorbance Φ=0°, parallel to the transverse axis of the outer segment. (b) UVS cone, (c) SWS cone, (d) MWS cone, and (e) LWS cone; the maxima of the fitted curves do not correspond to 0°, implying that Φ is not parallel to the transverse axis of the outer segment. The errors represent ±1 standard deviation calculated from the curvature matrix.31

Fig. 6
Fig. 6

Measured distribution in angle of maximum absorbance Φ of all rods and cones analyzed. The normal distribution in Φ for all photoreceptors measured illustrates a significant difference (ANOVA, F1,78=76.802, P<0.001) between the mean values of Φ for rods and cones. The result strongly suggests that the position of maximum absorbance in cones is tilted with respect to the cones’ primary axis.

Fig. 7
Fig. 7

Schematic diagrams of the absorbance ellipsoid in the outer segments of rods and cones. (a) Three-dimensional representation of the photoreceptor outer segments illustrating the change in the projection of the absorbance into the plane of the incident wave front and Φ as a function of the outer segment’s rotational degree of freedom. For the case of the rods, panel 1 and 2 show the value of Φ to be invariant under the rotation of the outer segment. However, the value of Φ can be seen to vary from the actual tilt angle (panel 3) to Φ=0 (panel 4) for the cones. (b) In a plan view of (a), the ratio of magnitudes of the absorbance vectors (arrows) parallel and perpendicular to the transverse axis of the outer segment corresponds to the dichroic ratio. As a direct result of the tilt, it can be seen that the dichroic ratio will be smaller in cones (panels 3 and 4) than in rods (panels 1 and 2).

Fig. 8
Fig. 8

Calculated absorbances from the solutions to Maxwell’s equations for an axially illuminated (a) rod and (b) and (c) cone photoreceptor. (a) The absorbance spectra of the modeled rod showing the absorbance of two orthogonal polarizations corresponding to the E-vector parallel (dashed curve) and perpendicular (solid curve) to the plane of incidence which contains the director. Clearly, the two absorbance curves overlap, indicating no dichroic absorbance. (b) In the case of a MWS cone the absorbance now differs as a function of the incident polarization. Symbols are as in (a). The modulation in the absorbance at λmax is shown in (c). An approximate 10% difference in the absorbance as a function of E-vector orientation shows the intrinsic axial polarization sensitivity of the cone outer segment.

Fig. 9
Fig. 9

Coordinate system used in the construct of the dielectric tensor. Principal axes of the dielectric ellipsoid represent the semi-axes of the uniaxial optical structure. Labeled angles show the parameters used for the transformation from the molecular to the laboratory frame of reference.

Tables (2)

Tables Icon

Table 1 Polarization Angles of Maximum Absorbance, Φ, from Single Photoreceptors in Each Spectral Class as Illustrated in Fig. 5

Tables Icon

Table 2 Probability Values from a Comparison (Tukey Test)a of Mean Values of Φ between All Spectral Classes of Photoreceptors

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

a=-log10[cos2(ϕ-Φ)10-amax+sin2(ϕ-Φ)10-amin],
axial=α00000000,
axial(θ)=Raxial(θ)axialRaxial-1,
Raxial(θ)=cos θ0-sin θ010sin θ0cos θ.
axial(θ)=1+α cos2 θ0α sin θ cos θ020α sin θ cos θ03+α sin2 θ,
axial(τ, γ, ξ, θ)=AABBDDBBCCEEDDEEFF,
a=(1+α cos2 θ)cos2 ξ+2 sin2 ξ,b=(1-2+α cos2 θ)cos ξ sin ξ,c=(1+α cos2 θ)sin2 ξ+2 cos2 ξ,d=α sin θ cos θ cos ξ,e=α sin θ cos θ sin ξ,f=3+α sin2 θ,A=a cos2 γ-2d cos γ sin γ+f sin2 γ,B=b cos γ-e sin γ,C=c,D=d cos2 γ-d sin2 γ+(a-f)cos γ sin γ,E=b sin γ+e cos γ,F=a sin2 γ+2d cos γ sin γ+f cos2 γ,AA=A cos2 τ-2B cos τ sin τ+C sin2 τ,BB=B cos2 τ-B sin2 τ+(A-C)cos τ sin τ,CC=A sin2 τ+2B cos τ sin τ+C cos2 τ,DD=D cos τ-E cos τ,EE=D sin τ+E cos τ,FF=F.
Δ=0100AA-DD2FF0BB-DD×EEFF00001BB-DD×EEFF0CC-EE2FF0.

Metrics